Chapter 17 : Spore Surface Display

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Spore Surface Display, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819323/9781555816759_Chap17-1.gif /docserver/preview/fulltext/10.1128/9781555819323/9781555816759_Chap17-2.gif


Display systems that present biologically active molecules on the surface of microorganisms have become increasingly used to address environmental and biomedical issues ( ). Strategies using environmentally relevant proteins or peptides for display on the surface of phages or bacterial cells have been extensively reviewed by Wu et al. ( ). Examples include proteins able to bind metal ions that can be used as bioadsorbents or biocatalysts, including cysteine-rich metallothioneins (MTs) or Cys-His rich synthetic peptides, known to bind Cd and Hg with a very high affinity. Eukaryotic MTs have been expressed on the surface of cells through fusion to the porin LamB, with a 20-fold increased ability of Cd accumulation of the recombinant cell with respect to its parental strain ( ). In addition, metal-binding peptides have also been expressed on the surface of soil bacteria known to survive in contaminated environments. The mouse MT was displayed on the surface of ( ) and CH34 ( ), resulting in a 3-fold increase in binding and removal of Cd, sufficient to improve plant growth in a contaminated soil ( ). Synthetic phytochelatins (ECn) with the repetitive metal-binding motif (Glu-Cys)nGly were displayed on the surface of sp. cells causing a 10-fold improvement in Hg intracellular accumulation ( ). In addition to heavy metals, organic contaminants can be removed from the environment by the use of microbial cells displaying heterologous enzymes. Examples include organophosphorus hydrolases (OPHs). These bacterial enzymes are able to degrade organophosphates, which are toxic compounds widely used as pesticides. cells expressing OPH on their surface via the Lpp-OmpA fusion system were able to degrade parathion and paraoxon 7-fold faster than cells expressing OPH intracellularly ( ). Surface display approaches have also been used to develop whole-cell diagnostic tools and vaccine delivery systems. Functional single-chain antibody fragments have been expressed on bacterial cells and used as diagnostic devices in immunological tests. In the first report of an antibody fragment expressed in an active form on a bacterial surface, the murine anti-human-IgE scFv antibody fragment was exposed on the surface of and cells ( ). More recently, the oral commensal bacterium was engineered to display a single-chain Fv (scFv) antibody fragment, derived from a monoclonal antibody raised against the major adhesin of the dental caries-producing bacterium (streptococcal antigen I/II or SA I/II). Recombinant was found to specifically bind to immobilized SA I/II and represents the first step toward the development of a stable system for the delivery of recombinant antibodies ( ).

Citation: Isticato R, Ricca E. 2016. Spore Surface Display, p 351-366. In Driks A, Eichenberger P (ed), The Bacterial Spore: from Molecules to Systems. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.TBS-0011-2012
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Surface proteins used as carriers for surface display systems in Gram-negative and Gram-positive bacteria. CM, cytoplasmic membrane; OM, outer membrane; PP, periplasm; PG, peptidoglycan. Black circles indicate the heterologous proteins used as passengers.

Citation: Isticato R, Ricca E. 2016. Spore Surface Display, p 351-366. In Driks A, Eichenberger P (ed), The Bacterial Spore: from Molecules to Systems. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.TBS-0011-2012
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

C-terminal (top), N-terminal (middle), and sandwich (bottom) fusions. Black squares indicate the linker sequence, in some cases used to separate carrier and passenger.

Citation: Isticato R, Ricca E. 2016. Spore Surface Display, p 351-366. In Driks A, Eichenberger P (ed), The Bacterial Spore: from Molecules to Systems. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.TBS-0011-2012
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Amino acid sequences of the three repeats (R1, R2, R3) present in the C-terminal half of CotB. Hydrophobic (black) and hydrophilic (gray) regions of CotB as deduced by a Kyte-Doolittle plot (ProtScale software on ExPASy). Truncated form of CotB used as a carrier for surface display.

Citation: Isticato R, Ricca E. 2016. Spore Surface Display, p 351-366. In Driks A, Eichenberger P (ed), The Bacterial Spore: from Molecules to Systems. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.TBS-0011-2012
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Gene fusions are synthesized into the mother cell cytoplasm due to mother cell-specific transcription signals. Chimera are then assembled around the forming spore during the spore maturation process and released by autolysis of the mother cell. Dark gray cylinders represent the coat components used as carriers, and black circles indicate the heterologous passengers.

