Chapter 7 : Xer Site-Specific Recombination: Promoting Vertical and Horizontal Transmission of Genetic Information

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Xer Site-Specific Recombination: Promoting Vertical and Horizontal Transmission of Genetic Information, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819217/9781555819200_Chap07-1.gif /docserver/preview/fulltext/10.1128/9781555819217/9781555819200_Chap07-2.gif


It was Barbara McClintock who first described the problems of segregation arising from the circularity of chromosomes during her studies on maize variegation ( ). The importance of this observation, which could have passed as a mere oddity at the time because of the linear nature of chromosomes in Eukaryota, was only realized after the demonstration of the circular nature of the chromosome by François Jacob and Elie Wollman in the 1960s ( ). Since then, the wealth of information gained by genomic studies has shown that circular chromosomes are the norm in Bacteria and Archaea.

Citation: Midonet C, Barre F. 2015. Xer Site-Specific Recombination: Promoting Vertical and Horizontal Transmission of Genetic Information, p 163-182. In Craig N, Chandler M, Gellert M, Lambowitz A, Rice P, Sandmeyer S (ed), Mobile DNA III. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MDNA3-0056-2014
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Chromosome dimer resolution and sister chromosome decatenation. (A) Topological maintenance of bacterial chromosomes. Violet and pink circles represent sister circular chromosomes. Topo IV resolves catenanes. The Xer machinery resolves both catenanes and dimers. (B) Xer recombination. Light and dark grey ovoid shapes depict the C-terminal domains of the XerC and XerD tyrosine recombinases, respectively. The N-terminal domains are omitted for clarity. Tails have been added to indicate the C-terminal interactions of the recombinases. Red and black lines indicate the two strands of the recombining sites. Full and empty circles represent the XerC and XerD cleavage points, respectively. Horizontal and vertical substrates are proficient for XerC and XerD-strand exchanges, respectively. (C) Consensus sequence obtained from the alignment of the sites of 715 bacterial chromosomes. The XerC and XerD recognition sites are underlined. Double-stranded DNA sequence of and , of the core and plasmid sites and of the three types of attachment sites observed in the genome of integrative mobile elements exploiting Xer are shown below (ET: El Tor CTX; VGJ: VGJ phage; TLC: TLC satellite phage). XerC and XerD process the top and bottom strands, respectively. Bases differing from the consensus are shown in red. Lower case letters indicate the absence of conventional Watson–Crick pairing interactions.

Citation: Midonet C, Barre F. 2015. Xer Site-Specific Recombination: Promoting Vertical and Horizontal Transmission of Genetic Information, p 163-182. In Craig N, Chandler M, Gellert M, Lambowitz A, Rice P, Sandmeyer S (ed), Mobile DNA III. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MDNA3-0056-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Spatial and temporal control of chromosome dimer resolution. (A) Temporal restriction of Xer recombination during the bacterial cell cycle. White disk: origin of replication region; Converging arrows: terminus of replication region. The two sister chromatids are depicted as pink and purple tubes. (B) Spatial restriction of Xer recombination along bacterial chromosomes. The activity zone corresponds to the region in which can still resolve dimers if displaced. (C) FtsK controls Xer recombination. Violet and pink circles represent bacterial sister circular chromosomes. White arrows indicate the KOPS motifs and their orientation. sites are shown as red and black lines. The FtsK protein is drawn in blue.

Citation: Midonet C, Barre F. 2015. Xer Site-Specific Recombination: Promoting Vertical and Horizontal Transmission of Genetic Information, p 163-182. In Craig N, Chandler M, Gellert M, Lambowitz A, Rice P, Sandmeyer S (ed), Mobile DNA III. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MDNA3-0056-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Chromosome dimer resolution. (A) Dead-end FtsK-independent XerC pathway of recombination between sites. (B) Chromosome dimer resolution pathway. (C) Topological control of Xer recombination.

Citation: Midonet C, Barre F. 2015. Xer Site-Specific Recombination: Promoting Vertical and Horizontal Transmission of Genetic Information, p 163-182. In Craig N, Chandler M, Gellert M, Lambowitz A, Rice P, Sandmeyer S (ed), Mobile DNA III. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MDNA3-0056-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Plasmid dimer resolution. (A) Schematic representation of the topological filter. Yellow circles represent accessory proteins. P: PepA; A: ArgR or phosphorylated ArcA; Green tubes: accessory sequences. (B) Topology of the products of Xer recombination at and multimer four-node catenanes. (C) The topological filter controls Xer catalysis for plasmid dimer resolution.

Citation: Midonet C, Barre F. 2015. Xer Site-Specific Recombination: Promoting Vertical and Horizontal Transmission of Genetic Information, p 163-182. In Craig N, Chandler M, Gellert M, Lambowitz A, Rice P, Sandmeyer S (ed), Mobile DNA III. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MDNA3-0056-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

IMEX integration depends on little homology with . (A) Schematic of the integration/excision of mobile elements into the genome of their host. (B) IMEX integration generates a new site, which allows for multiple successive integration events. (C) IMEX integration depends on limited homology. The distance separating the two bases of a base pair indicates the quality of the base pair interactions that are formed. N.D.: not determined

Citation: Midonet C, Barre F. 2015. Xer Site-Specific Recombination: Promoting Vertical and Horizontal Transmission of Genetic Information, p 163-182. In Craig N, Chandler M, Gellert M, Lambowitz A, Rice P, Sandmeyer S (ed), Mobile DNA III. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MDNA3-0056-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Diversity of the IMEX integration pathways. (A) Irreversible integration of CTX-type elements. The single-stranded DNA and double-stranded DNA forms of the element are represented in pink. The host genome is shown in purple. The incapacity of XerD to perform strand exchanges is indicated in yellow. Orange hexagons labeled with the letter E are EndoIII. (B) Integration/excision of VGJ-type elements. The double-stranded DNA replicative form of the element is shown in pink. The host genome is shown in purple. A yellow explosion indicates the impossibility for XerD to perform strand exchanges. The orange circle labeled with a question mark indicates a putative unknown integration factor. (C) Integration/excision pathway of TLC-type elements. The double-stranded DNA form of the element is shown in pink. The host genome is shown in purple. The Blue circle labeled with a question mark represents an unknown factor that could permit the binding of XerD and its catalytic activation.

