Chapter 4 : Sporulation in Bacteria: Beyond the Standard Model

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Sporulation in Bacteria: Beyond the Standard Model, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819323/9781555816759_Chap04-1.gif /docserver/preview/fulltext/10.1128/9781555819323/9781555816759_Chap04-2.gif


Bacteria thrive in amazingly diverse ecosystems and often tolerate large fluctuations within a particular environment. One highly successful strategy that allows a cell or population to escape life-threatening conditions is the production of spores. Bacterial endospores, for example, have been described as the most durable cells in nature ( ). These highly resistant, dormant cells can withstand a variety of stresses, including exposure to temperature extremes, DNA-damaging agents, and hydrolytic enzymes ( ). The ability to form endospores appears restricted to the ( ), one of the earliest branching bacterial phyla ( ). Endospore formation is broadly distributed within the phylum. Spore-forming species are represented in most classes, including the , the , the , and the (although compelling evidence to demote this class has been presented [ ]). To the best of our knowledge endospores have not been observed in members of the , a class that contains only a few species that have been isolated and studied. Thus, sporulation is likely an ancient trait, established early in evolution but later lost in many lineages within the ( ).

Citation: Hutchison E, Miller D, Angert E. 2016. Sporulation in Bacteria: Beyond the Standard Model, p 87-102. In Driks A, Eichenberger P (ed), The Bacterial Spore: from Molecules to Systems. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.TBS-0013-2012
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Bacteria that produce endospores or intracellular offspring exhibit a wide variety of morphological phenotypes. Phase-contrast microscopy is often used to identify mature endospores (A to C and E) as these highly mineralized cells appear phase-bright. In this image of , the caret (>) indicates a cell that is not dividing or sporulating and the asterisk (*) indicates a cell undergoing binary fission. All other cells in the image contain a phase-bright endospore. frequently produces phase-bright endospores at both ends of the cell. Image courtesy of Avigdor Eldar and Michael Elowitz, California Institute of Technology. In this image of , the arrows indicate cells with seven endospores. The fluorescence micrograph of outlines cell membranes and spore coats stained with FM1-43. -like type C (cigar-shaped cell) and type J (elongated cells), each containing two phase-bright endospores. sp. type B with two internal daughter cells, stained with DAPI. Cellular DNA is located at the periphery of the cytoplasm in the mother cell and each offspring. Scanning electron micrograph (SEM) of the ileum lining from a rat reveals the epithelial surface densely populated with SFB. Arrow indicates a holdfast cell that has not yet elongated into a filament. Transmission electron micrograph (TEM) of a thin section through the gut wall reveals the structure of the SFB holdfast cell (indicated by an asterisk). TEMs illustrate the two possible fates for developing intracellular SFB: (I) two holdfast cells or two endospores that are encased in a common coat (C), inner (I) and outer (O) cortex. Panel C reproduced from Siunov et al. ( ) with permission from Society for General Microbiology. Panel E reproduced from Flint et al. ( ) with permission from ASM Press. Panel F reproduced from Mendell et al. ( ) with permission from the National Academy of Sciences, USA. Panels G and H reproduced from Erlandsen and Chase ( ) with permission from the American Society for Nutrition. Panels I and J reproduced from Ferguson and Birch-Andersen ( ) with permission from John Wiley and Sons.

Citation: Hutchison E, Miller D, Angert E. 2016. Sporulation in Bacteria: Beyond the Standard Model, p 87-102. In Driks A, Eichenberger P (ed), The Bacterial Spore: from Molecules to Systems. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.TBS-0013-2012
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Endospore development. In monosporic bacteria, complete division occurs at only one end of the developing sporangium , while bacteria that produce two endospores generally divide at both poles . In some lineages, such as the SFB and , engulfed forespores undergo division (not shown). Note that at least three chromosome copies are required to produce two viable endospores. Following endospore engulfment, cortex and coat layers develop, and upon endospore maturation, the mother cell lyses, releasing one (A) or two (B) endospores.

Citation: Hutchison E, Miller D, Angert E. 2016. Sporulation in Bacteria: Beyond the Standard Model, p 87-102. In Driks A, Eichenberger P (ed), The Bacterial Spore: from Molecules to Systems. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.TBS-0013-2012
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Life cycle of . Endospores germinate and, during outgrowth, a cell may undergo binary fission or immediately begin to sporulate by dividing at the poles . The forespores are engulfed , and the forespores may undergo binary fission to produce additional forespores . Forespores then elongate and develop into mature endospores . Figure reproduced from Ward and Angert ( ) with permission from John Wiley and Sons.