Citation: Isticato R, Ricca E. 2016. Spore Surface Display, p 351-366. In Driks A, Eichenberger P (ed), The Bacterial Spore: from Molecules to Systems. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.TBS-0011-2012
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Lee SY,, Choi JH,, Xu Z . 2003. Microbial cell-surface display. Trends Biotechnol 21 : 45 52.[PubMed] [CrossRef]
2. Kronqvist N,, Malm M,, Rockberg J,, Hjelm B,, Uhlén M,, Ståhl S,, Löfblom J . 2010. Staphylococcal surface display in combinatorial protein engineering and epitope mapping of antibodies. Recent Pat Biotechnol 4 : 171 182.[PubMed] [CrossRef]
3. van Bloois E,, Winter RT,, Kolmar H,, Fraaije MW . 2011. Decorating microbes: surface display of proteins on Escherichia coli . Trends Biotechnol 29 : 79 86.[PubMed] [CrossRef]
4. Wu CH,, Mulchandani A,, Chen W . 2008. Versatile microbial surface-display for environmental remediation and biofuels production. Trends Microbiol 16 : 181 188.[PubMed] [CrossRef]
5. Sousa C,, Kotrba P,, Ruml T,, Cebolla A,, De Lorenzo V . 1998. Metalloadsorption by Escherichia coli cells displaying yeast and mammalian metallothioneins anchored to the outer membrane protein LamB. J Bacteriol 180 : 2280 2284.[PubMed]
6. Sousa C,, Cebolla A,, de Lorenzo V . 1996. Enhanced metalloadsorption of bacterial cells displaying poly-His peptides. Nat. Biotechnol. 14 : 1017 1020.[PubMed] [CrossRef]
7. Valls M,, de Lorenzo V,, Gonzalez-Duarte R,, Atrian S . 2000. Engineering outer-membrane proteins in Pseudomonas putida for enhanced heavy metal bioadsorption. J Inorg Biochem 79 : 219 223.[PubMed] [CrossRef]
8. Valls M,, Atrian S,, de Lorenzo V,, Fernandez LA . 2000. Engineering a mouse metallothionein on the cell surface of Ralstonia eutropha CH34 for immobilization of heavy metals in soil. Nat Biotechol 18 : 661 665.[PubMed] [CrossRef]
9. Bae W,, Chen W,, Mulchandani A,, Mehra R . 2000. Enhanced bioaccumulation of heavy metals by bacterial cells displaying synthetic phytochelatins. Biotechnol Bioeng 70 : 518 524.[PubMed] [CrossRef]
10. Bae W,, Mehra R,, Mulchandani A,, Chen W . 2001. Genetic engineering of Escherichia coli for enhanced uptake and bioaccumulation of mercury. Appl Environ Microbiol 67 : 5335 5338.[PubMed] [CrossRef]
11. Bae W,, Mulchandani A,, Chen W . 2002. Cell surface display of synthetic phytochelatins using ice nucleation protein for enhanced heavy metal bioaccumulation. J Inorg Biochem 88 : 223 227.[PubMed] [CrossRef]
12. Richins R,, Kaneva I,, Mulchandani A,, Chen W . 1997. Biodegradation of organophosphorus pesticides by surface-expressed organophosphorus hydrolase. Nature Biotechnol 15 : 984 987.[PubMed] [CrossRef]
13. Gunneriusson E,, Samuelson P,, Uhlen M,, Nygren PA,, Stahl S . 1996. Surface display of a functional single-chain Fv antibody on staphylococci. J Bacteriol 178 : 1341 1346.[PubMed]
14. Giomarelli B,, Maggi T,, Younson J,, Kelly C,, Pozzi G . 2004. Expression of a functional single-chain Fv antibody on the surface of Streptococcus gordonii . Mol Biotechnol 28 : 105 112.[PubMed] [CrossRef]
15. Benhar I . 2001. Biotechnological applications of phage and cell display. Biotechnol Adv 19 : 1 33.[PubMed] [CrossRef]
16. di Marzo Veronese F,, Willis AE,, Boyer-Thompson C,, Appella E,, Perham RN . 1994. Structural mimicry and enhanced immunogenicity of peptide epitopes displayed on filamentous bacteriophage. The V3 loop of HIV-1 gp120. J. Mol Biol 243 : 167 172.[PubMed] [CrossRef]
17. Jiang J,, Abu-Shilbayeh L,, Rao VB . 1997. Display of a PorA peptide from Neisseria meningitidis on the bacteriophage T4 capsid surface. Infect Immun 65 : 4770 4777.[PubMed]
18. Felici F,, Castagnoli L,, Musacchio A,, Jappelli R,, Cesareni G . 1991. Selection of antibody ligands from a large library of oligopeptides expressed on a multivalent exposition vector. J Mol Biol 222 : 301 310.[PubMed] [CrossRef]