Citation: Midonet C, Barre F. 2015. Xer Site-Specific Recombination: Promoting Vertical and Horizontal Transmission of Genetic Information, p 163-182. In Craig N, Chandler M, Gellert M, Lambowitz A, Rice P, Sandmeyer S (ed), Mobile DNA III. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MDNA3-0056-2014
Permissions and Reprints Request Permissions
Download as Powerpoint


1. McClintock B . 1932. A Correlation of Ring-Shaped Chromosomes with Variegation in Zea Mays. Proc Natl Acad Sci U S A 18 : 677 681.[PubMed] [CrossRef]
2. Jacob F,, Wollman E . 1961. Sexuality and the Genetics of Bacteria. Academic Press, New York.
3. Watson JD,, Crick FHC . 1953. Genetical implications of the structure of deoxyribonucleic acid. Nature 171 : 964 967.[PubMed] [CrossRef]
4. Adams DE,, Shekhtman EM,, Zechiedrich EL,, Schmid MB,, Cozzarelli NR . 1992. The role of topoisomerase IV in partitioning bacterial replicons and the structure of catenated intermediates in DNA replication. Cell 71 : 277 288.[PubMed] [CrossRef]
5. Barre FX,, Søballe B,, Michel B,, Aroyo M,, Robertson M,, Sherratt D . 2001. Circles: the replication-recombination-chromosome segregation connection. Proc Natl Acad Sci U S A 98 : 8189 8195.[PubMed] [CrossRef]
6. Blakely G,, Colloms S,, May G,, Burke M,, Sherratt D . 1991. Escherichia coli XerC recombinase is required for chromosomal segregation at cell division. New Biol 3 : 789 798.[PubMed]
7. Blakely G,, May G,, McCulloch R,, Arciszewska LK,, Burke M,, Lovett ST,, Sherratt DJ . 1993. Two related recombinases are required for site-specific recombination at dif and cer in E. coli K12. Cell 75 : 351 361.[PubMed] [CrossRef]
8. Kuempel PL,, Henson JM,, Dircks L,, Tecklenburg M,, Lim DF . 1991. dif, a recA-independent recombination site in the terminus region of the chromosome of Escherichia coli. New Biol 3 : 799 811.[PubMed]
9. Clerget M . 1991. Site-specific recombination promoted by a short DNA segment of plasmid R1 and by a homologous segment in the terminus region of the Escherichia coli chromosome. New Biol 3 : 780 788.[PubMed]
10. Ip SC,, Bregu M,, Barre FX,, Sherratt DJ . 2003. Decatenation of DNA circles by FtsK-dependent Xer site-specific recombination. EMBO J 22 : 6399 6407.[PubMed] [CrossRef]
11. Grainge I,, Bregu M,, Vazquez M,, Sivanathan V,, Ip SC,, Sherratt DJ . 2007. Unlinking chromosome catenanes in vivo by site-specific recombination. EMBO J 26 : 4228 4238.[PubMed] [CrossRef]
12. Shimokawa K,, Ishihara K,, Grainge I,, Sherratt DJ,, Vazquez M . 2013. FtsK-dependent XerCD-dif recombination unlinks replication catenanes in a stepwise manner. Proc Natl Acad Sci U S A 110 : 20906 20911.[PubMed] [CrossRef]
13. Val M-E,, Kennedy SP,, El Karoui M,, Bonne L,, Chevalier F,, Barre F-X . 2008. FtsK-dependent dimer resolution on multiple chromosomes in the pathogen Vibrio cholerae. PLoS Genet 4( 9) : e1000201. [PubMed] [CrossRef]
14. Debowski AW,, Carnoy C,, Verbrugghe P,, Nilsson H-O,, Gauntlett JC,, Fulurija A,, Camilleri T,, Berg DE,, Marshall BJ,, Benghezal M . 2012. Xer recombinase and genome integrity in Helicobacter pylori, a pathogen without topoisomerase IV. PloS One 7 : e33310. [PubMed] [CrossRef]
15. Duggin IG,, Dubarry N,, Bell SD . 2011. Replication termination and chromosome dimer resolution in the archaeon Sulfolobus solfataricus. EMBO J 30 : 145 153.[PubMed] [CrossRef]
16. Jensen RB . 2006. Analysis of the terminus region of the Caulobacter crescentus chromosome and identification of the dif site. J Bacteriol 188 : 6016 6019.[PubMed] [CrossRef]
17. Britton RA,, Grossman AD . 1999. Synthetic lethal phenotypes caused by mutations affecting chromosome partitioning in Bacillus subtilis. J Bacteriol 181 : 5860 5864.[PubMed]
18. Sciochetti SA,, Piggot PJ,, Sherratt DJ,, Blakely G . 1999. The ripX locus of Bacillus subtilis encodes a site-specific recombinase involved in proper chromosome partitioning. J Bacteriol 181 : 6053 6062.[PubMed]
19. Sciochetti SA,, Piggot PJ,, Blakely GW . 2001. Identification and Characterization of the dif Site from Bacillus subtilis. J Bacteriol 183 : 1058 68.[PubMed] [CrossRef]
20. Leroux M,, Rezoug Z,, Szatmari G . 2013. The Xer/dif site-specific recombination system of Campylobacter jejuni. Mol Genet Genomics 288 : 495 502.[PubMed] [CrossRef]
21. Yen M-R,, Lin N-T,, Hung C-H,, Choy K-T,, Weng S-F,, Tseng Y-H . 2002. oriC region and replication termination site, dif, of the Xanthomonas campestris pv. campestris 17 chromosome. Appl Environ Microbiol 68 : 2924 2933.[PubMed] [CrossRef]
22. Cortez D,, Quevillon-Cheruel S,, Gribaldo S,, Desnoues N,, Sezonov G,, Forterre P,, Serre M-C . 2010. Evidence for a Xer/dif system for chromosome resolution in archaea. PLoS Genet 6 : e1001166. [PubMed] [CrossRef]
23. Serre M-C,, El Arnaout T,, Brooks MA,, Durand D,, Lisboa J,, Lazar N,, Raynal B,, van Tilbeurgh H,, Quevillon-Cheruel S . 2013. The carboxy-terminal αN helix of the archaeal XerA tyrosine recombinase is a molecular switch to control site-specific recombination. PloS One 8 : e63010. [PubMed] [CrossRef]
24. Neilson L,, Blakely G,, Sherratt DJ . 1999. Site-specific recombination at dif by Haemophilus influenzae XerC. Mol Microbiol 31 : 915 926.[PubMed] [CrossRef]