Citation: Hutchison E, Miller D, Angert E. 2016. Sporulation in Bacteria: Beyond the Standard Model, p 87-102. In Driks A, Eichenberger P (ed), The Bacterial Spore: from Molecules to Systems. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.TBS-0013-2012
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Life cycle of SFB and sp. type B. (i) The SFB life cycle begins with a holdfast cell that is anchored to the intestinal epithelia (not shown). (ii) Holdfast cells elongate and divide into primary segments as the filament grows. (iii) At the start of development, cells in the filament divide again to produce secondary segments. (iv) Next, secondary segments divide asymmetrically, and then engulfment of the smaller cell (in grey) occurs, in a manner similar to that of other endosporeformers. Development progresses from the free end of the filament toward the holdfast. (v) Each engulfed offspring cell then forms into a crescent shape (vi) and then divides to either form two holdfast offspring cells per segment (inset, top) or develop into an endospore via formation of a spore cortex and coat (inset, bottom). (i) In sp. type B, twin offspring form by division at both cell poles. Engulfment occurs (ii to iii) and offspring cells elongate (iv). The offspring cells begin to produce their own offspring before they are released from the mother cell (v).

Citation: Hutchison E, Miller D, Angert E. 2016. Sporulation in Bacteria: Beyond the Standard Model, p 87-102. In Driks A, Eichenberger P (ed), The Bacterial Spore: from Molecules to Systems. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.TBS-0013-2012
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Nicholson WL,, Munakata N,, Horneck G,, Melosh HJ,, Setlow P . 2000. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev 64 : 548 572.[PubMed] [CrossRef]
2. Errington J . 2003. Regulation of endospore formation in Bacillus subtilis . Nat Rev Microbiol 1 : 117 126.[PubMed] [CrossRef]
3. Traag BA,, Driks A,, Stragier P,, Bitter W,, Broussard G,, Hatfull G,, Chu F,, Adams KN,, Ramakrishnan L,, Losick R . 2010. Do mycobacteria produce endospores? Proc Natl Acad Sci USA 107 : 878 881.[PubMed] [CrossRef]
4. Ciccarelli FD,, Doerks T,, von Mering C,, Creevey CJ,, Snel B,, Bork P . 2006. Toward automatic reconstruction of a highly resolved tree of life. Science 311 : 1283 1287.[PubMed] [CrossRef]
5. Yutin N,, Galperin MY . 2013. A genomic update on clostridial phylogeny: Gram-negative spore formers and other misplaced clostridia. Environ Microbiol 15 : 2631 2641.[PubMed]
6. de Hoon MJ,, Eichenberger P,, Vitkup D . 2010. Hierarchical evolution of the bacterial sporulation network. Curr Biol 20 : R735 R745.[PubMed] [CrossRef]
7. Mazanec K,, Kocur M,, Martinec T . 1965. Electron microscopy of ultrathin sections of Sporosarcina ureae . J Bacteriol 90 : 808 816.[PubMed]
8. Robinow CF, . 1960. Morphology of bacterial spores, their development and germination, p 207 248. In Gunsalus IC,, Stanier RY (ed), The Bacteria. Academic Press, New York, NY.
9. Zhang L,, Higgins ML,, Piggot PJ . 1997. The division during bacterial sporulation is symmetrically located in Sporosarcina ureae . Mol Microbiol 25 : 1091 1098.[PubMed] [CrossRef]
10. Chary VK,, Hilbert DW,, Higgins ML,, Piggot PJ . 2000. The putative DNA translocase SpoIIIE is required for sporulation of the symmetrically dividing coccal species Sporosarcina ureae . Mol Microbiol 35 : 612 622.[PubMed] [CrossRef]
11. Chary VK,, Piggot PJ . 2003. Postdivisional synthesis of the Sporosarcina ureae DNA translocase SpoIIIE either in the mother cell or in the prespore enables Bacillus subtilis to translocate DNA from the mother cell to the prespore. J Bacteriol 185 : 879 886.[PubMed] [CrossRef]
12. Delaporte B . 1964. Etude descriptive de bacteries de tres grandes dimensions. Ann Inst Pasteur 107 : 845 862.[PubMed]
13. Delaporte B . 1964. Etude comparee de grande spirilles formant des spores: Sporospirillum ( Spirillum) praeclarum (Collin) n. g., Sporospirillum gyrini n. sp. et Sporospirillum bisporum n. sp. Ann Inst Pasteur 107 : 246 252.
