Chapter 24 : Intracellular Growth of Bacterial Pathogens: The Role of Secreted Effector Proteins in the Control of Phagocytosed Microorganisms

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Intracellular Growth of Bacterial Pathogens: The Role of Secreted Effector Proteins in the Control of Phagocytosed Microorganisms, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819286/9781555819279_Chap24-1.gif /docserver/preview/fulltext/10.1128/9781555819286/9781555819279_Chap24-2.gif


Of the 56 million deaths reported worldwide in 2012, approximately 15 million are directly related to infectious diseases ( ). The majority of annual deaths are related to bacterial infections such as tuberculosis, yellow and typhoid fever, cholera, shigellosis, pneumonia, etc. ( ). Morbidity and mortality rates are highest in developing countries, where large numbers of infants and children count among the victims ( ). In developed nations, infectious disease mortality falls most heavily on indigenous and disadvantaged minorities ( ). The control of bacterial infectious diseases worldwide is an important task. Although antibiotics revolutionized the treatment of bacterial infections, increased resistance and the emergence of multidrug-resistant strains increasingly reduce their efficacy. This trend promotes an urgent need for better understanding of bacterial pathogenicity and resistance mechanisms, which will assist novel therapeutic and vaccination strategies.

Citation: Poirier V, Av-gay Y. 2016. Intracellular Growth of Bacterial Pathogens: The Role of Secreted Effector Proteins in the Control of Phagocytosed Microorganisms, p 693-713. In Kudva I, Cornick N, Plummer P, Zhang Q, Nicholson T, Bannantine J, Bellaire B (ed),

Virulence Mechanisms of Bacterial Pathogens, Fifth Edition

. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.VMBF-0003-2014
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Stages of phagosome maturation. During phagocytosis, the phagosome undergoes a series of fusion and fission events with vesicles of the endocytic pathway, culminating in the formation of the phagolysosome. Maturation of the phagosome involves gradual decrease in pH and acquisition of antimicrobial properties, leading to the digestion of the invader and presentation of antigens on the surface of the phagocyte by MHC-II molecules.

Citation: Poirier V, Av-gay Y. 2016. Intracellular Growth of Bacterial Pathogens: The Role of Secreted Effector Proteins in the Control of Phagocytosed Microorganisms, p 693-713. In Kudva I, Cornick N, Plummer P, Zhang Q, Nicholson T, Bannantine J, Bellaire B (ed),

Virulence Mechanisms of Bacterial Pathogens, Fifth Edition

. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.VMBF-0003-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Microbial effectors interfering with intracellular trafficking and acidification events. Orange proteins represent virulence factors; pink, virulence factors; and blue, virulence factors.

Citation: Poirier V, Av-gay Y. 2016. Intracellular Growth of Bacterial Pathogens: The Role of Secreted Effector Proteins in the Control of Phagocytosed Microorganisms, p 693-713. In Kudva I, Cornick N, Plummer P, Zhang Q, Nicholson T, Bannantine J, Bellaire B (ed),

Virulence Mechanisms of Bacterial Pathogens, Fifth Edition

. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.VMBF-0003-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Cytoskeleton remodeling, vacuolar membrane lysis, and phagosomal membrane remodeling by microbial pathogens. Orange proteins represent virulence factors; red, virulence factors; blue, virulence factors; and green, virulence factors.

Citation: Poirier V, Av-gay Y. 2016. Intracellular Growth of Bacterial Pathogens: The Role of Secreted Effector Proteins in the Control of Phagocytosed Microorganisms, p 693-713. In Kudva I, Cornick N, Plummer P, Zhang Q, Nicholson T, Bannantine J, Bellaire B (ed),

Virulence Mechanisms of Bacterial Pathogens, Fifth Edition

. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.VMBF-0003-2014
Permissions and Reprints Request Permissions
Download as Powerpoint