25. Le Bourgeois P,, Bugarel M,, Campo N,, Daveran-Mingot ML,, Labonte J,, Lanfranchi D,, Lautier T,, Pages C,, Ritzenthaler P . 2007. The Unconventional Xer Recombination Machinery of Streptococci/Lactococci. PLoS Genet 3 : e117. [PubMed] [CrossRef]
26. Chalker AF,, Lupas A,, Ingraham K,, So CY,, Lunsford RD,, Li T,, Bryant A,, Holmes DJ,, Marra A,, Pearson SC,, Ray J,, Burnham MK,, Palmer LM,, Biswas S,, Zalacain M . 2000. Genetic characterization of gram-positive homologs of the XerCD site-specific recombinases. J Mol Microbiol Biotechnol 2 : 225 233.[PubMed]
27. Pérals K,, Cornet F,, Merlet Y,, Delon I,, Louarn JM . 2000. Functional polarization of the Escherichia coli chromosome terminus: the dif site acts in chromosome dimer resolution only when located between long stretches of opposite polarity. Mol Microbiol 36 : 33 43.[PubMed] [CrossRef]
28. Bigot S,, Corre J,, Louarn J,, Cornet F,, Barre FX . 2004. FtsK activities in Xer recombination, DNA mobilization and cell division involve overlapping and separate domains of the protein. Mol Microbiol 54 : 876 886.[PubMed] [CrossRef]
29. Hendricks EC,, Szerlong H,, Hill T,, Kuempel P . 2000. Cell division, guillotining of dimer chromosomes and SOS induction in resolution mutants (dif, xerC and xerD) of Escherichia coli. Mol Microbiol 36 : 973 981.[PubMed] [CrossRef]
30. Colloms SD,, Sykora P,, Szatmari G,, Sherratt DJ . 1990. Recombination at ColE1 cer requires the Escherichia coli xerC gene product, a member of the lambda integrase family of site-specific recombinases. J Bacteriol 172 : 6973 6980.[PubMed]
31. Das B,, Martínez E,, Midonet C,, Barre F-X . 2013. Integrative mobile elements exploiting Xer recombination. Trends Microbiol 21 : 23 30.[PubMed] [CrossRef]
32. Kono N,, Arakawa K,, Tomita M . 2011. Comprehensive prediction of chromosome dimer resolution sites in bacterial genomes. BMC Genomics 12 : 19. doi: 10.1186/1471-2164-12-19. [PubMed] [CrossRef]
33. Carnoy C,, Roten CA . 2009. The dif/Xer recombination systems in proteobacteria. PLoS One 4 : e6531. [PubMed] [CrossRef]
34. Recchia GD,, Sherratt DJ . 1999. Conservation of Xer site-specific recombination genes in bacteria. Mol Microbiol 34 : 1146 8.[PubMed] [CrossRef]
35. Klemm P . 1986. Two regulatory fim genes, fimB and fimE, control the phase variation of type 1 fimbriae in Escherichia coli. EMBO J 5 : 1389 1393.[PubMed]
36. Bastos MC,, Murphy E . 1988. Transposon Tn554 encodes three products required for transposition. EMBO J 7 : 2935 2941.[PubMed]
37. Murphy E,, Huwyler L,, de Freire Bastos M do C . 1985. Transposon Tn554: complete nucleotide sequence and isolation of transposition-defective and antibiotic-sensitive mutants. EMBO J 4 : 3357 3365.[PubMed]
38. Subramanya HS,, Arciszewska LK,, Baker RA,, Bird LE,, Sherratt DJ,, Wigley DB . 1997. Crystal structure of the site-specific recombinase, XerD. EMBO J 16 : 5178 87.[PubMed] [CrossRef]
39. Cornet F,, Hallet B,, Sherratt DJ . 1997. Xer recombination in Escherichia coli. Site-specific DNA topoisomerase activity of the XerC and XerD recombinases. J Biol Chem 272 : 21927 21931.[PubMed] [CrossRef]
40. Gopaul DN,, Duyne GD . 1999. Structure and mechanism in site-specific recombination. Curr Opin Struct Biol 9 : 14 20.[PubMed] [CrossRef]
41. Gopaul DN,, Guo F,, Van Duyne GD . 1998. Structure of the Holliday junction intermediate in Cre-loxP site-specific recombination. EMBO J 17 : 4175 4187.[PubMed] [CrossRef]
42. Guo F,, Gopaul DN,, Van Duyne GD . 1999. Asymmetric DNA bending in the Cre-loxP site-specific recombination synapse. Proc Natl Acad Sci U S A 96 : 7143 7148.[PubMed] [CrossRef]
43. Das B,, Bischerour J,, Val M-E,, Barre F-X . 2010. Molecular keys of the tropism of integration of the cholera toxin phage. Proc Natl Acad Sci U S A 107 : 4377 4382.[PubMed] [CrossRef]
44. Arciszewska LK,, Baker RA,, Hallet B,, Sherratt DJ . 2000. Coordinated control of XerC and XerD catalytic activities during Holliday junction resolution. J Mol Biol 299 : 391 403.[PubMed] [CrossRef]
45. Hallet B,, Arciszewska LK,, Sherratt DJ . 1999. Reciprocal control of catalysis by the tyrosine recombinases XerC and XerD: an enzymatic switch in site-specific recombination. Mol Cell 4 : 949 959.[PubMed] [CrossRef]
46. Ferreira H,, Sherratt D,, Arciszewska L . 2001. Switching catalytic activity in the XerCD site-specific recombination machine. J Mol Biol 312 : 45 57.[PubMed] [CrossRef]
47. Ferreira H,, Butler-Cole B,, Burgin A,, Baker R,, Sherratt DJ,, Arciszewska LK . 2003. Functional analysis of the C-terminal domains of the site-specific recombinases XerC and XerD. J Mol Biol 330 : 15 27.[PubMed] [CrossRef]
48. Spiers AJ,, Sherratt DJ . 1999. C-terminal interactions between the XerC and XerD site-specific recombinases. Mol Microbiol 32 : 1031 1042.[PubMed] [CrossRef]
49. Arciszewska LK,, Grainge I,, Sherratt DJ . 1997. Action of site-specific recombinases XerC and XerD on tethered Holliday junctions. EMBO J 16 : 3731 3743.[PubMed] [CrossRef]
50. Arciszewska LK,, Sherratt DJ . 1995. Xer site-specific recombination in vitro. EMBO J 14 : 2112 2120.[PubMed]