14. Yudkin MD,, Clarkson J . 2005. Differential gene expression in genetically identical sister cells: the initiation of sporulation in Bacillus subtilis . Mol Microbiol 56 : 578 589.[PubMed] [CrossRef]
15. Piggot PJ,, Hilbert DW . 2004. Sporulation of Bacillus subtilis . Curr Opin Microbiol 7 : 579 586.[PubMed] [CrossRef]
16. Britton RA,, Eichenberger P,, Gonzalez-Pastor JE,, Fawcett P,, Monson R,, Losick R,, Grossman AD . 2002. Genome-wide analysis of the stationary-phase sigma factor (sigma-H) regulon of Bacillus subtilis . J Bacteriol 184 : 4881 4890.[PubMed] [CrossRef]
17. Hilbert DW,, Piggot PJ . 2004. Compartmentalization of gene expression during Bacillus subtilis spore formation. Microbiol Mol Biol Rev 68 : 234 262.[PubMed] [CrossRef]
18. Stephens C . 1998. Bacterial sporulation: a question of commitment? Curr Biol 8 : R45 R48.[PubMed] [CrossRef]
19. Webb CD,, Teleman A,, Gordon S,, Straight A,, Belmont A,, Lin DC,, Grossman AD,, Wright A,, Losick R . 1997. Bipolar localization of the replication origin regions of chromosomes in vegetative and sporulating cells of B. subtilis . Cell 88 : 667 674.[PubMed] [CrossRef]
20. Kay D,, Warren SC . 1968. Sporulation in Bacillus subtilis: morphological changes. Biochem J 109 : 819 824.[PubMed]
21. Ryter A,, Schaeffe P,, Ionesco H . 1966. Classification cytologique par leur stade de blocage des mutants de sporulation de Bacillus subtilis Marburg . Ann Inst Pasteur (Paris) 110 : 305 315.[PubMed]
22. Burton B,, Dubnau D . 2010. Membrane-associated DNA transport machines. Cold Spring Harb Perspect Biol 2 : a000406. doi:10.1101/cshperspect.a000406. [PubMed] [CrossRef]
23. Pogliano K,, Hofmeister AE,, Losick R . 1997. Disappearance of the sigma E transcription factor from the forespore and the SpoIIE phosphatase from the mother cell contributes to establishment of cell-specific gene expression during sporulation in Bacillus subtilis . J Bacteriol 179 : 3331 3341.[PubMed]
24. Gutierrez J,, Smith R,, Pogliano K . 2010. SpoIID-mediated peptidoglycan degradation is required throughout engulfment during Bacillus subtilis sporulation. J Bacteriol 192 : 3174 3186.[PubMed] [CrossRef]
25. Meyer P,, Gutierrez J,, Pogliano K,, Dworkin J . 2010. Cell wall synthesis is necessary for membrane dynamics during sporulation of Bacillus subtilis . Mol Microbiol 76 : 956 970.[PubMed] [CrossRef]
26. Hosoya S,, Lu Z,, Ozaki Y,, Takeuchi M,, Sato T . 2007. Cytological analysis of the mother cell death process during sporulation in Bacillus subtilis . J Bacteriol 189 : 2561 2565.[PubMed] [CrossRef]
27. Nugroho FA,, Yamamoto H,, Kobayashi Y,, Sekiguchi J . 1999. Characterization of a new sigma-K-dependent peptidoglycan hydrolase gene that plays a role in Bacillus subtilis mother cell lysis. J Bacteriol 181 : 6230 6237.[PubMed]
28. Eldar A,, Chary VK,, Xenopoulos P,, Fontes ME,, Loson OC,, Dworkin J,, Piggot PJ,, Elowitz MB . 2009. Partial penetrance facilitates developmental evolution in bacteria. Nature 460 : 510 514.[PubMed]
29. Angert ER . 2005. Alternatives to binary fission in bacteria. Nat Rev Microbiol 3 : 214 224.[PubMed] [CrossRef]
30. Smith LD . 1970. Clostridium oceanicum, sp. n., a sporeforming anaerobe isolated from marine sediments. J Bacteriol 103 : 811 813.[PubMed]
31. Chapman GB,, Slob-van Herk A,, Eguia JM . 1992. The occurrence of disporous Bacillus thuringiensis cells. Antonie Van Leeuwenhoek 61 : 265 268.[PubMed] [CrossRef]
32. Abadie M,, Bury E . 1976. Observations sur la structure fine de la spore d’une bacterie geante parasite: Bacillus camptospora . Ann Sci Nat Bot 17 : 277 286.
