Chapter 1 : Innate Immune Responses to Tuberculosis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Innate Immune Responses to Tuberculosis, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819569/9781555819552_Chap01-1.gif /docserver/preview/fulltext/10.1128/9781555819569/9781555819552_Chap01-2.gif


Tuberculosis (TB) remains one of the leading causes of death by an infectious agent, accounting for approximately 1.3 million deaths per year ( ). Despite its clinical significance, there are still significant gaps in our understanding of pathogenesis and the host mechanisms that limit active disease to approximately 10% of those infected. Nevertheless, we continue to gain insight into the dynamic interplay between pathogen and host, with much of the focus centered on the lung microenvironment because this is the initial and primary site of infection. The lung as the initial “battlefield” provides unique challenges to both the host and pathogen because the host must balance the inflammatory response to limit the damage to lung tissue while inducing a sufficient immune response to control the infection. In contrast, the organism must avoid or circumvent the initial defensive barriers present within the respiratory tract to gain access to its host cell, the alveolar macrophage (AM). The AM response to infection as well as the reaction of other lung immune and nonimmune cells and noncellular components is critical to determining whether the host will directly eliminate the pathogen or will in concert with the acquired immune system develop a protective granulomatous response. In addition, since bacteria disseminate during the early events in infection, engagement of innate immune components outside of the lung is also critical in shaping the host response. These early host processes which constitute the innate immune system will be the focus of this article.

Citation: Schorey J, Schlesinger L. 2017. Innate Immune Responses to Tuberculosis, p 3-31. In Jacobs, Jr. W, McShane H, Mizrahi V, Orme I (ed), Tuberculosis and the Tubercle Bacillus, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.TBTB2-0010-2016
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Schematic of the lung and the role of pulmonary innate immune cells during infection. From left to right: branching of the airways, culminating in the alveolar sacs and the alveolus. Also depicted are the cells in the alveolus. Abbreviations: AEC I and II, type I and II alveolar epithelial cell; AM, alveolar macrophage; DC, dendritic cell; IM, interstitial macrophage; IVM, intravascular macrophage.

Citation: Schorey J, Schlesinger L. 2017. Innate Immune Responses to Tuberculosis, p 3-31. In Jacobs, Jr. W, McShane H, Mizrahi V, Orme I (ed), Tuberculosis and the Tubercle Bacillus, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.TBTB2-0010-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Macrophage receptors known to engage () or its components and the downstream effects of receptor engagement on cytokine production, phagosome-lysosome fusion, and inflammation. Engagement of different receptors results in a macrophage response that can either promote or limit host immunity to infection.

Citation: Schorey J, Schlesinger L. 2017. Innate Immune Responses to Tuberculosis, p 3-31. In Jacobs, Jr. W, McShane H, Mizrahi V, Orme I (ed), Tuberculosis and the Tubercle Bacillus, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.TBTB2-0010-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

() fate upon macrophage infection. Following phagocytosis, resides within a modified phagosome which may allow mycobacterial components to enter the cytosol in an ESX-1-dependent manner. The phagosome is also connected to the early endosomal network because membrane compartments can both fuse and bud from the phagosome, allowing exposure to important nutrients such as iron as well as removal of mycobacterial components. Endosomes containing mycobacterial components can fuse with multivesicular bodies (MVBs), leading to their incorporation into intraluminal vesicles, and upon MVB fusion with the plasma membrane, they can be released within exosomes (indicated as red circles in the figure). The phagosome has limited fusion with lysosomes, but with activation by IFN-γ or antibiotic treatment the -containing phagosome may undergo autophagosome formation and following lysosome fusion can limit growth, a process known as autophagy. There are also data suggesting that can escape into the cytosol, although this has been observed in only a limited number of studies.

Citation: Schorey J, Schlesinger L. 2017. Innate Immune Responses to Tuberculosis, p 3-31. In Jacobs, Jr. W, McShane H, Mizrahi V, Orme I (ed), Tuberculosis and the Tubercle Bacillus, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.TBTB2-0010-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Responses of innate immune cells to (), BCG, or their products, demonstrating both the beneficial and detrimental roles these cells have on controlling an infection.