51. Zawadzki P,, May PFJ,, Baker RA,, Pinkney JNM,, Kapanidis AN,, Sherratt DJ,, Arciszewska LK . 2013. Conformational transitions during FtsK translocase activation of individual XerCD-dif recombination complexes. Proc Natl Acad Sci U S A 110 : 17302 17307.[PubMed] [CrossRef]
52. Kuzminov A . 2013. The chromosome cycle of prokaryotes. Mol Microbiol 90 : 214 227.[PubMed]
53. Cooper S,, Helmstetter CE . 1968. Chromosome replication and the division cycle of Escherichia coli B/r. J Mol Biol 31 : 519 540.[PubMed] [CrossRef]
54. Kennedy SP,, Chevalier F,, Barre FX . 2008. Delayed activation of Xer recombination at dif by FtsK during septum assembly in Escherichia coli. Mol Microbiol 68 : 1018 1028.[PubMed] [CrossRef]
55. Steiner WW,, Kuempel PL . 1998. Cell division is required for resolution of dimer chromosomes at the dif locus of Escherichia coli. Mol Microbiol 27 : 257 268.[PubMed] [CrossRef]
56. Demarre G,, Galli E,, Muresan L,, David A,, Paly E,, Possoz C,, Barre F-X . 2014. Differential management of the replication terminus regions of the two Vibrio cholerae chromosomes during cell division. PLoS Genet 10( 9) : e1004557. doi: 10.1371/journal.pgen.1004557. eCollection 2014. [PubMed] [CrossRef]
57. Espeli O,, Levine C,, Hassing H,, Marians KJ . 2003. Temporal regulation of topoisomerase IV activity in E. coli. Mol Cell 11 : 189 201.[PubMed] [CrossRef]
58. Wang X,, Reyes-Lamothe R,, Sherratt DJ . 2008. Modulation of Escherichia coli sister chromosome cohesion by topoisomerase IV. Genes Dev 22 : 2426 2433.[PubMed] [CrossRef]
59. Lobry JR . 1996. Asymmetric substitution patterns in the two DNA strands of bacteria. Mol Biol Evol 13 : 660 665.[PubMed] [CrossRef]
60. Hendrickson H,, Lawrence JG . 2007. Mutational bias suggests that replication termination occurs near the dif site, not at Ter sites. Mol Microbiol 64 : 42 56.[PubMed] [CrossRef]
61. Hojgaard A,, Szerlong H,, Tabor C,, Kuempel P . 1999. Norfloxacin-induced DNA cleavage occurs at the dif resolvase locus in Escherichia coli and is the result of interaction with topoisomerase IV. Mol Microbiol 33 : 1027 1036.[PubMed] [CrossRef]
62. Cornet F,, Louarn J,, Patte J,, Louarn JM . 1996. Restriction of the activity of the recombination site dif to a small zone of the Escherichia coli chromosome. Genes Dev 10 : 1152 1161.[PubMed] [CrossRef]
63. Kuempel P,, Hogaard A,, Nielsen M,, Nagappan O,, Tecklenburg M . 1996. Use of a transposon (Tndif) to obtain suppressing and nonsuppressing insertions of the dif resolvase site of Escherichia coli. Genes Dev 10 : 1162 1171.[PubMed] [CrossRef]
64. Tecklenburg M,, Naumer A,, Nagappan O,, Kuempel P . 1995. The dif resolvase locus of the Escherichia coli chromosome can be replaced by a 33-bp sequence, but function depends on location. Proc Natl Acad Sci U S A 92 : 1352 1356.[PubMed] [CrossRef]
65. Barre FX,, Aroyo M,, Colloms SD,, Helfrich A,, Cornet F,, Sherratt DJ . 2000. FtsK functions in the processing of a Holliday junction intermediate during bacterial chromosome segregation. Genes Dev 14 : 2976 2988.[PubMed] [CrossRef]
66. Deghorain M,, Pages C,, Meile JC,, Stouf M,, Capiaux H,, Mercier R,, Lesterlin C,, Hallet B,, Cornet F . 2011. A defined terminal region of the E. coli chromosome shows late segregation and high FtsK activity. PLoS One 6 : e22164. [PubMed] [CrossRef]
67. Lesterlin C,, Pages C,, Dubarry N,, Dasgupta S,, Cornet F . 2008. Asymmetry of chromosome Replichores renders the DNA translocase activity of FtsK essential for cell division and cell shape maintenance in Escherichia coli. PLoS Genet 4 : e1000288. [PubMed] [CrossRef]
68. Lesterlin C,, Mercier R,, Boccard F,, Barre FX,, Cornet F . 2005. Roles for replichores and macrodomains in segregation of the Escherichia coli chromosome. EMBO Rep 6 : 557 562.[PubMed] [CrossRef]
69. Bernhardt TG,, de Boer PA . 2005. SlmA, a nucleoid-associated, FtsZ binding protein required for blocking septal ring assembly over Chromosomes in E. coli. Mol Cell 18 : 555 564.[PubMed] [CrossRef]
70. Wu LJ,, Errington J . 2004. Coordination of cell division and chromosome segregation by a nucleoid occlusion protein in Bacillus subtilis. Cell 117 : 915 925.[PubMed] [CrossRef]
71. Kaimer C,, Schenk K,, Graumann PL . 2011. Two DNA translocases synergistically affect chromosome dimer resolution in Bacillus subtilis. J Bacteriol 193 : 1334 1340.[PubMed] [CrossRef]
72. Biller SJ,, Burkholder WF . 2009. The Bacillus subtilis SftA (YtpS) and SpoIIIE DNA translocases play distinct roles in growing cells to ensure faithful chromosome partitioning. Mol Microbiol 74 : 790 809.[PubMed] [CrossRef]
73. Wu LJ,, Errington J . 1994. Bacillus subtilis spoIIIE protein required for DNA segregation during asymmetric cell division. Science 264 : 572 575.[PubMed] [CrossRef]
74. Barre FX . 2007. FtsK and SpoIIIE: the tale of the conserved tails. Mol Microbiol 66 : 1051 1055.[PubMed] [CrossRef]
75. Dorazi R,, Dewar SJ . 2000. Membrane topology of the N-terminus of the escherichia coli FtsK division protein. FEBS Lett 478 : 13 18.[PubMed] [CrossRef]