33. Kunstyr I,, Schiel R,, Kaup FJ,, Uhr G,, Kirchhoff H . 1988. Giant gram-negative noncultivable endospore-forming bacteria in rodent intestines. Naturwissenschaften 75 : 525 527.[PubMed] [CrossRef]
34. Flint JF,, Drzymalski D,, Montgomery WL,, Southam G,, Angert ER . 2005. Nocturnal production of endospores in natural populations of Epulopiscium-like surgeonfish symbionts. J Bacteriol 187 : 7460 7470.[PubMed] [CrossRef]
35. Angert A . 2012. DNA replication and genomic architecture of very large bacteria. Annu Rev Microbiol 66 : 197 212.[PubMed] [CrossRef]
36. Clements KD,, Sutton DC,, Choat JH . 1989. Occurrence and characteristics of unusual protistan symbionts from surgeonfishes (Acanthuridae) of the Great Barrier Reef, Australia. Mar Biol 102 : 403 412.[CrossRef]
37. Angert ER,, Clements KD,, Pace NR . 1993. The largest bacterium. Nature 362 : 239 241.[PubMed] [CrossRef]
38. Clements KD,, Bullivant S . 1991. An unusual symbiont from the gut of surgeonfishes may be the largest known prokaryote. J Bacteriol 173 : 5359 5362.[PubMed]
39. Montgomery WL,, Pollak PE . 1988. Epulopiscium fishelsoni n.g., n.sp., a protist of uncertain taxonomic affinities from the gut of an herbivorous reef fish. J Protozool 35 : 565 569.[CrossRef]
40. Fishelson L,, Montgomery WL,, Myrberg AA . 1985. A unique symbiosis in the gut of tropical herbivorous surgeonfish (Acanthuridae: Teleostei) from the red sea. Science 229 : 49 51.[PubMed] [CrossRef]
41. Montgomery WL,, Pollak PE . 1988. Gut anatomy and pH in a Red Sea surgeonfish, Acanthurus nigrofuscus . Mar Ecol Prog Ser 44 : 7 13.[CrossRef]
42. Angert ER,, Brooks AE,, Pace NR . 1996. Phylogenetic analysis of Metabacterium polyspora: clues to the evolutionary origin of daughter cell production in Epulopiscium species, the largest bacteria. J Bacteriol 178 : 1451 1456.[PubMed]
43. Collins MD,, Lawson PA,, Willems A,, Cordoba JJ,, Fernandez-Garayzabal J,, Garcia P,, Cai J,, Hippe H,, Farrow JA . 1994. The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44 : 812 826.[PubMed] [CrossRef]
44. Angert ER, . 2006. The enigmatic cytoarchitecture of Epulopiscium spp. In Shively JM (ed), Complex Intracellular Structures in Prokaryotes. Springer-Verlag, Berlin, Germany. [CrossRef]
45. Angert ER,, Clements KD . 2004. Initiation of intracellular offspring in Epulopiscium . Mol Microbiol 51 : 827 835.[PubMed] [CrossRef]
46. Miller DA,, Choat JH,, Clements KD,, Angert ER . 2011. The spoIIE homolog of Epulopiscium sp. type B is expressed early in intracellular offspring development. J Bacteriol 193 : 2642 2646.[PubMed] [CrossRef]
47. Duda VI,, Lebedinsky AV,, Mushegjan MS,, Mitjushina LL . 1987. A new anaerobic bacterium, forming up to five endospores per cell - Anaerobacter polyendosporus gen. et spec. nov. Arch Microbiol 148 : 121 127.[CrossRef]
48. Siunov AV,, Nikitin DV,, Suzina NE,, Dmitriev VV,, Kuzmin NP,, Duda VI . 1999. Phylogenetic status of Anaerobacter polyendosporus, an anaerobic, polysporogenic bacterium. Int J Syst Bacteriol 49( pt 3) : 1119 1124.[PubMed] [CrossRef]
49. Jones DT,, Vanderwesthuizen A,, Long S,, Allcock ER,, Reid SJ,, Woods DR . 1982. Solvent production and morphological changes in Clostridium acetobutylicum . Appl Environ Microbiol 43 : 1434 1439.[PubMed]
50. Smith AG,, Ellner PD . 1957. Cytological observations on the sporulation process of Clostridium perfringens . J Bacteriol 73 : 1 7.[PubMed]
51. Angert ER,, Losick RM . 1998. Propagation by sporulation in the guinea pig symbiont Metabacterium polyspora . Proc Natl Acad Sci USA 95 : 10218 10223.[PubMed] [CrossRef]
52. Robinow CF . 1957. [Short note on Metabacterium polyspora]. Z Tropenmed Parasitol 8 : 225 227.[PubMed]
53. Ward RJ,, Angert ER . 2008. DNA replication during endospore development in Metabacterium polyspora . Mol Microbiol 67 : 1360 1370.[PubMed] [CrossRef]
54. Castilla-Llorente V,, Munoz-Espin D,, Villar L,, Salas M,, Meijer WJ . 2006. Spo0A, the key transcriptional regulator for entrance into sporulation, is an inhibitor of DNA replication. EMBO J 25 : 3890 3899.[PubMed] [CrossRef]
55. Fujita M,, Losick R . 2005. Evidence that entry into sporulation in Bacillus subtilis is governed by a gradual increase in the level and activity of the master regulator Spo0A. Genes Dev 19 : 2236 2244.[PubMed] [CrossRef]
56. Snel J,, Heinen PP,, Blok HJ,, Carman RJ,, Duncan AJ,, Allen PC,, Collins MD . 1995. Comparison of 16S rRNA sequences of segmented filamentous bacteria isolated from mice, rats, and chickens and proposal of “ Candidatus Arthromitus.” Int J Syst Bacteriol 45 : 780 782.[PubMed] [CrossRef]
57. Margulis L,, Jorgensen JZ,, Dolan S,, Kolchinsky R,, Rainey FA,, Lo SC . 1998. The Arthromitus stage of Bacillus cereus: intestinal symbionts of animals. Proc Natl Acad Sci USA 95 : 1236 1241.[PubMed] [CrossRef]
58. Urdaci MC,, Regnault B,, Grimont PA . 2001. Identification by in situ hybridization of segmented filamentous bacteria in the intestine of diarrheic rainbow trout ( Oncorhynchus mykiss). Res Microbiol 152 : 67 73.[PubMed] [CrossRef]
59. Margulis L,, Olendzenski L,, Afzelius BA . 1990. Endospore-forming filamentous bacteria symbiotic in termites: ultrastructure and growth in culture of Arthromitus . Symbiosis 8 : 95 116.[PubMed]
60. Klaasen HL,, Koopman JP,, Van den Brink ME,, Bakker MH,, Poelma FG,, Beynen AC . 1993. Intestinal, segmented, filamentous bacteria in a wide range of vertebrate species. Lab Anim 27 : 141 150.[PubMed] [CrossRef]
61. Leidy J . 1849. On the existence of endophyta in healthy animals, as a natural condition. Proc Natl Acad Sci Phila 4 : 225 233.