19. Felici F,, Luzzago A,, Monaci P,, Nicosia A,, Sollazzo M,, Traboni C . 1995. Peptide and protein display on the surface of filamentous bacteriophage. Biotechnol Annu Rev 1 : 149 183.[PubMed] [CrossRef]
20. Folgori A,, Tafi R,, Meola A,, Felici F,, Galfre G,, Cortese R,, Monaci P,, Nicosia A . 1994. A general strategy to identify mimotopes of pathological antigens using only random peptide libraries and human sera. EMBO J 13 : 2236 2243.[PubMed]
21. Nguyen TN,, Hansson M,, Stahl S,, Bachi T,, Robert A,, Domzig W,, Binz H,, Uhlen M . 1993. Cell-surface display of heterologous epitopes on Staphylococcus xylosus as a potential delivery system for oral vaccination. Gene 128 : 89 94.[PubMed] [CrossRef]
22. Nguyen TN,, Gourdon MH,, Hansson M,, Robert A,, Samuelson P,, Libon C,, Andreoni C,, Nygren PA,, Binz H,, Uhlen M,, Stahl S . 1995. Hydrophobicity engineering to facilitate surface display of heterologous gene products on Staphylococcus xylosus . J Biotechnol 42 : 207 219.[PubMed] [CrossRef]
23. Wu JY,, Newton S,, Judd A,, Stocker B,, Robinson WS . 1989. Expression of immunogenic epitopes of hepatitis B surface antigen with hybrid flagellin proteins by a vaccine strain of Salmonella . Proc Natl Acad Sci USA 86 : 4726 4730.[PubMed] [CrossRef]
24. Newton SM,, Jacob CO,, Stocker BA . 1989. Immune response to cholera toxin epitope inserted in Salmonella flagellin. Science 244 : 70 72.[PubMed] [CrossRef]
25. Schorr J,, Knapp B,, Hundt E,, Kupper HA,, Amann E . 1991. Surface expression of malarial antigens in Salmonella typhimurium: induction of serum antibody response upon oral vaccination of mice. Vaccine 9 : 675 681.[PubMed] [CrossRef]
26. Fischetti VA,, Medaglini D,, Pozzi G . 1996. Gram-positive commensal bacteria for mucosal vaccine delivery. Curr Opin Biotechnol 7 : 659 666.[PubMed] [CrossRef]
27. Isticato R,, Cangiano G,, De Felice M,, Ricca E, . 2004. Display of molecules on the spore surface. p 193 200. In E. Ricca,, Henriques AO,, Cutting SM (ed), Bacterial Spore Formers: Probiotics and Emerging Applications. Horizon Biosciences, Norfolk, UK.
28. Jose J,, Meyer TF . 2007. The autodisplay story, from discovery to biotechnical and biomedical applications. Microbiol Mol Biol Rev 71 : 600 619.[PubMed] [CrossRef]
29. Maurer J,, Jose J,, Meyer TF . 1997. Autodisplay: one-component system for efficient surface display and release of soluble recombinant proteins in Escherichia coli . J Bacteriol 179 : 794 804.[PubMed]
30. Henriques AO,, Moran CP Jr . 2007. Structure, assembly and function of the spore surface layers. Annu Rev Microbiol 61 : 555 588.[PubMed] [CrossRef]
31. Klobutcher LA,, Ragkousi K,, Setlow P . 2006. The Bacillus subtilis spore coat provides “eat resistance” during phagocytic predation by the protozoan Tetrahymena thermophila . Proc Natl Acad. Sci USA 103 : 165 170.[PubMed] [CrossRef]
32. Isticato R,, Cangiano G,, Tran H-T,, Ciabattini A,, Medaglini D,, Oggioni MR,, De Felice M,, Pozzi G,, Ricca E . 2001. Surface display of recombinant proteins on Bacillus subtilis spores. J Bacteriol 183 : 6294 6301.[PubMed] [CrossRef]
33. Mauriello EMF,, Duc LH,, Isticato R,, Cangiano G,, Hong HA,, De Felice M,, Ricca E,, Cutting SM . 2004. Display of heterologous antigens on the Bacillus subtilis spore coat using CotC as a fusion partner. Vaccine 22 : 1177 1187.[PubMed] [CrossRef]
34. Cangiano G,, Mazzone A,, Baccigalupi L,, Isticato R,, Eichenberger P,, De Felice M,, Ricca E . 2010. Direct and indirect control of late sporulation genes by GerR of Bacillus subtilis . J Bacteriol 192 : 3406 3413.[PubMed] [CrossRef]