1. World Health Organization . 2015. The Top 10 Causes of Death. Fact sheet No. 310. http://www.who.int/mediacentre/factsheets/fs310/en/.
2. Guerrant RL,, Blackwood BL . 1999. Threats to global health and survival: the growing crises of tropical infectious diseases: our “unfinished agenda.” Clin Infect Dis 28 : 966 986.[PubMed] [CrossRef]
3. Butler JC,, Crengle S,, Cheek JE,, Leach AJ,, Lennon D,, O’Brien KL,, Santosham M . 2001. Emerging infectious diseases among indigenous peoples. Emerg Infect Dis 7( Suppl 3) : 554 555.[PubMed] [CrossRef]
4. Bliska JB,, Copass MC,, Falkow S . 1993. The Yersinia pseudotuberculosis adhesin YadA mediates intimate bacterial attachment to and entry into HEp-2 cells. Infect Immun 61 : 3914 3921.[PubMed]
5. Cascales E,, Christie PJ . 2003. The versatile bacterial type IV secretion systems. Nat Rev Microbiol 1 : 137 149.[PubMed] [CrossRef]
6. Backert S,, Meyer TF . 2006. Type IV secretion systems and their effectors in bacterial pathogenesis. Curr Opin Microbiol 9 : 207 217.[PubMed] [CrossRef]
7. Saier MHJ . 2006. Protein secretion systems in Gram-negative bacteria. Microbe 1 : 414 419.
8. Yen M-R,, Peabody CR,, Partovi SM,, Zhai Y,, Tseng Y-H,, Saier MHJ . 2002. Protein-translocating outer membrane porins of Gram-negative bacteria. Biochim Biophys Acta 1562 : 6 31.[CrossRef]
9. Thanassi DG,, Bliska JB,, Christie PJ . 2012. Surface organelles assembled by secretion systems of Gram-negative bacteria: diversity in structure and function. FEMS Microbiol Rev 36 : 1046 1082.[PubMed] [CrossRef]
10. Abdallah AM,, Gey van Pittius NC,, Champion PA,, Cox J,, Luirink J,, Vandenbroucke-Grauls CM,, Appelmelk BJ,, Bitter W . 2007. Type VII secretion: mycobacteria show the way. Nat Rev Microbiol 5 : 883 891.[PubMed] [CrossRef]
11. Lenz LL,, Mohammadi S,, Geissler A,, Portnoy DA . 2003. SecA2-dependent secretion of autolytic enzymes promotes Listeria monocytogenes pathogenesis. Proc Natl Acad Sci USA 100 : 12432 12437.[PubMed] [CrossRef]
12. Stanier RY,, Adelberg EA,, Ingraham JL . 1976. The Microbial World, 4th ed. Prentice-Hall, Englewood Cliffs, NJ.
13. Coombes BK,, Finlay BB . 2005. Insertion of the bacterial type III translocon: not your average needle stick. Trends Microbiol 13 : 92 95.[PubMed] [CrossRef]
14. Bitter W,, Houben EN,, Bottai D,, Brodin P,, Brown EJ,, Cox JS,, Derbyshire K,, Fortune SM,, Gao LY,, Liu J,, Gey van Pittius NC,, Pym AS,, Rubin EJ,, Sherman DR,, Cole ST,, Brosch R . 2009. Systematic genetic nomenclature for type VII secretion systems. PLoS Pathog 5 : e1000507. doi:10.1371/journal.ppat.1000507. [PubMed] [CrossRef]
15. Stanley SA,, Raghavan S,, Hwang WW,, Cox JS . 2003. Acute infection and macrophage subversion by Mycobacterium tuberculosis require a specialized secretion system. Proc Natl Acad Sci USA 100 : 13001 13006.[PubMed] [CrossRef]
16. Guinn KM,, Hickey MJ,, Mathur SK,, Zakel KL,, Grotzke JE,, Lewinsohn DM,, Smith S,, Sherman DR . 2004. Individual RD1-region genes are required for export of ESAT-6/CFP-10 and for virulence of Mycobacterium tuberculosis . Mol Microbiol 51 : 359 370.[PubMed] [CrossRef]
17. Abdallah AM,, Verboom T,, Hannes F,, Safi M,, Strong M,, Eisenberg D,, Musters RJ,, Vandenbroucke-Grauls CM,, Appelmelk BJ,, Luirink J,, Bitter W . 2006. A specific secretion system mediates PPE41 transport in pathogenic mycobacteria. Mol Microbiol 62 : 667 679.[PubMed] [CrossRef]
18. Flannagan RS,, Jaumouillé V,, Grinstein S . 2012. The cell biology of phagocytosis. Annu Rev Pathol 7 : 61 98.[PubMed] [CrossRef]
19. Sturgill-Koszycki S,, Schlesinger PH,, Chakraborty P,, Haddix PL,, Collins HL,, Fok AK,, Allen RD,, Gluck SL,, Heuser J,, Russell DG . 1994. Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 263 : 678 681.[PubMed] [CrossRef]
20. Fraser DW,, Tsai TR,, Orenstein W,, Parkin WE,, Beecham HJ,, Sharrar RG,, Harris J,, Mallison GF,, Martin SM,, McDade JE,, Shepard CC,, Brachman PS . 1977. Legionnaires’ disease: description of an epidemic of pneumonia. N Engl J Med 297 : 1189 1197.[PubMed] [CrossRef]