76. Massey TH,, Mercogliano CP,, Yates J,, Sherratt DJ,, Lowe J . 2006. Double-stranded DNA translocation: structure and mechanism of hexameric FtsK. Mol Cell 23 : 457 469.[PubMed] [CrossRef]
77. Dubarry N,, Possoz C,, Barre FX . 2010. Multiple regions along the Escherichia coli FtsK protein are implicated in cell division. Mol Microbiol 78 : 1088 1100.[PubMed] [CrossRef]
78. Aussel L,, Barre FX,, Aroyo M,, Stasiak A,, Stasiak AZ,, Sherratt D . 2002. FtsK is a DNA motor protein that activates chromosome dimer resolution by switching the catalytic state of the XerC and XerD recombinases. Cell 108 : 195 205.[PubMed] [CrossRef]
79. Saleh OA,, Perals C,, Barre FX,, Allemand JF . 2004. Fast, DNA-sequence independent translocation by FtsK in a single-molecule experiment. EMBO J 23 : 2430 2439.[PubMed] [CrossRef]
80. Dubarry N,, Barre FX . 2010. Fully efficient chromosome dimer resolution in Escherichia coli cells lacking the integral membrane domain of FtsK. EMBO J 29 : 597 605.[PubMed] [CrossRef]
81. Bigot S,, Saleh OA,, Cornet F,, Allemand JF,, Barre FX . 2006. Oriented loading of FtsK on KOPS. Nat Struct Mol Biol 13 : 1026 1028.[PubMed] [CrossRef]
82. Bigot S,, Saleh OA,, Lesterlin C,, Pages C,, El Karoui M,, Dennis C,, Grigoriev M,, Allemand JF,, Barre FX,, Cornet F . 2005. KOPS: DNA motifs that control E. coli chromosome segregation by orienting the FtsK translocase. EMBO J 24 : 3770 3780.[PubMed] [CrossRef]
83. Pease PJ,, Levy O,, Cost GJ,, Gore J,, Ptacin JL,, Sherratt D,, Bustamante C,, Cozzarelli NR . 2005. Sequence-directed DNA translocation by purified FtsK. Science 307 : 586 590.[PubMed] [CrossRef]
84. Levy O,, Ptacin JL,, Pease PJ,, Gore J,, Eisen MB,, Bustamante C,, Cozzarelli NR . 2005. Identification of oligonucleotide sequences that direct the movement of the Escherichia coli FtsK translocase. Proc Natl Acad Sci U S A 102 : 17618 17623.[PubMed] [CrossRef]
85. Nolivos S,, Touzain F,, Pages C,, Coddeville M,, Rousseau P,, El Karoui M,, Le Bourgeois P,, Cornet F . 2012. Co-evolution of segregation guide DNA motifs and the FtsK translocase in bacteria: identification of the atypical Lactococcus lactis KOPS motif. Nucleic Acids Res 40 : 5535 45.[PubMed] [CrossRef]
86. Ptacin JL,, Nollmann M,, Becker EC,, Cozzarelli NR,, Pogliano K,, Bustamante C . 2008. Sequence-directed DNA export guides chromosome translocation during sporulation in Bacillus subtilis. Nat Struct Mol Biol 15 : 485 493.[PubMed] [CrossRef]
87. Demarre G,, Galli E,, Barre F-X . 2013. The FtsK Family of DNA Pumps. Adv Exp Med Biol 767 : 245 262.[PubMed] [CrossRef]
88. Crozat E,, Grainge I . 2010. FtsK DNA translocase: the fast motor that knows where it’s going. ChemBioChem 11 : 2232 2243.[PubMed] [CrossRef]
89. Espeli O,, Lee C,, Marians KJ . 2003. A physical and functional interaction between Escherichia coli FtsK and topoisomerase IV. J Biol Chem 278 : 44639 44644.[PubMed] [CrossRef]
90. Bigot S,, Marians KJ . 2010. DNA chirality-dependent stimulation of topoisomerase IV activity by the C-terminal AAA+ domain of FtsK. Nucleic Acids Res 38 : 3031 3040.[PubMed] [CrossRef]
91. Stouf M,, Meile J-C,, Cornet F . 2013. FtsK actively segregates sister chromosomes in Escherichia coli. Proc Natl Acad Sci U S A 110 : 11157 11162.[PubMed] [CrossRef]
92. Pérals K,, Capiaux H,, Vincourt JB,, Louarn JM,, Sherratt DJ,, Cornet F . 2001. Interplay between recombination, cell division and chromosome structure during chromosome dimer resolution in Escherichia coli. Mol Microbiol 39 : 904 913.[PubMed] [CrossRef]
93. Wang SC,, West L,, Shapiro L . 2006. The bifunctional FtsK protein mediates chromosome partitioning and cell division in Caulobacter. J Bacteriol 188 : 1497 1508.[PubMed] [CrossRef]
94. Yates J,, Zhekov I,, Baker R,, Eklund B,, Sherratt DJ,, Arciszewska LK . 2006. Dissection of a functional interaction between the DNA translocase, FtsK, and the XerD recombinase. Mol Microbiol 59 : 1754 1766.[PubMed] [CrossRef]
95. Yates J,, Aroyo M,, Sherratt DJ,, Barre FX . 2003. Species specificity in the activation of Xer recombination at dif by FtsK. Mol Microbiol 49 : 241 249.[PubMed] [CrossRef]
96. Massey TH,, Aussel L,, Barre F-X,, Sherratt DJ . 2004. Asymmetric activation of Xer site-specific recombination by FtsK. EMBO Rep 5 : 399 404.[PubMed] [CrossRef]
97. Recchia GD,, Aroyo M,, Wolf D,, Blakely G,, Sherratt DJ . 1999. FtsK-dependent and -independent pathways of Xer site-specific recombination. EMBO J 18 : 5724 5734.[PubMed] [CrossRef]
98. Bisicchia P,, Steel B,, Mariam Debela MH,, Löwe J,, Sherratt D . 2013. The N-terminal membrane-spanning domain of the Escherichia coli DNA translocase FtsK hexamerizes at midcell. mBio 4 : e00800 00813.[PubMed]
99. Fiche J-B,, Cattoni DI,, Diekmann N,, Langerak JM,, Clerte C,, Royer CA,, Margeat E,, Doan T,, Nöllmann M . 2013. Recruitment, assembly, and molecular architecture of the SpoIIIE DNA pump revealed by superresolution microscopy. PLoS Biol 11 : e1001557. [PubMed] [CrossRef]
100. Barre F-X,, Sherratt DJS, . 2002. Xer Site-Specific Recombination: Promoting Chromosome Segregation, p 149 161. In Craig NL,, Craigie R,, Gellert M,, Lambowitz A (ed), Mobile DNA II, ASM Press, Washington, DC.