62. Leidy J . 1881. The parasites of termites. J Natl Acad Sci Phila 8 : 425 447.
63. Kuwahara T,, Ogura Y,, Oshima K,, Kurokawa K,, Ooka T,, Hirakawa H,, Itoh T,, Nakayama-Imaohji H,, Ichimura M,, Itoh K,, Ishifune C,, Maekawa Y,, Yasutomo K,, Hattori M,, Hayashi T . 2011. The lifestyle of the segmented filamentous bacterium: a non-culturable gut-associated immunostimulating microbe inferred by whole-genome sequencing. DNA Res 18 : 291 303.[PubMed] [CrossRef]
64. Prakash T,, Oshima K,, Morita H,, Fukuda S,, Imaoka A,, Kumar N,, Sharma VK,, Kim SW,, Takahashi M,, Saitou N,, Taylor TD,, Ohno H,, Umesaki Y,, Hattori M . 2011. Complete genome sequences of rat and mouse segmented filamentous bacteria, a potent inducer of Th17 cell differentiation. Cell Host Microbe 10 : 273 284.[PubMed] [CrossRef]
65. Sczesnak A,, Segata N,, Qin X,, Gevers D,, Petrosino JF,, Huttenhower C,, Littman DR,, Ivanov I . 2011. The genome of Th17 cell-inducing segmented filamentous bacteria reveals extensive auxotrophy and adaptations to the intestinal environment. Cell Host Microbe 10 : 260 272.[PubMed] [CrossRef]
66. Thompson CL,, Vier R,, Mikaelyan A,, Wienemann T,, Brune A . 2012. Candidatus Arthromitus’ revised: segmented filamentous bacteria in arthropod guts are members of Lachnospiraceae . Environ Microbiol 14 : 1454 1465.[PubMed] [CrossRef]
67. Tannock GW,, Miller JR,, Savage DC . 1984. Host specificity of filamentous, segmented microorganisms adherent to the small bowel epithelium in mice and rats. Appl Environ Microbiol 47 : 441 442.[PubMed]
68. Allen PC . 1992. Comparative study of long, segmented, filamentous organisms in chickens and mice. Lab Anim Sci 42 : 542 547.[PubMed]
69. Klaasen HL,, Koopman JP,, Van den Brink ME,, Van Wezel HP,, Beynen AC . 1991. Mono-association of mice with non-cultivable, intestinal, segmented, filamentous bacteria. Arch Microbiol 156 : 148 151.[PubMed] [CrossRef]
70. Erlandsen SL,, Chase DG . 1974. Morphological alterations in the microvillous border of villous epithelial cells produced by intestinal microorganisms. Am J Clin Nutr 27 : 1277 1286.[PubMed]
71. Chase DG,, Erlandsen SL . 1976. Evidence for a complex life cycle and endospore formation in the attached, filamentous, segmented bacterium from murine ileum. J Bacteriol 127 : 572 583.[PubMed]
72. Eberl G,, Boneca IG . 2010. Bacteria and MAMP-induced morphogenesis of the immune system. Curr Opin Immunol 22 : 448 454.[PubMed] [CrossRef]
73. Klaasen HL,, Koopman JP,, Poelma FG,, Beynen AC . 1992. Intestinal, segmented, filamentous bacteria. FEMS Microbiol Rev 8 : 165 180.[PubMed] [CrossRef]
74. Davis CP,, Savage DC . 1974. Habitat, succession, attachment, and morphology of segmented, filamentous microbes indigenous to the murine gastrointestinal tract. Infect Immun 10 : 948 956.[PubMed]
75. Ferguson DJ,, Birch-Andersen A . 1979. Electron microscopy of a filamentous, segmented bacterium attached to the small intestine of mice from a laboratory animal colony in Denmark. Acta Pathol Microbiol Scand B 87 : 247 252.[PubMed]
76. Snellen JE,, Savage DC . 1978. Freeze-fracture study of the filamentous, segmented microorganism attached to the murine small bowel. J Bacteriol 134 : 1099 1107.[PubMed]
77. Jepson MA,, Clark MA,, Simmons NL,, Hirst BH . 1993. Actin accumulation at sites of attachment of indigenous apathogenic segmented filamentous bacteria to mouse ileal epithelial cells. Infect Immun 61 : 4001 4004.[PubMed]