21. Baess I . 1979. Deoxyribonucleic acid relatedness among species of slowly-growing mycobacteria. Acta Pathol Microbiol Scand B 87 : 221 226.[PubMed] [CrossRef]
22. Stenmark H . 2009. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10 : 513 525.[PubMed] [CrossRef]
23. Christoforidis S,, Miaczynska M,, Ashman K,, Wilm M,, Zhao L,, Yip SC,, Waterfield MD,, Backer JM,, Zerial M . 1999. Phosphatidylinositol-3-OH kinases are Rab5 effectors. Nat Cell Biol 1 : 249 252.[PubMed] [CrossRef]
24. Fratti RA,, Backer JM,, Gruenberg J,, Corvera S,, Deretic V . 2001. Role of phosphatidylinositol 3-kinase and Rab5 effectors in phagosomal biogenesis and mycobacterial phagosome maturation arrest. J Cell Biol 154 : 631 644.[PubMed] [CrossRef]
25. Lemmon MA . 2003. Phosphoinositide recognition domains. Traffic 4 : 201 213.[PubMed] [CrossRef]
26. Ellson C,, Davidson K,, Anderson K,, Stephens LR,, Hawkins PT . 2006. PtdIns3P binding to the PX domain of p40phox is a physiological signal in NADPH oxidase activation. EMBO J 25 : 4468 4478.[PubMed] [CrossRef]
27. Vieira OV,, Harrison RE,, Scott CC,, Stenmark H,, Alexander D,, Liu J,, Gruenberg J,, Schreiber AD,, Grinstein S . 2004. Acquisition of Hrs, an essential component of phagosomal maturation, is impaired by mycobacteria. Mol Cell Biol 24 : 4593 4604.[PubMed] [CrossRef]
28. McBride HM,, Rybin V,, Murphy C,, Giner A,, Teasdale R,, Zerial M . 1999. Oligomeric complexes link Rab5 effectors with NSF and drive membrane fusion via interactions between EEA1 and syntaxin 13. Cell 98 : 377 386.[PubMed] [CrossRef]
29. Jahn R,, Scheller RH . 2006. SNAREs-engines for membrane fusion. Nat Rev Mol Cell Biol 7 : 631 643.[PubMed] [CrossRef]
30. Chatterjee D,, Khoo KH . 1998. Mycobacterial lipoarabinomannan: an extraordinary lipoheteroglycan with profound physiological effects. Glycobiology 8 : 113 120.[PubMed] [CrossRef]
31. Malik ZA,, Denning GM,, Kusner DJ . 2000. Inhibition of Ca2+ signalling by Mycobacterium tuberculosis is associated with reduced phagosome-lysosome fusion and increased survival within human macrophages. J Exp Med 191 : 287 302.[PubMed] [CrossRef]
32. Vergne I,, Chua J,, Lee HH,, Lucas M,, Belisle J,, Deretic V . 2005. Mechanism of phagolysosome biogenesis block by viable Mycobacterium tuberculosis . Proc Natl Acad Sci USA 102 : 4033 4038.[PubMed] [CrossRef]
33. Simonsen A,, Gaullier JM,, D’Arrigo A,, Stenmark H . 1999. The Rab5 effector EEA1 interacts directly with syntaxin-6. J Biol Chem 274 : 28857 28860.[PubMed] [CrossRef]
34. Ku B,, Lee KH,, Park WS,, Yang CS,, Ge J,, Lee SG,, Cha SS,, Shao F,, Heo WD,, Jung JU,, Oh BH . 2012. VipD of Legionella pneumophila targets activated Rab5 and Rab22 to interfere with endosomal trafficking in macrophages. PLoS Pathog 8 : e1003082. doi:10.1371/journal.ppat.1003082.
35. Shohdy N,, Efe JA,, Emr SD,, Shuman HA . 2005. Pathogen effector protein screening in yeast identifies Legionella factors that interfere with membrane trafficking. Proc Natl Acad Sci USA 102 : 4866 4871.[PubMed] [CrossRef]
36. Mallo GV,, Espina M,, Smith AC,, Terebiznik MR,, Alemán A,, Finlay BB,, Rameh LE,, Grinstein S,, Brumell JH . 2008. SopB promotes phosphatidylinositol 3-phosphate formation on Salmonella vacuoles by recruiting Rab5 and Vps34. J Cell Biol 182 : 741 752.[PubMed] [CrossRef]
37. Madan R,, Krishnamurthy G,, Mukhopadhyay A . 2008. SopE-mediated recruitment of host Rab5 on phagosomes inhibits Salmonella transport to lysosomes. Methods Mol Biol 445 : 417 437.[PubMed] [CrossRef]
38. Mukherjee K,, Parashuraman S,, Raje M,, Mukhopadhyay A . 2001. SopE acts as an Rab5-specific nucleotide exchange factor and recruits non-prenylated Rab5 on Salmonella-containing phagosomes to promote fusion with early endosomes. J Biol Chem 276 : 23607 23615.[PubMed] [CrossRef]