101. Bonne L,, Bigot S,, Chevalier F,, Allemand JF,, Barre FX . 2009. Asymmetric DNA requirements in Xer recombination activation by FtsK. Nucleic Acids Res 37 : 2371 2380.[PubMed] [CrossRef]
102. Grainge I,, Lesterlin C,, Sherratt DJ . 2011. Activation of XerCD-dif recombination by the FtsK DNA translocase. Nucleic Acids Res 39 : 5140 5148.[PubMed] [CrossRef]
103. Diagne CT,, Salhi M,, Crozat E,, Salomé L,, Cornet F,, Rousseau P,, Tardin C . 2014. TPM analyses reveal that FtsK contributes both to the assembly and the activation of the XerCD-dif recombination synapse. Nucleic Acids Res 42 : 1721 1732.[PubMed] [CrossRef]
104. Kaimer C,, Gonzalez-Pastor JE,, Graumann PL . 2009. SpoIIIE and a novel type of DNA translocase, SftA, couple chromosome segregation with cell division in Bacillus subtilis. Mol Microbiol 74 : 810 825.[PubMed] [CrossRef]
105. Nolivos S,, Pages C,, Rousseau P,, Le Bourgeois P,, Cornet F . 2010. Are two better than one? Analysis of an FtsK/Xer recombination system that uses a single recombinase. Nucleic Acids Res 38 : 6477 6489.[PubMed] [CrossRef]
106. Marquis KA,, Burton BM,, Nollmann M,, Ptacin JL,, Bustamante C,, Ben-Yehuda S,, Rudner DZ . 2008. SpoIIIE strips proteins off the DNA during chromosome translocation. Genes Dev 22 : 1786 1795.[PubMed] [CrossRef]
107. Lee JY,, Finkelstein IJ,, Crozat E,, Sherratt DJ,, Greene EC . 2012. Single-molecule imaging of DNA curtains reveals mechanisms of KOPS sequence targeting by the DNA translocase FtsK. Proc Natl Acad Sci U S A 109 : 6531 6536.[PubMed] [CrossRef]
108. Graham JE,, Sivanathan V,, Sherratt DJ,, Arciszewska LK . 2009. FtsK translocation on DNA stops at XerCD-dif. Nucleic Acids Res 38 : 72 81.[PubMed] [CrossRef]
109. Boe L,, Tolker-Nielsen T . 1997. Plasmid stability: comments on the dimer catastrophe hypothesis. Mol Microbiol 23 : 247 253.[PubMed] [CrossRef]
110. Field CM,, Summers DK . 2011. Multicopy plasmid stability: revisiting the dimer catastrophe. J Theor Biol 291 : 119 127.[PubMed] [CrossRef]
111. Summers DK,, Beton CW,, Withers HL . 1993. Multicopy plasmid instability: the dimer catastrophe hypothesis. Mol Microbiol 8 : 1031 1038.[PubMed] [CrossRef]
112. Summers DK,, Sherratt DJ . 1984. Multimerization of high copy number plasmids causes instability: CoIE1 encodes a determinant essential for plasmid monomerization and stability. Cell 36 : 1097 1103.[PubMed] [CrossRef]
113. Austin S,, Ziese M,, Sternberg N . 1981. A novel role for site-specific recombination in maintenance of bacterial replicons. Cell 25 : 729 736.[PubMed] [CrossRef]
114. Bui D,, Ramiscal J,, Trigueros S,, Newmark JS,, Do A,, Sherratt DJ,, Tolmasky ME . 2006. Differences in resolution of mwr-containing plasmid dimers mediated by the Klebsiella pneumoniae and Escherichia coli XerC recombinases: potential implications in dissemination of antibiotic resistance genes. J Bacteriol 188 : 2812 2820.[PubMed] [CrossRef]
115. Pallecchi L,, Riccobono E,, Sennati S,, Mantella A,, Bartalesi F,, Trigoso C,, Gotuzzo E,, Bartoloni A,, Rossolini GM . 2010. Characterization of small ColE-like plasmids mediating widespread dissemination of the qnrB19 gene in commensal enterobacteria. Antimicrob Agents Chemother 54 : 678 682.[PubMed] [CrossRef]
116. Cornet F,, Mortier I,, Patte J,, Louarn JM . 1994. Plasmid pSC101 harbors a recombination site, psi, which is able to resolve plasmid multimers and to substitute for the analogous chromosomal Escherichia coli site dif. J Bacteriol 176 : 3188 3195.[PubMed]
117. Tolmasky ME,, Colloms S,, Blakely G,, Sherratt DJ . 2000. Stability by multimer resolution of pJHCMW1 is due to the Tn1331 resolvase and not to the Escherichia coli Xer system. Microbiology 146 : 581 589.[PubMed]
118. Tran T,, Andres P,, Petroni A,, Soler-Bistué A,, Albornoz E,, Zorreguieta A,, Reyes-Lamothe R,, Sherratt DJ,, Corso A,, Tolmasky ME . 2012. Small plasmids harboring qnrB19: a model for plasmid evolution mediated by site-specific recombination at oriT and Xer sites. Antimicrob Agents Chemother 56 : 1821 1827.[PubMed] [CrossRef]
119. Summers DK,, Sherratt DJ . 1988. Resolution of ColE1 dimers requires a DNA sequence implicated in the three-dimensional organization of the cer site. EMBO J 7 : 851 858.[PubMed]
120. Blake JA,, Ganguly N,, Sherratt DJ . 1997. DNA sequence of recombinase-binding sites can determine Xer site-specific recombination outcome. Mol Microbiol 23 : 387 398.[PubMed] [CrossRef]
121. Bregu M,, Sherratt DJ,, Colloms SD . 2002. Accessory factors determine the order of strand exchange in Xer recombination at psi. EMBO J 21 : 3888 3897.[PubMed] [CrossRef]
122. Colloms SD,, Bath J,, Sherratt DJ . 1997. Topological selectivity in Xer site-specific recombination. Cell 88 : 855 864.[PubMed] [CrossRef]
123. Bath J,, Sherratt DJ,, Colloms SD . 1999. Topology of Xer recombination on catenanes produced by lambda integrase. J Mol Biol 289 : 873 883.[PubMed] [CrossRef]
124. Vazquez M,, Colloms SD,, Sumners DW . 2005. Tangle analysis of Xer recombination reveals only three solutions, all consistent with a single three-dimensional topological pathway. J Mol Biol 346 : 493 504.[PubMed] [CrossRef]
125. Stirling CJ,, Colloms SD,, Collins JF,, Szatmari G,, Sherratt DJ . 1989. xerB, an Escherichia coli gene required for plasmid ColE1 site-specific recombination, is identical to pepA, encoding aminopeptidase A, a protein with substantial similarity to bovine lens leucine aminopeptidase. EMBO J 8 : 1623 1627.[PubMed]
126. Stirling CJ,, Szatmari G,, Stewart G,, Smith MC,, Sherratt DJ . 1988. The arginine repressor is essential for plasmid-stabilizing site-specific recombination at the ColE1 cer locus. EMBO J 7 : 4389 4395.[PubMed]