78. Yamauchi KE,, Snel J . 2000. Transmission electron microscopic demonstration of phagocytosis and intracellular processing of segmented filamentous bacteria by intestinal epithelial cells of the chick ileum. Infect Immun 68 : 6496 6504.[PubMed] [CrossRef]
79. Klaasen HL,, Van der Heijden PJ,, Stok W,, Poelma FGJ,, Koopman JP,, Van den Brink ME,, Bakker MH,, Eling WMC,, Beynen AC . 1993. Apathogenic, intestinal, segmented, filementous bacteria stimulate the mucosal immune system of mice. Infect Immun 61 : 303 306.[PubMed]
80. Talham GL,, Jiang HQ,, Bos NA,, Cebra JJ . 1999. Segmented filamentous bacteria are potent stimuli of a physiologically normal state of the murine gut mucosal immune system. Infect Immun 67 : 1992 2000.[PubMed]
81. Umesaki Y,, Okada Y,, Matsumoto S,, Imaoka A,, Setoyama H . 1995. Segmented filamentous bacteria are indigenous intestinal bacteria that activate intraepithelial lymphocytes and induce MHC class II molecules and fucosyl asialo GM1 glycolipids on the small intestinal epithelial cells in the ex-germ-free mouse. Microbiol Immunol 39 : 555 562.[PubMed] [CrossRef]
82. Umesaki Y,, Setoyama H . 2000. Structure of the intestinal flora responsible for development of the gut immune system in a rodent model. Microbes Infect 2 : 1343 1351.[PubMed] [CrossRef]
83. Gaboriau-Routhiau V,, Rakotobe S,, Lecuyer E,, Mulder I,, Lan A,, Bridonneau C,, Rochet V,, Pisi A,, De Paepe M,, Brandi G,, Eberl G,, Snel J,, Kelly D,, Cerf-Bensussan N . 2009. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31 : 677 689.[PubMed] [CrossRef]
84. Ivanov II,, Atarashi K,, Manel N,, Brodie EL,, Shima T,, Karaoz U,, Wei D,, Goldfarb KC,, Santee CA,, Lynch SV,, Tanoue T,, Imaoka A,, Itoh K,, Takeda K,, Umesaki Y,, Honda K,, Littman DR . 2009. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139 : 485 498.[PubMed] [CrossRef]
85. Kriegel MA,, Sefik E,, Hill JA,, Wu HJ,, Benoist C,, Mathis D . 2011. Naturally transmitted segmented filamentous bacteria segregate with diabetes protection in nonobese diabetic mice. Proc Natl Acad Sci USA 108 : 11548 11553.[PubMed] [CrossRef]
86. Lee YK,, Menezes JS,, Umesaki Y,, Mazmanian SK . 2011. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 108 : 4615 4622.[PubMed] [CrossRef]
87. Salzman NH,, Hung K,, Haribhai D,, Chu H,, Karlsson-Sjoberg J,, Amir E,, Teggatz P,, Barman M,, Hayward M,, Eastwood D,, Stoel M,, Zhou Y,, Sodergren E,, Weinstock GM,, Bevins CL,, Williams CB,, Bos NA . 2010. Enteric defensins are essential regulators of intestinal microbial ecology. Nat Immunol 11 : 76 83.[PubMed] [CrossRef]
88. Wu HJ,, Ivanov II,, Darce J,, Hattori K,, Shima T,, Umesaki Y,, Littman DR,, Benoist C,, Mathis D . 2010. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32 : 815 827.[PubMed] [CrossRef]
89. Chung H,, Pamp SJ,, Hill JA,, Surana NK,, Edelman SM,, Troy EB,, Reading NC,, Villablanca EJ,, Wang S,, Mora JR,, Umesaki Y,, Mathis D,, Benoist C,, Relman DA,, Kasper DL . 2012. Gut immune maturation depends on colonization with a host-specific microbiota. Cell 149 : 1578 1593.[PubMed] [CrossRef]
90. Schnupf P,, Gaboriau-Routhiau V,, Cerf-Bensussan N . 2013. Host interactions with Segmented Filamentous Bacteria: an unusual trade-off that drives the post-natal maturation of the gut immune system. Semin Immunol 25 : 342 351.[PubMed] [CrossRef]
91. Lee YK,, Mazmanian SK . 2010. Has the microbiota played a critical role in the evolution of the adaptive immune system? Science 330 : 1768 1773.[PubMed] [CrossRef]
92. Chatton E,, Perard C . 1913. Schizophytes du caecum du cobaye. I. Oscillospira guilliermondi n. g., n. s. C R Seances Soc Biol Paris 74 : 1159 1162.