35. Zilhao R,, Isticato R,, Ozin A,, Serrano M,, Moran CP,, Ricca E,, Henriques OA . 2004. Interactions among CotB, CotG, and CotH during assembly of the Bacillus subtilis spore coat. J Bacteriol 186 : 1110 1119.[PubMed] [CrossRef]
36. Isticato R,, Esposito G,, Zilhao R,, Nolasco S,, Cangiano G,, De Felice M,, Henriques OA,, Ricca E . 2004. Assembly of multiple CotC forms into the Bacillus subtilis spore coat. J Bacteriol 186 : 1129 1135.[PubMed] [CrossRef]
37. Baccigalupi L,, Castaldo G,, Cangiano G,, Isticato R,, Marasco R,, De Felice M,, Ricca E . 2004. GerE-independent expression of cotH leads to CotC accumulation in the mother cell compartment during Bacillus subtilis sporulation. Microbiol UK 150 : 3441 3449.[PubMed] [CrossRef]
38. Helting TB,, Zwisler O . 1977. Structure of tetanus toxin. I. Breakdown of the toxin molecule and discrimination between polypeptide fragments. J Biol Chem 252 : 194 198.[PubMed]
39. Douce G,, Turcotte C,, Cropley I,, Roberts M,, Pizza M,, Domenghini M,, Rappuoli R,, Dougan G . 1995. Mutants of Escherichia coli heat-labile toxin lacking ADP-ribosyltransferase activity act as nontoxic, mucosal adjuvants. Proc Natl Acad Sci USA 92 : 1644 1648.[PubMed] [CrossRef]
40. Yamamoto H,, Kurosawa S-I,, Sekigushi J . 2003. Localization of the vegetative cell wall hydrolases LytC, LytE, and LytF on the Bacillus subtilis cell wall surface and stability of these enzymes to cell wall-bound or extracellular proteases. J Bacteriol 22 : 6666 6677.[CrossRef]
41. Duc LH,, Hong HA,, Fairweather N,, Ricca E,, Cutting SM . 2003. Bacterial spores as vaccine vehicles. Infect Immun 71 : 2810 2818.[CrossRef]
42. Ciabattini A,, Parigi R,, Isticato R,, Oggioni MR,, Pozzi G . 2004. Oral priming of mice by recombinant spores of Bacillus subtilis . Vaccine 22 : 4139 4143.[PubMed] [CrossRef]
43. Mauriello EMF,, Cangiano G,, Maurano F,, Saggese V,, De Felice M,, Rossi M,, Ricca E . 2007. Germination-independent induction of cellular immune response by Bacillus subtilis spores displaying the C fragment of the tetanus toxin. Vaccine 25 : 788 793.[PubMed] [CrossRef]
44. Duc LH,, Hong HA,, Atkins HS,, Flick-Smith HC,, Durrani Z,, Rijpkema S,, Titball RW,, Cutting SM . 2007. Immunization against anthrax using Bacillus subtilis spores expressing the anthrax protective antigen. Vaccine 25 : 346 355.[PubMed] [CrossRef]
45. Hoang TH,, Hong HA,, Clark GC,, Titball RW,, Cutting SM . 2008. Recombinant Bacillus subtilis expressing the Clostridium perfringens alpha toxoid is a candidate orally delivered vaccine against necrotic enteritis. Infect Immun 76 : 5257 5265.[PubMed] [CrossRef]
46. Hinc K,, Isticato R,, Dembek M,, Karczewska J,, Iwanicki A,, Peszyńska-Sularz G,, De Felice M,, Obukowski M,, Ricca E . 2010. Expression and display of UreA of Helicobacter acinonychis on the surface of Bacillus subtilis spores. Microb Cell Fact 9 : 2. doi:10.1186/1475-2859-9-2. [PubMed] [CrossRef]
47. Permpoonpattana P,, Hong HA,, Phetcharaburanin J,, Huang JM,, Cook J,, Fairweather N,, Cutting SM . 2011. Immunization with Bacillus spores expressing toxin A peptide repeats protects against infection with Clostridium difficile . Infect Immun 79 : 2295 2302.[PubMed] [CrossRef]
48. Ning D,, Leng X,, Li Q,, Xu W . 2011. Surface-displayed VP28 on Bacillus subtilis spores induces protection against white spot syndrome virus in crayfish by oral administration. J Appl Microbiol 111 : 1327 1336.[PubMed] [CrossRef]
49. Hinc K,, Ghandili S,, Karbalaee G,, Shali A,, Noghabi K,, Ricca E,, Ahmadian G . 2010. Efficient binding of nickel ions to recombinant Bacillus subtilis spores. Res Microbiol 161 : 757 764.[PubMed] [CrossRef]
50. Donovan W,, Zheng L,, Sandman K,, Losick R . 1987. Genes encoding spore coat polypeptides from Bacillus subtilis . J Mol Biol 196 : 1 10.[PubMed] [CrossRef]