127. Alen C,, Sherratt DJ,, Colloms SD . 1997. Direct interƒaction of aminopeptidase A with recombination site DNA in Xer site-specific recombination. EMBO J 16 : 5188 5197.[PubMed] [CrossRef]
128. Colloms SD,, Alen C,, Sherratt DJ . 1998. The ArcA/ArcB two-component regulatory system of Escherichia coli is essential for Xer site-specific recombination at psi. Mol Microbiol 28 : 521 530.[PubMed] [CrossRef]
129. Sträter N,, Sherratt DJ,, Colloms SD . 1999. X-ray structure of aminopeptidase A from Escherichia coli and a model for the nucleoprotein complex in Xer site-specific recombination. EMBO J 18 : 4513 4522.[PubMed] [CrossRef]
130. Reijns M,, Lu Y,, Leach S,, Colloms SD . 2005. Mutagenesis of PepA suggests a new model for the Xer/cer synaptic complex. Mol Microbiol 57 : 927 941.[PubMed] [CrossRef]
131. Minh PNL,, Devroede N,, Massant J,, Maes D,, Charlier D . 2009. Insights into the architecture and stoichiometry of Escherichia coli PepA*DNA complexes involved in transcriptional control and site-specific DNA recombination by atomic force microscopy. Nucleic Acids Res 37 : 1463 1476.[PubMed] [CrossRef]
132. Abremski K,, Hoess R,, Sternberg N . 1983. Studies on the properties of P1 site-specific recombination: evidence for topologically unlinked products following recombination. Cell 32 : 1301 1311.[PubMed] [CrossRef]
133. Abremski K,, Hoess R . 1985. Phage P1 Cre-loxP site-specific recombination. Effects of DNA supercoiling on catenation and knotting of recombinant products. J Mol Biol 184 : 211 220.[PubMed] [CrossRef]
134. Adams DE,, Bliska JB,, Cozzarelli NR . 1992. Cre-lox recombination in Escherichia coli cells. Mechanistic differences from the in vitro reaction. J Mol Biol 226 : 661 673.[PubMed] [CrossRef]
135. Kilbride E,, Boocock MR,, Stark WM . 1999. Topological selectivity of a hybrid site-specific recombination system with elements from Tn3 res/resolvase and bacteriophage P1 loxP/Cre. J Mol Biol 289 : 1219 1230.[PubMed] [CrossRef]
136. Gourlay SC,, Colloms SD . 2004. Control of Cre recombination by regulatory elements from Xer recombination systems. Mol Microbiol 52 : 53 65.[PubMed] [CrossRef]
137. Colloms SD,, McCulloch R,, Grant K,, Neilson L,, Sherratt DJ . 1996. Xer-mediated site-specific recombination in vitro. EMBO J 15 : 1172 1181.[PubMed]
138. McCulloch R,, Coggins LW,, Colloms SD,, Sherratt DJ . 1994. Xer-mediated site-specific recombination at cer generates Holliday junctions in vivo. EMBO J 13 : 1844 1855.[PubMed]
139. Ingmer H,, Miller C,, Cohen SN . 2001. The RepA protein of plasmid pSC101 controls Escherichia coli cell division through the SOS response. Mol Microbiol 42 : 519 526.[PubMed] [CrossRef]
140. Patient ME,, Summers DK . 1993. ColE1 multimer formation triggers inhibition of Escherichia coli cell division. Mol Microbiol 9 : 1089 1095.[PubMed] [CrossRef]
141. Sharpe ME,, Chatwin HM,, Macpherson C,, Withers HL,, Summers DK . 1999. Analysis of the CoIE1 stability determinant Rcd. Microbiology (Reading U K) 145( Pt 8) : 2135 2144.[CrossRef]
142. Balding C,, Blaby I,, Summers D . 2006. A mutational analysis of the ColE1-encoded cell cycle regulator Rcd confirms its role in plasmid stability. Plasmid 56 : 68 73.[PubMed] [CrossRef]
143. Chatwin HM,, Summers DK . 2001. Monomer-dimer control of the ColE1 P(cer) promoter. Microbiology (Reading U K) 147 : 3071 3081.[PubMed]
144. Chant EL,, Summers DK . 2007. Indole signalling contributes to the stable maintenance of Escherichia coli multicopy plasmids. Mol Microbiol 63 : 35 43.[PubMed] [CrossRef]
145. Chimerel C,, Field CM,, Piñero-Fernandez S,, Keyser UF,, Summers DK . 2012. Indole prevents Escherichia coli cell division by modulating membrane potential. Biochim Biophys Acta 1818 : 1590 1594.[PubMed] [CrossRef]
146. Field CM,, Summers DK . 2012. Indole inhibition of ColE1 replication contributes to stable plasmid maintenance. Plasmid 67 : 88 94.[PubMed] [CrossRef]
147. Gaimster H,, Cama J,, Hernández-Ainsa S,, Keyser UF,, Summers DK . 2014. The indole pulse: a new perspective on indole signalling in Escherichia coli. PloS One 9 : e93168. [PubMed] [CrossRef]
148. Das B,, Bischerour J,, Barre FX . 2011. Molecular mechanism of acquisition of the cholera toxin genes. Indian J Med Res 133 : 195 200.[PubMed]
149. Dai H,, Chow TY,, Liao HJ,, Chen ZY,, Chiang KS . 1988. Nucleotide sequences involved in the neolysogenic insertion of filamentous phage Cf16-v1 into the Xanthomonas campestris pv. citri chromosome. Virology 167 : 613 620.[PubMed]
150. Simpson AJ,, Reinach FC,, Arruda P,, Abreu FA,, Acencio M,, Alvarenga R,, Alves LM,, Araya JE,, Baia GS,, Baptista CS,, Barros MH,, Bonaccorsi ED,, Bordin S,, Bove JM,, Briones MR,, Bueno MR,, Camargo AA,, Camargo LE,, Carraro DM,, Carrer H,, Colauto NB,, Colombo C,, Costa FF,, Costa MC,, Costa-Neto CM,, Coutinho LL,, Cristofani M,, Dias-Neto E,, Docena C,, El-Dorry H,, Facincani AP,, Ferreira AJ,, Ferreira VC,, Ferro JA,, Fraga JS,, Franca SC,, Franco MC,, Frohme M,, Furlan LR,, Garnier M,, Goldman GH,, Goldman MH,, Gomes SL,, Gruber A,, Ho PL,, Hoheisel JD,, Junqueira ML,, Kemper EL,, Kitajima JP,, Krieger JE,, Kuramae EE,, Laigret F,, Lambais MR,, Leite LC,, Lemos EG,, Lemos MV,, Lopes SA,, Lopes CR,, Machado JA,, Machado MA,, Madeira AM,, Madeira HM,, Marino CL,, Marques MV,, Martins EA,, Martins EM,, Matsukuma AY,, Menck CF,, Miracca EC,, Miyaki CY,, Monteriro-Vitorello CB,, Moon DH,, Nagai MA,, Nascimento AL,, Netto LE,, Nhani A,, Nobrega FG,, Nunes LR,, Oliveira MA,, de Oliveira MC,, de Oliveira RC,, Palmieri DA,, Paris A,, Peixoto BR,, Pereira GA,, Pereira HA,, Pesquero JB,, Quaggio RB,, Roberto PG,, Rodrigues V,, de MR AJ,, de Rosa VE,, de Sa RG,, Santelli RV,, Sawasaki HE,, da Silva AC,, da Silva AM,, da Silva FR,, da Silva WA,, da Silveira JF . 2000. The genome sequence of the plant pathogen Xylella fastidiosa. The Xylella fastidiosa Consortium of the Organization for Nucleotide Sequencing and Analysis. Nature 406 : 151 159.[PubMed] [CrossRef]