Citation: Schorey J, Schlesinger L. 2017. Innate Immune Responses to Tuberculosis, p 3-31. In Jacobs, Jr. W, McShane H, Mizrahi V, Orme I (ed), Tuberculosis and the Tubercle Bacillus, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.TBTB2-0010-2016
Permissions and Reprints Request Permissions
Download as Powerpoint


1. WHO . 2015. Global tuberculosis report 2015, 20th ed. http://www.who.int/tb/publications/global_report/en/. [PubMed]
2. Hasenberg M,, Stegemann-Koniszewski S,, Gunzer M . 2013. Cellular immune reactions in the lung. Immunol Rev 251 : 189 214. [CrossRef] [PubMed]
3. Weibel ER . 2009. What makes a good lung? Swiss Med Wkly 139 : 375 386.[PubMed]
4. Burri PH, . 2011. Development and growth of the human lung, p 1 46. In Reich M (ed), Comprehensive Physiology, Supplement 10. Handbook of Physiology: The Respiratory System, Circulation, and Nonrespiratory Functions, 10th ed. John Wiley and Sons Hoboken, NJ.
5. Hartung GH,, Myhre LG,, Nunneley SA . 1980. Physiological effects of cold air inhalation during exercise. Aviat Space Environ Med 51 : 591 594.[PubMed]
6. Ryu J-H,, Kim C-H,, Yoon J-H . 2010. Innate immune responses of the airway epithelium. Mol Cells 30 : 173 183. [CrossRef] [PubMed]
7. Whitsett JA,, Alenghat T . 2015. Respiratory epithelial cells orchestrate pulmonary innate immunity. Nat Immunol 16 : 27 35. [CrossRef] [PubMed]
8. Bastacky J,, Goerke J . 1992. Pores of Kohn are filled in normal lungs: low-temperature scanning electron microscopy. J Appl Physiol (1985) 73 : 88 95.[PubMed]
9. Mason RJ . 2006. Biology of alveolar type II cells. Respirology 11( Suppl) : S12 S15. [CrossRef]
10. Guillot L,, Nathan N,, Tabary O,, Thouvenin G,, Le Rouzic P,, Corvol H,, Amselem S,, Clement A . 2013. Alveolar epithelial cells: master regulators of lung homeostasis. Int J Biochem Cell Biol 45 : 2568 2573. [CrossRef] [PubMed]
11. Debbabi H,, Ghosh S,, Kamath AB,, Alt J,, Demello DE,, Dunsmore S,, Behar SM . 2005. Primary type II alveolar epithelial cells present microbial antigens to antigen-specific CD4+ T cells. Am J Physiol Lung Cell Mol Physiol 289 : L274 L279. [CrossRef]
12. Fels AO,, Cohn ZA . 1986. The alveolar macrophage. J Appl Physiol (1985) 60 : 353 369.[PubMed]
13. Murphy J,, Summer R,, Wilson AA,, Kotton DN,, Fine A . 2008. The prolonged life-span of alveolar macrophages. Am J Respir Cell Mol Biol 38 : 380 385. [CrossRef] [PubMed]
14. Hussell T,, Bell TJ . 2014. Alveolar macrophages: plasticity in a tissue-specific context. Nat Rev Immunol 14 : 81 93. [CrossRef] [PubMed]
15. van oud Alblas AB,, van Furth R . 1979. Origin, kinetics, and characteristics of pulmonary macrophages in the normal steady state. J Exp Med 149 : 1504 1518. [CrossRef] [PubMed]
16. Bitterman PB,, Saltzman LE,, Adelberg S,, Ferrans VJ,, Crystal RG . 1984. Alveolar macrophage replication. One mechanism for the expansion of the mononuclear phagocyte population in the chronically inflamed lung. J Clin Invest 74 : 460 469. [CrossRef]
17. Landsman L,, Jung S . 2007. Lung macrophages serve as obligatory intermediate between blood monocytes and alveolar macrophages. J Immunol 179 : 3488 3494. [CrossRef]
18. Kopf M,, Schneider C,, Nobs SP . 2015. The development and function of lung-resident macrophages and dendritic cells. Nat Immunol 16 : 36 44. [CrossRef] [PubMed]
19. Epelman S,, Lavine KJ,, Randolph GJ . 2014. Origin and functionsof tissue macrophages. Immunity 41 : 21 35. [CrossRef] [PubMed]
20. Ginhoux F . 2014. Fate PPAR-titioning: PPAR-γ ‘instructs’ alveolar macrophage development. Nat Immunol 15 : 1005 1007. [CrossRef] [PubMed]
21. Lambrecht BN . 2006. Alveolar macrophage in the driver’s seat. Immunity 24 : 366 368. [CrossRef] [PubMed]
22. Rajaram MVS,, Ni B,, Dodd CE,, Schlesinger LS . 2014. Macrophage immunoregulatory pathways in tuberculosis. Semin Immunol 26 : 471 485. [CrossRef] [PubMed]