39. Hardt WD,, Chen LM,, Schuebel KE,, Bustelo XR,, Galán JE . 1998. S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell 93 : 815 826.[PubMed] [CrossRef]
40. Alpuche-Aranda CM,, Racoosin EL,, Swanson JA,, Miller SI . 1994. Salmonella stimulate macrophage macropinocytosis and persist within spacious phagosomes. J Exp Med 179 : 601 608.[PubMed] [CrossRef]
41. Alvarez-Dominguez C,, Barbieri AM,, Berón W,, Wandinger-Ness A,, Stahl PD . 1996. Phagocytosed live Listeria monocytogenes influences Rab5-regulated in vitro phagosome-endosome fusion. J Biol Chem 271 : 13834 13843.[PubMed] [CrossRef]
42. Via LE,, Deretic D,, Ulmer RJ,, Hibler NS,, Huber LA,, Deretic V . 1997. Arrest of mycobacterial phagosome maturation is caused by a block in vesicle fusion between stages controlled by Rab5 and Rab7. J Biol Chem 272 : 13326 13331.[PubMed] [CrossRef]
43. Darsow T,, Reider SE,, Emr SD . 1997. A multispecificity syntaxin homologue, Vam3p, essential for autophagic and biosynthetic protein transport to the vacuole. J Cell Biol 138 : 517 529.[PubMed] [CrossRef]
44. Price A,, Wickner W,, Ungermann C . 2000. Proteins needed for vesicle budding from the golgi complex are also required for the docking step of homotypic vacuole fusion. J Cell Biol 148 : 1223 1229.[PubMed] [CrossRef]
45. Harrison RE,, Brumell JH,, Khandani A,, Bucci C,, Scott CC,, Jiang X,, Finlay BB,, Grinstein S . 2004. Salmonella impairs RILP recruitment to Rab7 during maturation of invasion vacuoles. Mol Biol Cell 15 : 3146 3154.[PubMed] [CrossRef]
46. Shotland Y,, Krämer H,, Groisman EA . 2003. The Salmonella SpiC protein targets the mammalian Hook3 protein function to alter cellular trafficking. Mol Microbiol 49 : 1565 1576.[PubMed] [CrossRef]
47. Di Paolo G,, De Camilli P . 2006. Phosphoinositides in cell regulation and membrane dynamics. Nature 443 : 651 657.[PubMed] [CrossRef]
48. Marcus SL,, Knodler LA,, Finlay BB . 2002. Salmonella enterica serovar Typhimurium effector SigD/SopB is membrane-associated and ubiquitinated inside host cells. Cell Microbiol 4 : 435 446.[PubMed] [CrossRef]
49. Bach H,, Papavinasasundaram KG,, Wong D,, Hmama Z,, Av-Gay Y . 2008. Mycobacterium tuberculosis virulence is mediated by PtpA dephosphorylation of human vacuolar protein sorting 33B. Cell Host Microbe 3 : 316 322.[PubMed] [CrossRef]
50. Banta LM,, Robinson JS,, Klionsky DJ,, Emr SD . 1988. Organelle assembly in yeast: characterization of yeast mutants defective in vacuolar biogenesis and protein sorting. J Cell Biol 107 : 1369 1383.[PubMed] [CrossRef]
51. Mehra A,, Zahra A,, Thompson V,, Sirisaengtaksin N,, Wells A,, Porto M,, Köster S,, Penberthy K,, Kubota Y,, Dricot A,, Rogan D,, Vidal M,, Hill DE,, Bean AJ,, Philips JA . 2013. Mycobacterium tuberculosis type VII secreted effector EsxH targets host ESCRT to impair trafficking. PLoS Pathog 9 : e1003734. doi:10.1371/journal.ppat.1003734. [PubMed] [CrossRef]
52. Katzmann DJ,, Odorizzi G,, Emr SD . 2002. Receptor downregulation and multivesicular-body sorting Nat Rev Mol Cell Biol 3 : 893 905.[PubMed] [CrossRef]
53. Xu J,, Laine O,, Masciocchi M,, Manoranjan J,, Smith J,, Du SJ,, Edwards N,, Zhu X,, Fenselau C,, Gao LY . 2007. A unique mycobacterium ESX-1 protein co-secretes with CFP-10/ESAT-6 and is necessary for inhibiting phagosome maturation. Mol Microbiol 66 : 3787 3800.[PubMed] [CrossRef]
54. Hunter RL,, Olsen MR,, Jagannath C,, Actor JK . 2006. Multiple roles of cord factor in the pathogenesis of primary, secondary, and cavitary tuberculosis, including a revised description of the pathology of secondary disease. Ann Clin Lab Sci 36 : 371 386.[PubMed]
55. Hoekstra D,, Düzgünes N,, Wilschut J . 1985. Agglutination and fusion of globoside GL-4 containing phospholipid vesicles mediated by lectins and calcium ions. Biochemistry 24 : 565 572.[PubMed] [CrossRef]
56. Spargo BJ,, Crowe LM,, Ioneda T,, Beaman BL,, Crowe JH . 1991. Cord factor (alpha,alpha-trehalose 6,6′-dimycolate) inhibits fusion between phospholipid vesicles. Proc Natl Acad Sci USA 88 : 737 740.[PubMed] [CrossRef]