93. Grain J,, Senaud J . 1976. Oscillospira guillermondii, bacterie du rumen: etude ultrastructurale du trichome et de la sporulation. J Ultrastruct Res 55 : 228 244.[PubMed] [CrossRef]
94. Mackie RI,, Aminov RI,, Hu W,, Klieve AV,, Ouwerkerk D,, Sundset MA,, Kamagata Y . 2003. Ecology of uncultivated Oscillospira species in the rumen of cattle, sheep, and reindeer as assessed by microscopy and molecular approaches. Appl Environ Microbiol 69 : 6808 6815.[PubMed] [CrossRef]
95. Katano Y,, Fujinami S,, Kawakoshi A,, Nakazawa H,, Oji S,, Iino T,, Oguchi A,, Ankai A,, Fukui S,, Terui Y,, Kamata S,, Harada T,, Tanikawa S,, Suzuki K,, Fujita N . 2012. Complete genome sequence of Oscillibacter valericigenes Sjm18-20(T) (=NBRC 101213(T)). Stand Genomic Sci 6 : 406 414.[PubMed] [CrossRef]
96. Galperin MY,, Mekhedov SL,, Puigbo P,, Smirnov S,, Wolf YI,, Rigden DJ . 2012. Genomic determinants of sporulation in Bacilli and Clostridia: towards the minimal set of sporulation-specific genes. Environ Microbiol 14 : 2870 2890.[PubMed] [CrossRef]
97. Mendell JE,, Clements KD,, Choat JH,, Angert ER . 2008. Extreme polyploidy in a large bacterium. Proc Natl Acad Sci USA 105 : 6730 6734.[PubMed] [CrossRef]
98. Ward RJ,, Clements KD,, Choat JH,, Angert ER . 2009. Cytology of terminally differentiated Epulopiscium mother cells. DNA Cell Biol 28 : 57 64.[PubMed] [CrossRef]
99. Chung JD,, Stephanopoulos G,, Ireton K,, Grossman AD . 1994. Gene expression in single cells of Bacillus subtilis: evidence that a threshold mechanism controls the initiation of sporulation. J Bacteriol 176 : 1977 1984.[PubMed]
100. Veening JW,, Hamoen LW,, Kuipers OP . 2005. Phosphatases modulate the bistable sporulation gene expression pattern in Bacillus subtilis . Mol Microbiol 56 : 1481 1494.[PubMed] [CrossRef]
101. Tamas I,, Wernegreen JJ,, Nystedt B,, Kauppinen SN,, Darby AC,, Gomez-Valero L,, Lundin D,, Poole AM,, Andersson SG . 2008. Endosymbiont gene functions impaired and rescued by polymerase infidelity at poly(A) tracts. Proc Natl Acad Sci USA 105 : 14934 14939.[PubMed] [CrossRef]
102. Davies KG,, Rowe J,, Manzanilla-Lopez R,, Opperman CH . 2011. Re-evaluation of the life-cycle of the nematode-parasitic bacterium Pasteuria penetrans in root-knot nematodes, Meloidogyne spp. Nematology 13 : 825 835.[CrossRef]
103. Ebert D,, Rainey P,, Embley TM,, Scholz D . 1996. Development, life cycle, ultrastructure and phylogenetic position of Pasteuria ramosa Metchnikoff 1888: rediscovery of an obligate endoparasite of Daphnia magna Straus. Phil Trans R Soc Lond B 351 : 1689 1701.[CrossRef]
104. Imbriani JL,, Mankau R . 1977. Ultrastructure of the nematode pathogen, Bacillus penetrans . J Invertebr Pathol 30 : 337 347.[CrossRef]
105. Sayre RM,, Wergin WP . 1977. Bacterial parasite of a plant nematode: morphology and ultrastructure. J Bacteriol 129 : 1091 1101.[PubMed]
106. Trotter JR,, Bishop AH . 2003. Phylogenetic analysis and confirmation of the endospore-forming nature of Pasteuria penetrans based on the spo0A gene. FEMS Microbiol Lett 225 : 249 256.[PubMed] [CrossRef]
107. Tocheva EI,, Matson EG,, Morris DM,, Moussavi F,, Leadbetter JR,, Jensen GJ . 2011. Peptidoglycan remodeling and conversion of an inner membrane into an outer membrane during sporulation. Cell 146 : 799 812.[PubMed] [CrossRef]
108. Onyenwoke RU,, Brill JA,, Farahi K,, Wiegel J . 2004. Sporulation genes in members of the low G+C Gram-type-positive phylogenetic branch ( Firmicutes). Arch Microbiol 182 : 182 192.[PubMed] [CrossRef]