151. Dillard JP,, Seifert HS . 2001. A variable genetic island specific for Neisseria gonorrhoeae is involved in providing DNA for natural transformation and is found more often in disseminated infection isolates. Mol Microbiol 41 : 263 277.[PubMed] [CrossRef]
152. Waldor MK,, Mekalanos JJ . 1996. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272 : 1910 1914.[PubMed] [CrossRef]
153. Huber KE,, Waldor MK . 2002. Filamentous phage integration requires the host recombinases XerC and XerD. Nature 417 : 656 659.[PubMed] [CrossRef]
154. Gonzalez MD,, Lichtensteiger CA,, Caughlan R,, Vimr ER . 2002. Conserved filamentous prophage in Escherichia coli O18:K1:H7 and Yersinia pestis biovar orientalis. J Bacteriol 184 : 6050 6055.[PubMed] [CrossRef]
155. Derbise A,, Chenal-Francisque V,, Pouillot F,, Fayolle C,, Prevost MC,, Medigue C,, Hinnebusch BJ,, Carniel E . 2007. A horizontally acquired filamentous phage contributes to the pathogenicity of the plague bacillus. Mol Microbiol 63 : 1145 1157.[PubMed] [CrossRef]
156. Val M-E,, Bouvier M,, Campos J,, Sherratt D,, Cornet F,, Mazel D,, Barre F-X . 2005. The single-stranded genome of phage CTX is the form used for integration into the genome of Vibrio cholerae. Mol Cell 19 : 559 566.[PubMed] [CrossRef]
157. Das B,, Bischerour J,, Barre F-X . 2011. VGJphi integration and excision mechanisms contribute to the genetic diversity of Vibrio cholerae epidemic strains. Proc Natl Acad Sci U S A 108 : 2516 2521.[PubMed] [CrossRef]
158. Midonet C,, Das B,, Paly E,, Barre F-X . 2014. XerD-mediated FtsK-independent integration of TLCɸ into the Vibrio cholerae genome. Proc Natl Acad Sci U S A pii : 201404047. [Epub ahead of print] [PubMed] [CrossRef]
159. Mutreja A,, Kim DW,, Thomson NR,, Connor TR,, Lee JH,, Kariuki S,, Croucher NJ,, Choi SY,, Harris SR,, Lebens M,, Niyogi SK,, Kim EJ,, Ramamurthy T,, Chun J,, Wood JL,, Clemens JD,, Czerkinsky C,, Nair GB,, Holmgren J,, Parkhill J,, Dougan G . 2011. Evidence for several waves of global transmission in the seventh cholera pandemic. Nature 477 : 462 465.[PubMed] [CrossRef]
160. Chun J,, Grim CJ,, Hasan NA,, Lee JH,, Choi SY,, Haley BJ,, Taviani E,, Jeon YS,, Kim DW,, Brettin TS,, Bruce DC,, Challacombe JF,, Detter JC,, Han CS,, Munk AC,, Chertkov O,, Meincke L,, Saunders E,, Walters RA,, Huq A,, Nair GB,, Colwell RR . 2009. Comparative genomics reveals mechanism for short-term and long-term clonal transitions in pandemic Vibrio cholerae. Proc Natl Acad Sci U S A 106 : 15442 15447.[PubMed] [CrossRef]
161. Campos J,, Martinez E,, Marrero K,, Silva Y,, Rodriguez BL,, Suzarte E,, Ledon T,, Fando R . 2003. Novel type of specialized transduction for CTX phi or its satellite phage RS1 mediated by filamentous phage VGJ phi in Vibrio cholerae. J Bacteriol 185 : 7231 7240.[PubMed] [CrossRef]
162. Hassan F,, Kamruzzaman M,, Mekalanos JJ,, Faruque SM . 2010. Satellite phage TLCphi enables toxigenic conversion by CTX phage through dif site alteration. Nature 467 : 982 985.[PubMed] [CrossRef]
163. Rubin EJ,, Lin W,, Mekalanos JJ,, Waldor MK . 1998. Replication and integration of a Vibrio cholerae cryptic plasmid linked to the CTX prophage. Mol Microbiol 28 : 1247 1254.[PubMed] [CrossRef]
164. Moyer KE,, Kimsey HH,, Waldor MK . 2001. Evidence for a rolling-circle mechanism of phage DNA synthesis from both replicative and integrated forms of CTXphi. Mol Microbiol 41 : 311 323.[PubMed] [CrossRef]
165. Campbell AM . 1992. Chromosomal insertion sites for phages and plasmids. J Bacteriol 174 : 7495 7499.[PubMed]
166. Reiter WD,, Palm P,, Yeats S . 1989. Transfer RNA genes frequently serve as integration sites for prokaryotic genetic elements. Nucleic Acids Res 17 : 1907 1914.[PubMed] [CrossRef]
167. Val M-E,, Kennedy SP,, Soler-Bistué AJ,, Barbe V,, Bouchier C,, Ducos-Galand M,, Skovgaard O,, Mazel D . 2014. Fuse or die: how to survive the loss of Dam in Vibrio cholerae. Mol Microbiol 91 : 665 678.[PubMed] [CrossRef]
168. Campos J,, Martinez E,, Suzarte E,, Rodriguez BL,, Marrero K,, Silva Y,, Ledon T,, del Sol R,, Fando R . 2003. VGJ phi, a novel filamentous phage of Vibrio cholerae, integrates into the same chromosomal site as CTX phi. J Bacteriol 185 : 5685 5696.[PubMed] [CrossRef]
169. McLeod SM,, Waldor MK . 2004. Characterization of XerC- and XerD-dependent CTX phage integration in Vibrio cholerae. Mol Microbiol 54 : 935 947.[PubMed] [CrossRef]
170. Quinones M,, Kimsey HH,, Waldor MK . 2005. LexA cleavage is required for CTX prophage induction. Mol Cell 17 : 291 300.[PubMed] [CrossRef]
171. Quinones M,, Kimsey HH,, Ross W,, Gourse RL,, Waldor MK . 2006. LexA represses CTXphi transcription by blocking access of the alpha C-terminal domain of RNA polymerase to promoter DNA. J Biol Chem 281 : 39407 39412.[PubMed] [CrossRef]
172. Bischerour J,, Spangenberg C,, Barre F-X . 2012. Holliday junction affinity of the base excision repair factor Endo III contributes to cholera toxin phage integration. EMBO J 31 : 3757 3767.[PubMed] [CrossRef]

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error