57. Rosqvist R,, Bölin I,, Wolf-Watz H . 1988. Inhibition of phagocytosis in Yersinia pseudotuberculosis: a virulence plasmid-encoded ability involving the Yop2b protein. Infect Immun 56 : 2139 2143.[PubMed]
58. Pujol C,, Bliska JB . 2003. The ability to replicate in macrophages is conserved between Yersinia pestis and Yersinia pseudotuberculosis . Infect Immun 71 : 5892 5829.[PubMed] [CrossRef]
59. Tsukano H,, Kura F,, Inoue S,, Sato S,, Izumiya H,, Yasuda T,, Watanabe H . 1999. Yersinia pseudotuberculosis blocks the phagosomal acidification of B10.A mouse macrophages through the inhibition of vacuolar H(+)-ATPase activity. Microb Pathog 27 : 253 263.[PubMed] [CrossRef]
60. Tabrizi SN,, Robins-Browne RM . 1992. Influence of a 70 kilobase virulence plasmid on the ability of Yersinia enterocolitica to survive phagocytosis in vitro . Microb Pathog 13 : 171 179.[PubMed] [CrossRef]
61. Finlay BB,, Falkow S . 1997. Common themes in microbial pathogenicity revisited. Microbiol Mol Biol Rev 61 : 136169. [PubMed]
62. Duclos S,, Desjardins M . 2000. Subversion of a young phagosome: the survival strategies of intracellular pathogens. Cell Microbiol 2 : 365 377.[PubMed] [CrossRef]
63. Straley SC,, Harmon PA . 1984. Yersinia pestis grows within phagolysosomes in mouse peritoneal macrophages. Infect Immun 45 : 655 659.[PubMed]
64. Holden DW . 2002. Trafficking of the Salmonella vacuole in macrophages. Traffic 3 : 161 169.[PubMed] [CrossRef]
65. Hackam DJ,, Rotstein OD,, Zhang WJ,, Demaurex N,, Woodside M,, Tsai O,, Grinstein S . 1997. Regulation of phagosomal acidification. Differential targeting of Na+/H+ exchangers, Na+/K+-ATPases, and vacuolar-type H+-ATPases. J Biol Chem 272 : 29810 29820.[PubMed] [CrossRef]
66. Wong D,, Bach H,, Hmama Z,, Av-Gay Y . 2011. Mycobacterium tuberculosis protein tyrosine phosphatase A disrupts phagosome acidification by exclusion of host vacuolar H+-ATPase. Proc Natl Acad Sci USA 108 : 19371 196.[PubMed] [CrossRef]
67. Xu L,, Shen X,, Bryan A,, Banga S,, Swanson MS,, Luo ZQ . 2010. Inhibition of host vacuolar H+-ATPase activity by a Legionella pneumophila effector. PLoS Pathog 6 : e1000822. doi:10.1371/journal.ppat.1000822. [PubMed] [CrossRef]
68. Prost LR,, Daley ME,, Le Sage V,, Bader MW,, Le Moual H,, Klevit RE,, Miller SI . 2007. Activation of the bacterial sensor kinase PhoQ by acidic pH. Mol Cell 26 : 165 174.[PubMed] [CrossRef]
69. Nikolaus T,, Deiwick J,, Rappl C,, Freeman JA,, Schröder W,, Miller SI,, Hensel M . 2001. SseBCD proteins are secreted by the type III secretion system of Salmonella pathogenicity island 2 and function as a translocon. J Bacteriol 183 : 6036 6045.[PubMed] [CrossRef]
70. Scott CC,, Botelho RJ,, Grinstein S . 2003. Phagosome maturation: a few bugs in the system. J Membr Biol 193 : 137 152.[PubMed] [CrossRef]
71. Méresse S,, Unsworth KE,, Habermann A,, Griffiths G,, Fang F,, Martínez-Lorenzo MJ,, Waterman SR,, Gorvel JP,, Holden DW . 2001. Remodelling of the actin cytoskeleton is essential for replication of intravacuolar Salmonella . Cell Microbiol 3 : 567 577.[PubMed] [CrossRef]
72. Miao EA,, Brittnacher M,, Haraga A,, Jeng RL,, Welch MD,, Miller SI . 2003. Salmonella effectors translocated across the vacuolar membrane interact with the actin cytoskeleton. Mol Microbiol 48 : 401 415.[PubMed] [CrossRef]
73. Hayward RD,, Koronakis V . 1999. Direct nucleation and bundling of actin by the SipC protein of invasive Salmonella . EMBO J 18 : 4926 4934.[PubMed] [CrossRef]
74. Brawn LC,, Hayward RD,, Koronakis V . 2007. Salmonella SPI1 effector SipA persists after entry and cooperates with a SPI2 effector to regulate phagosome maturation and intracellular replication. Cell Host Microbe 1 : 63 75.[PubMed] [CrossRef]
75. Lesnick ML,, Reiner NE,, Fierer J,, Guiney DG . 2001. The Salmonella spvB virulence gene encodes an enzyme that ADP-ribosylates actin and destabilizes the cytoskeleton of eukaryotic cells. Mol Microbiol 39 : 1464 1470.[PubMed] [CrossRef]