51. Zheng L,, Donovan WP,, Fitz-James PC,, Losick R . 1988. Gene encoding a morphogenic protein required in the assembly of the outer coat of the Bacillus subtilis endospore. Genes Dev 2 : 1047 1054.[PubMed] [CrossRef]
52. Isticato R,, Pelosi A,, Zilhao R,, Baccigalupi L,, Henriques AO,, De Felice M,, Ricca E . 2008. CotC-CotU heterodimerization during assembly of the Bacillus subtilis spore coat. J Bacteriol 190 : 1267 1275.[PubMed] [CrossRef]
53. Isticato R,, Pelosi A,, De Felice M,, Ricca E . 2010. CotE binds to CotC and CotU and mediates their interaction during spore coat formation in Bacillus subtilis . J Bacteriol 192 : 949 954.[PubMed] [CrossRef]
54. Isticato R,, Scotto Di Mase D,, Mauriello EMF,, De Felice M,, Ricca E . 2007. Amino terminal fusion of heterologous proteins to CotC increases display efficiencies in the Bacillus subtilis spore system. BioTechniques 42 : 151 156.[PubMed] [CrossRef]
55. Mao L,, Jiang S,, Li G,, He Y,, Chen L,, Yao Q,, Chen K . 2012. Surface display of human serum albumin on Bacillus subtilis spores for oral administration. Curr Microbiol 64 : 545 551.[PubMed] [CrossRef]
56. D’Apice L,, Sartorius R,, Caivano A,, Mascolo D,, Del Pozzo G,, Scotto Di Mase D,, Ricca E,, Li Pira G,, Manca F,, Malanga D,, De Palma R,, De Berardinis P . 2007. Comparative analysis of new innovative vaccine formulations based on the use of procaryotic display systems. Vaccine 25 : 1993 2000.[PubMed] [CrossRef]
57. Zhou Z,, Xia H,, Hu X,, Huang Y,, Li Y,, Li L,, Ma C,, Chen X,, Hu F,, Xu J,, Lu F,, Wu Z,, Yu X . 2008. Oral administration of a Bacillus subtilis spore-based vaccine expressing Clonorchis sinensis tegumental protein 22.3 kDa confers protection against Clonorchis sinensis . Vaccine 26 : 1817 1825.[PubMed] [CrossRef]
58. Li G,, Tang Q,, Chen H,, Yao Q,, Ning D,, Chen K . 2011. Display of Bombyx mori nucleopolyhedrovirus GP64 on the Bacillus subtilis spore coat. Curr Microbiol 62 : 1368 1373.[PubMed] [CrossRef]
59. Wang N,, Chang C,, Yao Q,, Li G,, Qin L,, Chen L,, Chen K . 2011. Display of Bombyx mori alcohol dehydrogenases on the Bacillus subtilis spore surface to enhance enzymatic activity under adverse conditions. PLoS ONE 6 : e21454. doi:10.1371/journal.pone.0021454. [PubMed] [CrossRef]
60. Sacco M,, Ricca E,, Losick R,, Cutting S . 1995. An additional GerE-controlled gene encoding an abundant spore coat protein from Bacillus subtilis . J Bacteriol 177 : 372 377.[PubMed]
61. Giglio R,, Fani R,, Isticato R,, De Felice M,, Ricca E,, Baccigalupi L . 2011. Organization and evolution of the cotG and cotH genes of Bacillus subtilis . J Bacteriol 193 : 6664 6673.[PubMed] [CrossRef]
62. Henriques AO,, Melsen LR,, Moran CP . 1998. Involvement of superoxide dismutase in spore coat assembly in Bacillus subtilis . J Bacteriol 180 : 2285 2291.[PubMed]
63. Naclerio G,, Baccigalupi L,, Zilhao R,, De Felice M,, Ricca E . 1996. Bacillus subtilis spore coat assembly requires cotH gene expression. J Bacteriol 178 : 4375 4380.[PubMed]
64. Kim J-H,, Lee C-S,, Kim B-G . 2005. Spore-displayed streptavidin: a live diagnostic tool in biotechnology. Biochem Biophys Res Commun 331 : 210 214.[PubMed] [CrossRef]
65. Kim J-H,, Roh C,, Lee C-W,, Kyung D,, Choi S-K,, Jung H-C,, Pan J-G,, Kim B-G . 2007. Bacterial surface display of GFP UV on Bacillus subtilis spores. J Microb Biotechnol 17 : 677 680.[PubMed]
66. Hwang B-Y,, Kim B-G,, Kim J-H . 2011. Bacterial surface display of a co-factor containing enzyme ω-transaminase from Vibrio fluvialis using Bacillus subtilis spore display system. Biosci Biotechnol Biochem 75 : 1862 1865.[PubMed] [CrossRef]
67. Xu X,, Gao C,, Zhang X,, Che B,, Ma C,, Qiu J,, Tao F,, Xu P . 2011. Production of N-acetyl- d-neuraminic acid by use of an efficient spore surface display system. Appl Environ Microbiol 77 : 3197 3201.[PubMed] [CrossRef]