109. Paredes CJ,, Alsaker KV,, Papoutsakis ET . 2005. A comparative genomic view of clostridial sporulation and physiology. Nat Rev Microbiol 3 : 969 978.[PubMed] [CrossRef]
110. Sauer U,, Treuner A,, Buchholz M,, Santangelo JD,, Durre P . 1994. Sporulation and primary sigma factor homologous genes in Clostridium acetobutylicum . J Bacteriol 176 : 6572 6582.[PubMed]
111. Brill JA,, Wiegel J . 1997. Differentiation between spore forming and asporogenic bacteria using a PCR and Southern hybridization based method. J Microbiol Methods 31 : 29 36.[CrossRef]
112. Stragier P, . 2002. A gene odyssey: exploring the genomes of endospore forming bacteria, p 519 526. In Soneshein AL,, Hoch JA,, Losick R (ed), Bacillus subtilis and Its Closest Relatives: From Genes to Cells. ASM Press, Washington, DC. [CrossRef]
113. Paredes-Sabja D,, Setlow P,, Sarker MR . 2011. Germination of spores of Bacillales and Clostridiales species: mechanisms and proteins involved. Trends Microbiol 19 : 85 94.[PubMed] [CrossRef]
114. Xiao Y,, Francke C,, Abee T,, Wells-Bennik MH . 2011. Clostridial spore germination versus bacilli: genome mining and current insights. Food Microbiol 28 : 266 274.[PubMed] [CrossRef]
115. Pamp SJ,, Harrington ED,, Quake SR,, Relman DA,, Blainey PC . 2012. Single-cell sequencing provides clues about the host interactions of segmented filamentous bacteria (SFB). Genome Res 22 : 1107 1119.[PubMed] [CrossRef]
116. Abecasis AB,, Serrano M,, Alves R,, Quintais L,, Pereira-Leal JB,, Henriques AO . 2013. A genomic signature and the identification of new sporulation genes. J Bacteriol 195 : 2101 2115.[PubMed] [CrossRef]
117. Miller DA,, Suen G,, Clements KD,, Angert ER . 2012. The genomic basis for the evolution of a novel form of cellular reproduction in the bacterium Epulopiscium . BMC Genomics 13 : 265. doi:10.1186/1471-2164-13-265. [PubMed] [CrossRef]
118. Robinow C,, Angert ER . 1998. Nucleoids and coated vesicles of “Epulopiscium” spp. Arch Microbiol 170 : 227 235.[PubMed] [CrossRef]
119. Saujet L,, Pereira FC,, Serrano M,, Soutourina O,, Monot M,, Shelyakin PV,, Gelfand MS,, Dupuy B,, Henriques AO,, Martin-Verstraete I . 2013. Genome-wide analysis of cell type-specific gene transcription during spore formation in Clostridium difficile . PLoS Genet 9 : e1003756. doi:10.1371/journal.pgen.1003756. [PubMed] [CrossRef]
120. Pereira FC,, Saujet L,, Tome AR,, Serrano M,, Monot M,, Couture-Tosi E,, Martin-Verstraete I,, Dupuy B,, Henriques AO . 2013. The spore differentiation pathway in the enteric pathogen Clostridium difficile . PLoS Genet 9 : e1003782. doi:10.1371/journal.pgen.1003782. [PubMed] [CrossRef]
121. Fimlaid KA,, Bond JP,, Schutz KC,, Putnam EE,, Leung JM,, Lawley TD,, Shen A . 2013. Global analysis of the sporulation pathway of Clostridium difficile . PLoS Genet 9 : e1003660. doi:10.1371/journal.pgen.1003660. [PubMed] [CrossRef]
122. Kirk DG,, Dahlsten E,, Zhang Z,, Korkeala H,, Lindstrom M . 2012. Involvement of Clostridium botulinum ATCC 3502 sigma factor K in early-stage sporulation. Appl Environ Microbiol 78 : 4590 4596.[PubMed] [CrossRef]
123. Harry KH,, Zhou R,, Kroos L,, Melville SB . 2009. Sporulation and enterotoxin (CPE) synthesis are controlled by the sporulation-specific sigma factors SigE and SigK in Clostridium perfringens . J Bacteriol 191 : 2728 2742.[PubMed] [CrossRef]
124. Al-Hinai MA,, Jones SW,, Papoutsakis ET . 2014. sigmaK of Clostridium acetobutylicum is the first known sporulation-specific sigma factor with two developmentally separated roles, one early and one late in sporulation. J Bacteriol 196 : 287 299.[PubMed] [CrossRef]

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error