76. Braun V,, Wong A,, Landekic M,, Hong WJ,, Grinstein S,, Brumell JH . 2010. Sorting nexin 3 (SNX3) is a component of a tubular endosomal network induced by Salmonella and involved in maturation of the Salmonella-containing vacuole. Cell Microbiol 12 : 1352 1367.[PubMed] [CrossRef]
77. Drecktrah D,, Levine-Wilkinson S,, Dam T,, Winfree S,, Knodler LA,, Schroer TA,, Steele-Mortimer O . 2008. Dynamic behavior of Salmonella-induced membrane tubules in epithelial cells. Traffic 9 : 2117 2129.[PubMed] [CrossRef]
78. Rajashekar R,, Liebl D,, Seitz A,, Hensel M . 2008. Dynamic remodeling of the endosomal system during formation of Salmonella-induced filaments by intracellular Salmonella enterica . Traffic 9 : 2100 2116.[PubMed] [CrossRef]
79. Husebye H,, Aune MH,, Stenvik J,, Samstad E,, Skjeldal F,, Halaas O,, Nilsen NJ,, Stenmark H,, Latz E,, Lien E,, Mollnes TE,, Bakke O,, Espevik T . 2010. The Rab11a GTPase controls Toll-like receptor 4-induced activation of interferon regulatory factor-3 on phagosomes. Immunity 33 : 583 596.[PubMed] [CrossRef]
80. Beuzón CR,, Méresse S,, Unsworth KE,, Ruíz-Albert J,, Garvis S,, Waterman SR,, Ryder TA,, Boucrot E,, Holden DW . 2000. Salmonella maintains the integrity of its intracellular vacuole through the action of SifA. EMBO J 19 : 3235 3249.[PubMed] [CrossRef]
81. Henry T,, Couillault C,, Rockenfeller P,, Boucrot E,, Dumont A,, Schroeder N,, Hermant A,, Knodler LA,, Lecine P,, Steele-Mortimer O,, Borg JP,, Gorvel JP,, Méresse S . 2006. The Salmonella effector protein PipB2 is a linker for kinesin-1. Proc Natl Acad Sci USA 103 : 13497 13502.[PubMed] [CrossRef]
82. Kuhle V,, Hensel M . 2002. SseF and SseG are translocated effectors of the type III secretion system of Salmonella pathogenicity island 2 that modulate aggregation of endosomal compartments. Cell Microbiol 4 : 813 824.[PubMed] [CrossRef]
83. Vale RD,, Reese TS,, Sheetz MP . 1985. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42 : 39 50.[PubMed] [CrossRef]
84. Boucrot E,, Henry T,, Borg JP,, Gorvel JP,, Méresse S . 2005. The intracellular fate of Salmonella depends on the recruitment of kinesin. Science 308 : 1174 1178.[PubMed] [CrossRef]
85. Ohlson MB,, Huang Z,, Alto NM,, Blanc MP,, Dixon JE,, Chai J,, Miller SI . 2008. Structure and function of Salmonella SifA indicate that its interactions with SKIP, SseJ, and RhoA family GTPases induce endosomal tubulation. Cell Host Microbe 4 : 434 446.[PubMed] [CrossRef]
86. Cai D,, McEwen DP,, Martens JR,, Meyhofer E,, Verhey KJ . 2009. Single molecule imaging reveals differences in microtubule track selection between kinesin motors. PLoS Biol 7 : e1000216. doi:10.1371/journal.pbio.1000216.
87. Kuhle V,, Jäckel D,, Hensel M . 2004. Effector proteins encoded by Salmonella pathogenicity island 2 interfere with the microtubule cytoskeleton after translocation into host cells. Traffic 5 : 356 370.[PubMed] [CrossRef]
88. Kuhle V,, Abrahams GL,, Hensel M . 2006. Intracellular Salmonella enterica redirect exocytic transport processes in a Salmonella pathogenicity island 2-dependent manner. Traffic 7 : 716 730.[PubMed] [CrossRef]
89. Franco IS,, Shohdy N,, Shuman HA . The Legionella pneumophila effector VipA is an actin nucleator that alters host cell organelle trafficking. PLoS Pathog 8 : e1002546. doi:10.1371/journal.ppat.1002546. [CrossRef]
90. Stamm LM,, Morisaki JH,, Gao LY,, Jeng RL,, McDonald KL,, Roth R,, Takeshita S,, Heuser J,, Welch MD,, Brown EJ . 2003. Mycobacterium marinum escapes from phagosomes and is propelled by actin-based motility. J Exp Med 198 : 1361 1368.[PubMed] [CrossRef]
91. Goldberg MB . 2001. Actin-based motility of intracellular microbial pathogens. Microbiol Mol Biol Rev 65 : 595 626.[PubMed] [CrossRef]
92. Moors MA,, Levitt B,, Youngman P,, Portnoy DA . 1999. Expression of listeriolysin O and ActA by intracellular and extracellular Listeria monocytogenes . Infect Immun 67 : 131 139.[PubMed]