68. Kwon SJ,, Jung H-C,, Pan J-G . 2007. Transgalactosylation in a water-solvent biphasic reaction system with β-galactosidase displayed on the surfaces of Bacillus subtilis spores. Appl Environ Microbiol 73 : 2251 2256.[PubMed] [CrossRef]
69. Potot S,, Serra CR,, Henriques AO,, Schyns G . 2010. Display of recombinant proteins on Bacillus subtilis spores using a coat-associated enzyme as the carrier. Appl Environ Microbiol 76 : 5926 5933.[PubMed] [CrossRef]
70. Tanner A,, Bowater L,, Fairhurst A,, Bornemann S . 2001. Oxalate decarboxylase requires manganese and dioxygen for activity: overexpression and characterization of Bacillus subtilis YvrK and YoaN. J Biol Chem 276 : 43627 43634.[PubMed] [CrossRef]
71. Costa T,, Steil L,, Martins LO,, Volker U,, Henriques AO . 2004. Assembly of an oxalate decaroxylase produced under the sigma k control into the Bacillus subtilis spore coat. J Bacteriol 186 : 1462 1474.[PubMed] [CrossRef]
72. Ozin AJ,, Samford CS,, Henriques AO,, Moran CP . 2001. SpoVID guides SafA to the spore coat in Bacillus subtilis . J Bacteriol 183 : 3041 3049.[PubMed] [CrossRef]
73. Tam NK,, Uyen NQ,, Hong HA,, Duc LH,, Hoa TT,, Serra CR,, Henriques AO,, Cutting SM . 2006. The intestinal life cycle of Bacillus subtilis and close relatives. J Bacteriol 188 : 2692 2700.[PubMed] [CrossRef]
74. Eichenberger P,, Fujita M,, Jensen ST,, Conlon EM,, Rudner DZ,, Wang ST,, Ferguson C,, Haga K,, Sato T,, Liu JS,, Losick R . 2004. The program of gene transcription for a single differentiating cell type during sporulation in Bacillus subtilis . PLoS Biol 2 : e328. doi:10.1371/journal.pbio.0020328. [PubMed] [CrossRef]
75. Plata G,, Fuhrer T,, Hsiao T-L,, Sauer U,, Viktup D . 2012. Global probabilistic annotation of metabolic networks enables enzyme discovery. Nat Chem Biol 8 : 848 854.[PubMed] [CrossRef]
76. Knurr J,, Benedek O,, Heslop J,, Vinson RB,, Boydston JA,, McAndrew J,, Kearney JF,, Turnbough CL . 2003. Peptide ligands that bind selectively to spores of Bacillus subtilis and closely related species. Appl Environ Microbiol 69 : 6841 6847.[PubMed] [CrossRef]
77. Hullo MF,, Moszer I,, Danchin A,, Martin-Verstraete I . 2001. CotA of Bacillus subtilis is a copper-dependent laccase. J Bacteriol 183 : 5426 5430.[PubMed] [CrossRef]
78. Martins LO,, Soares CM,, Pereira MM,, Teixeira M,, Costa T,, Jones GH,, Henriques AO . 2002. Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat. J Biol Chem 277 : 1849 1859.[PubMed] [CrossRef]
79. Gupta N,, Farinas ET . 2010. Directed evolution of CotA laccase for increased substrate specificity using Bacillus subtilis spores. Protein Eng Des Sel 23 : 679 682.[PubMed] [CrossRef]
80. Du C,, Nickerson KW . 1996. Bacillus thuringiensis HD-73 spores have surface-localized Cry1Ac toxin: physiological and pathogenic consequences. Appl Environ Microbiol 62 : 3722 3726.[PubMed]
81. Du C,, Chan WC,, McKeithan W,, Nickerson KW . 2005. Surface display of recombinant proteins on Bacillus thuringiensis spores. Appl Environ Microbiol 71 : 3337 3341.[PubMed] [CrossRef]
82. Park TJ,, Choi S-K,, Jung H-C,, Lee SY,, Pan J-G . 2009. Spore display using Bacillus thuringiensis exosporium protein InhA. J Microbiol Biotechnol 19 : 495 501.[PubMed] [CrossRef]
83. Thompson BM,, Stewart GC . 2008. Targeting of the BclA and BclB proteins to the Bacillus anthracis spore surface. Mol Microbiol 70 : 421 434.[PubMed] [CrossRef]
84. Detmer A,, Glenting J . 2006. Live bacterial vaccines—a review and identification of potential hazards. Microb Cell Fact 5 : 23. doi:10.1186/1475-2859-5-23. [PubMed] [CrossRef]
85. Yim S-K,, Jung H-C,, Yun C-H,, Pan J-G . 2009. Functional expression in Bacillus subtilis of mammalian NADPH-cytochrome P450 oxidoreductase and its spore-display. Protein Expr Purif 63 : 5 11.[PubMed] [CrossRef]