93. Goldberg MB,, Theriot JA,, Sansonetti PJ . 1994. Regulation of surface presentation of IcsA, a Shigella protein essential to intracellular movement and spread, is growth phase dependent. Infect Immun 62 : 5664 5668.[PubMed]
94. Niebuhr K,, Giuriato S,, Pedron T,, Philpott DJ,, Gaits F,, Sable J,, Sheetz MP,, Parsot C,, Sansonetti PJ,, Payrastre B . 2002. Conversion of PtdIns(4,5)P(2) into PtdIns(5)P by the S. flexneri effector IpgD reorganizes host cell morphology. EMBO J 21 : 5069 5078.[PubMed] [CrossRef]
95. Ramel D,, Lagarrigue F,, Pons V,, Mounier J,, Dupuis-Coronas S,, Chicanne G,, Sansonetti PJ,, Gaits-Iacovoni F,, Tronchère H,, Payrastre B . 2011. Shigella flexneri infection generates the lipid PI5P to alter endocytosis and prevent termination of EGFR signaling. Sci Signal 4 : ra61. [PubMed] [CrossRef]
96. Mellouk N,, Weiner A,, Aulner N,, Schmitt C,, Elbaum M,, Shorte SL,, Danckaert A,, Enninga J . 2014. Shigella subverts the host recycling compartment to rupture its vacuole. Cell Host Microbe 16 : 517 530.[PubMed] [CrossRef]
97. Blocker A,, Gounon P,, Larquet E,, Niebuhr K,, Cabiaux V,, Parsot C,, Sansonetti P . 1999. The tripartite type III secreton of Shigella flexneri inserts IpaB and IpaC into host membranes. J Cell Biol 147 : 683 693.[PubMed] [CrossRef]
98. High N,, Mounier J,, Prévost MC,, Sansonetti PJ . 1992. IpaB of Shigella flexneri causes entry into epithelial cells and escape from the phagocytic vacuole. EMBO J 11 : 1991 1999.[PubMed]
99. Mounier J,, Laurent V,, Hall A,, Fort P,, Carlier MF,, Sansonetti PJ,, Egile C . 1999. Rho family GTPases control entry of Shigella flexneri into epithelial cells but not intracellular motility. J Cell Sci 112 : 2069 2080.[PubMed]
100. Fernandez-Prada CM,, Hoover DL,, Tall BD,, Hartman AB,, Kopelowitz J,, Venkatesan MM . 2000. Shigella flexneri IpaH(7.8) facilitates escape of virulent bacteria from the endocytic vacuoles of mouse and human macrophages. Infect Immun 68 : 3608 3619.[PubMed] [CrossRef]
101. Portnoy DA,, Jacks PS,, Hinrichs DJ . 1988. Role of hemolysin for the intracellular growth of Listeria monocytogenes . J Exp Med 167 : 1459 1471.[PubMed] [CrossRef]
102. Smith GA,, Marquis H,, Jones S,, Johnston NC,, Portnoy DA,, Goldfine H . 1995. The two distinct phospholipases C of Listeria monocytogenes have overlapping roles in escape from a vacuole and cell-to-cell spread. Infect Immun 63 : 4231 4237.[PubMed]
103. Tilney LG,, Harb OS,, Connelly PS,, Robinson CG,, Roy CR . 2001. How the parasitic bacterium Legionella pneumophila modifies its phagosome and transforms it into rough ER: implications for conversion of plasma membrane to the ER membrane. J Cell Sci 114 : 4637 4650.[PubMed]
104. Kagan JC,, Roy CR . 2002. Legionella phagosomes intercept vesicular traffic from endoplasmic reticulum exit sites. Nat Cell Biol 4 : 945 954.[PubMed] [CrossRef]
105. Hsu F,, Zhu W,, Brennan L,, Tao L,, Luo ZQ,, Mao Y . 2012. Structural basis for substrate recognition by a unique Legionella phosphoinositide phosphatase. Proc Natl Acad Sci USA 109 : 13567 13572.[PubMed] [CrossRef]
106. Weber SS,, Ragaz C,, Reus K,, Nyfeler Y,, Hilbi H . 2006. Legionella pneumophila exploits PI(4)P to anchor secreted effector proteins to the replicative vacuole. PLoS Pathog 2 : e46. [PubMed] [CrossRef]
107. Conover GM,, Derré I,, Vogel JP,, Isberg RR . 2003. The Legionella pneumophila LidA protein: a translocated substrate of the Dot/Icm system associated with maintenance of bacterial integrity. Mol Microbiol 48 : 305 321.[PubMed] [CrossRef]
108. Machner MP,, Isberg RR . 2006. Targeting of host Rab GTPase function by the intravacuolar pathogen Legionella pneumophila . Dev Cell 11 : 47 56.[PubMed] [CrossRef]
109. Moyer BD,, Allan BB,, Balch WE . 2001. Rab1 interaction with a GM130 effector complex regulates COPII vesicle cis–Golgi tethering. Traffic 2 : 268 276.[PubMed] [CrossRef]
110. Kagan JC,, Stein MP,, Pypaert M,, Roy CR . 2004. Legionella subvert the functions of Rab1 and Sec22b to create a replicative organelle. J Exp Med 199 : 1201 1211.[PubMed] [CrossRef]
111. Murata T,, Delprato A,, Ingmundson A,, Toomre DK,, Lambright DG,, Roy CR . 2006. The Legionella pneumophila effector protein DrrA is a Rab1 guanine nucleotide-exchange factor. Nat Cell Biol 8 : 971 977.[PubMed] [CrossRef]
112. Müller MP,, Peters H,, Blümer J,, Blankenfeldt W,, Goody RS,, Itzen A . 2010. The Legionella effector protein DrrA AMPylates the membrane traffic regulator Rab1b. Science 329 : 946 949.[PubMed] [CrossRef]
113. Chen J,, de Felipe KS,, Clarke M,, Lu H,, Anderson OR,, Segal G,, Shuman HA . 2004. Legionella effectors that promote nonlytic release from protozoa. Science 303 : 1358 1361.[PubMed] [CrossRef]
114. Ingmundson A,, Delprato A,, Lambright DG,, Roy CR . 2007. Legionella pneumophila proteins that regulate Rab1 membrane cycling. Nature 450 : 365 369.[PubMed] [CrossRef]
115. Tan Y,, Luo ZQ . 2011. Legionella pneumophila SidD is a deAMPylase that modifies Rab1. Nature 475 : 506 509.[PubMed] [CrossRef]
116. Mukherjee S,, Liu X,, Arasaki K,, McDonough J,, Galán JE,, Roy CR . 2011. Modulation of Rab GTPase function by a protein phosphocholine transferase. Nature 477 : 103 106.[PubMed] [CrossRef]
117. Pan X,, Lührmann A,, Satoh A,, Laskowski-Arce MA,, Roy CR . 2008. Ankyrin repeat proteins comprise a diverse family of bacterial type IV effectors. Science 320 : 1651 1654.[PubMed] [CrossRef]
118. Allaire PD,, Marat AL,, Dall’Armi C,, Di Paolo G,, McPherson PS,, Ritter B . 2010. The Connecdenn DENN domain: a GEF for Rab35 mediating cargo-specific exit from early endosomes. Mol Cell 37 : 370 382.[PubMed] [CrossRef]
119. Tan Y,, Arnold RJ,, Luo ZQ . 2011. Legionella pneumophila regulates the small GTPase Rab1 activity by reversible phosphorylcholination. Proc Natl Acad Sci USA 108 : 21212 21217.[PubMed] [CrossRef]
120. Nagai H,, Kagan JC,, Zhu X,, Kahn RA,, Roy CR . 2002. A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes. Science 295 : 679 682.[PubMed] [CrossRef]
121. Robinson CG,, Roy CR . 2006. Attachment and fusion of endoplasmic reticulum with vacuoles containing Legionella pneumophila . Cell Microbiol 8 : 793 805.[PubMed] [CrossRef]
122. Ragaz C,, Pietsch H,, Urwyler S,, Tiaden A,, Weber SS,, Hilbi H . 2008. The Legionella pneumophila phosphatidylinositol-4 phosphate-binding type IV substrate SidC recruits endoplasmic reticulum vesicles to a replication-permissive vacuole. Cell Microbiol 10 : 2416 2433.[PubMed] [CrossRef]
123. Liu Y,, Luo ZQ . 2007. The Legionella pneumophila effector SidJ is required for efficient recruitment of endoplasmic reticulum proteins to the bacterial phagosome. Infect Immun 75 : 592 603.[PubMed] [CrossRef]
124. Toulabi L,, Wu X,, Cheng Y,, Mao Y . 2013. Identification and structural characterization of a Legionella phosphoinositide phosphatase. J Biol Chem 288 : 24518 24527.[PubMed] [CrossRef]
125. Jank T,, Böhmer KE,, Tzivelekidis T,, Schwan C,, Belyi Y,, Aktories K . 2012. Domain organization of Legionella effector SetA. Cell Microbiol 14 : 852 868.[PubMed] [CrossRef]
126. Heidtman M,, Chen EJ,, Moy MY,, Isberg RR . 2009. Large-scale identification of Legionella pneumophila Dot/Icm substrates that modulate host cell vesicle trafficking pathways. Cell Microbiol 11 : 230 248.[PubMed] [CrossRef]


Generic image for table

Host physiological events and substrates targeted by effectors secreted by , , , , , and species

Citation: Poirier V, Av-gay Y. 2016. Intracellular Growth of Bacterial Pathogens: The Role of Secreted Effector Proteins in the Control of Phagocytosed Microorganisms, p 693-713. In Kudva I, Cornick N, Plummer P, Zhang Q, Nicholson T, Bannantine J, Bellaire B (ed),

Virulence Mechanisms of Bacterial Pathogens, Fifth Edition

. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.VMBF-0003-2014

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error