86. Shao X,, Jiang M,, Yu Z,, Cai H,, Li L . 2009. Surface display of heterologous proteins in Bacillus thuringiensis using a peptidoglycan hydrolase anchor Microb Cell Fact 8 : 48. doi:10.1186/1475-2859-8-48. [PubMed] [CrossRef]
87. Jiang M,, Shao X,, Ni H,, Yu Z,, Li L . 2011. In vivo and in vitro surface display of heterologous proteins on Bacillus thuringiensis vegetative cells and spores. Process Biochem. 46 : 1861 1866.[CrossRef]
88. Huang JM,, Hong HA,, Van Tong H,, Hoang TH,, Brisson A,, Cutting SM . 2010. Mucosal delivery of antigens using adsorption to bacterial spores. Vaccine 28 : 1021 1030.[PubMed] [CrossRef]
89. Walker J,, Crowley P,, Moreman AD,, Barrett J . 1993. Biochemical properties of cloned glutathione S-transferases from Schistosoma mansoni and Schistosoma japonicum . Mol Biochem Parasitol 61 : 255 264.[PubMed] [CrossRef]
90. Cho EA,, Kim EJ,, Pan JG . 2011. Adsorption immobilization of Escherichia coli phytase on probiotic Bacillus polyfermenticus spores. Enzyme Microb Technol 49 : 66 71.[PubMed] [CrossRef]
91. Sirec T,, Strazzulli A,, Isticato R,, De Felice M,, Moracci M,, Ricca E . 2012. Adsorption of β-galactosidase of Alicyclobacillus acidocaldaricus on wild type and mutant spores of Bacillus subtilis . Microb Cell Fact 11 : 100. doi:10.1186/1475-2859-11-100. [PubMed] [CrossRef]
92. Chen G,, Driks A,, Tawfiq K,, Mallozzi M,, Patil S . 2010. Bacillus anthracis and Bacillus subtilis spore surface properties and transport. Colloids Surf B Biointerfaces 76 : 512 518.[PubMed] [CrossRef]
93. Kazakov S,, Bonvouloir E,, Gazaryan I . 2008. Physicochemical characterization of natural ionic microreservoirs: Bacillus subtilis dormant spores. J Phys Chem 112 : 2233 2244.[PubMed] [CrossRef]
94. Chung EA,, Iacoumi S,, Lee I,, Tsouris C . 2010. The role of the electrostatic force in spore adhesion. Environ Sci Technol 44 : 6209 6214.[PubMed] [CrossRef]
95. Pesce G,, Rusciano G,, Sasso A,, Isticato R,, Sirec T,, Ricca E . 2014. Surface charge and hydrodynamic coefficient measurements of Bacillus subtilis spore by optical tweezers. Colloids Surf B Biointerfaces 116 : 568 575.[PubMed] [CrossRef]
96. Chen G,, Driks A,, Tawfiq K,, Mallozzi M,, Patil S . 2010. Bacillus anthracis and Bacillus subtilis spores surface properties and transport. Colloids Surf B Biointerfaces 76 : 512 518.[PubMed] [CrossRef]
97. Knecht LD,, Pasini P,, Daunert S . 2011. Bacterial spores as platforms for bioanalytical and biomedical applications. Anal Bioanal Chem 400 : 977 989.[PubMed] [CrossRef]
98. Cutting SM . 2011. Bacillus probiotics. Food Microbiol 28 : 214 220.[PubMed] [CrossRef]
99. Cutting SM,, Hong HA,, Baccigalupi L,, Ricca E . 2009. Oral vaccine delivery by recombinant spore probiotics. Intern Rev Immunol 28 : 487 505.[PubMed] [CrossRef]
100. Isticato R,, Sirec T,, Treppiccione L,, Maurano F,, De Felice M,, Rossi M,, Ricca E . 2013. Non-recombinant display of the B subunit of the heat labile toxin of Escherichia coli on wild type and mutant spores of Bacillus subtilis . Microb Cell Fact 12 : 98. doi:10.1186/1475-2859-12-98. [PubMed] [CrossRef]
101. Ragkousi K,, Setlow P . 2004. Transglutaminase-mediated cross-linking of GerQ in the coats of Bacillus subtilis spores. J Bacteriol 186 : 5567 5575.[PubMed] [CrossRef]
102. Zilhão R,, Isticato R,, Martins LO,, Steil L,, Völker U,, Ricca E,, Moran CP,, Henriques AO . 2005. Assembly and function of a transglutaminase at the surface of the developing spore in Bacillus subtilis . J Bacteriol 187 : 7753 7764.[PubMed] [CrossRef]
103. Kobayashi K,, Kumazawa Y,, Miwa K,, Yamanaka S . 1996. ε-(γ-glutamyl)Lysine crosslinks of spore coat proteins and transglutaminase activity in Bacillus subtilis . FEMS Microbiol Lett 144 : 157 160.
104. McKenney PT,, Driks A,, Eskandarian HA,, Grabowski P,, Guberman J,, Wang KH,, Gitai Z,, Eichenberger P . 2010. A distance-weighted interaction map reveals a previously uncharacterized layer of the Bacillus subtilis spore coat. Curr Biol 20 : 934 938.[PubMed] [CrossRef]
105. Imamura D,, Kuwana R,, Takamatsu H,, Watabe K . 2011. Proteins involved in formation of the outermost layer of Bacillus subtilis spores. J Bacteriol 193 : 4075 4080.[PubMed] [CrossRef]
106. Hinc K,, Iwanicki A,, Obuchowski M . 2013. New stable anchor protein and peptide linker suitable for successful spore surface display in B. subtilis . Microb Cell Fact 12 : 22. doi:10.1186/1475-2859-12-22. [PubMed] [CrossRef]
107. Negri A,, Potocki W,, Iwanicki A,, Obuchowski M,, Hinc K . 2013. Expression and display of Clostridium difficile protein FliD on the surface of Bacillus subtilis spores. J Med Microbiol 62 : 1379 1385.[PubMed] [CrossRef]
108. Iwanicki A,, Piatek I,, Stasilojć M,, Grela A,, Lega T,, Obuchowski M,, Hinc K . 2014. A system of vectors for Bacillus subtilis spore surface display. Microb Cell Fact 13 : 30. doi:10.1186/1475-2859-13-30. [PubMed] [CrossRef]
109. Chen X,, Mahadevan L,, Driks A,, Sahin O . 2014. Bacillus spores as building blocks for stimuli-responsive materials and nanogenerators. Nat Nanotechnol 9 : 137 141.[PubMed] [CrossRef]
110. Hwang BY,, Pan JG,, Kim BG,, Kim JH . 2013. Functional display of active tetrameric beta-galactosidase using Bacillus subtilis spore display system. J Nanosci Nanotechnol 13 : 2313 2319.
111. Ricca E,, Baccigalupi L,, Cangiano G,, De Felice M,, Isticato R . 2014. Mucosal vaccine delivery by non-recombinant spores of Bacillus subtilis . Microb Cell Fact 13 : 115.
112. Sirec T,, Cangiano G,, Baccigalupi L,, Ricca E,, Isticato R . 2014. The spore surface of intestinal isolates of Bacillus subtilis . FEMS Microbiol Lett 358 : 194 201.
113. Bonavita R,, Isticato R,, Maurano F,, Ricca E,, Rossi M . 2015. Mucosal immunity induced by gliadin-presenting spores of Bacillus subtilis in HLA-DQ8-transgenic mice. Immunol Lett 165 : 84 89.
114. Wu IL,, Narayan K,, Castaing JP,, Tian F,, Subramaniam S,, Ramamurthi KS . 2015. A versatile nano display platform from bacterial spore coat proteins. Nat Commun 6 : 6777.
115. Stasiłojć M,, Hinc K,, Peszyńska-Sularz G,, Obuchowski M,, Iwanicki A . 2015. Recombinant Bacillus subtilis spores elicit Th1/Th17-polarized immune response in a murine model of Helicobacter pylori vaccination. Mol Biotechnol 57 : 685 691.


Generic image for table
Table 1

List of carriers, passenger proteins, and potential applications described for spore surface display systems

Citation: Isticato R, Ricca E. 2016. Spore Surface Display, p 351-366. In Driks A, Eichenberger P (ed), The Bacterial Spore: from Molecules to Systems. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.TBS-0011-2012

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error