23. Rajaram MVS,, Brooks MN,, Morris JD,, Torrelles JB,, Azad AK,, Schlesinger LS . 2010. Mycobacterium tuberculosis activates human macrophage peroxisome proliferator-activated receptor gamma linking mannose receptor recognition to regulation of immune responses. J Immunol 185 : 929 942. [CrossRef]
24. Schneider C,, Nobs SP,, Kurrer M,, Rehrauer H,, Thiele C,, Kopf M . 2014. Induction of the nuclear receptor PPAR-γ by the cytokine GM-CSF is critical for the differentiation of fetal monocytes into alveolar macrophages. Nat Immunol 15 : 1026 1037. [CrossRef]
25. Hoidal JR,, Schmeling D,, Peterson PK . 1981. Phagocytosis, bacterial killing, and metabolism by purified human lung phagocytes. J Infect Dis 144 : 61 71. [CrossRef]
26. Greening AP,, Lowrie DB . 1983. Extracellular release of hydrogen peroxide by human alveolar macrophages: the relationship to cigarette smoking and lower respiratory tract infections. Clin Sci (Lond) 65 : 661 664. [CrossRef]
27. Lyons CR,, Ball EJ,, Toews GB,, Weissler JC,, Stastny P,, Lipscomb MF . 1986. Inability of human alveolar macrophages to stimulate resting T cells correlates with decreased antigen-specific T cell-macrophage binding. J Immunol 137 : 1173 1180.
28. Holt PG,, Oliver J,, Bilyk N,, McMenamin C,, McMenamin PG,, Kraal G,, Thepen T . 1993. Downregulation of the antigen presenting cell function(s) of pulmonary dendritic cells in vivo by resident alveolar macrophages. J Exp Med 177 : 397 407. [CrossRef]
29. Roth MD,, Golub SH . 1993. Human pulmonary macrophages utilize prostaglandins and transforming growth factor beta 1 to suppress lymphocyte activation. J Leukoc Biol 53 : 366 371.[PubMed]
30. Schneberger D,, Aharonson-Raz K,, Singh B . 2012. Pulmonary intravascular macrophages and lung health: what are we missing? Am J Physiol Lung Cell Mol Physiol 302 : L498 L503. [CrossRef] [PubMed] [CrossRef]
31. Lohmann-Matthes M-L,, Steinmüller C,, Franke-Ullmann G . 1994. Pulmonary macrophages. Eur Respir J 7 : 1678 1689.[PubMed]
32. Cai Y,, Sugimoto C,, Arainga M,, Alvarez X,, Didier ES,, Kuroda MJ . 2014. In vivo characterization of alveolar and interstitial lung macrophages in rhesus macaques: implications for understanding lung disease in humans. J Immunol 192 : 2821 2829. [CrossRef]
33. Schneberger D,, Aharonson-Raz K,, Singh B . 2011. Monocyte and macrophage heterogeneity and Toll-like receptors in the lung. Cell Tissue Res 343 : 97 106. [CrossRef] [PubMed]
34. Guilliams M,, Lambrecht BN,, Hammad H . 2013. Division of labor between lung dendritic cells and macrophages in the defense against pulmonary infections. Mucosal Immunol 6 : 464 473. [CrossRef]
35. Thornton EE,, Looney MR,, Bose O,, Sen D,, Sheppard D,, Locksley R,, Huang X,, Krummel MF . 2012. Spatiotemporally separated antigen uptake by alveolar dendritic cells and airway presentation to T cells in the lung. J Exp Med 209 : 1183 1199. [CrossRef] [PubMed]
36. Vermaelen KY,, Carro-Muino I,, Lambrecht BN,, Pauwels RA . 2001. Specific migratory dendritic cells rapidly transport antigen from the airways to the thoracic lymph nodes. J Exp Med 193 : 51 60. [CrossRef]
37. Halle S,, Dujardin HC,, Bakocevic N,, Fleige H,, Danzer H,, Willenzon S,, Suezer Y,, Hämmerling G,, Garbi N,, Sutter G,, Worbs T,, Förster R . 2009. Induced bronchus-associated lymphoid tissue serves as a general priming site for T cells and is maintained by dendritic cells. J Exp Med 206 : 2593 2601. [CrossRef]
38. Randall TD . 2010. Pulmonary dendritic cells: thinking globally, acting locally. J Exp Med 207 : 451 454. [CrossRef] [PubMed]
39. Gold MC,, Napier RJ,, Lewinsohn DM . 2015. MR1-restricted mucosal associated invariant T (MAIT) cells in the immune response to Mycobacterium tuberculosis . Immunol Rev 264 : 154 166. [CrossRef]
40. Gold MC,, Cerri S,, Smyk-Pearson S,, Cansler ME,, Vogt TM,, Delepine J,, Winata E,, Swarbrick GM,, Chua W-J,, Yu YYL,, Lantz O,, Cook MS,, Null MD,, Jacoby DB,, Harriff MJ,, Lewinsohn DA,, Hansen TH,, Lewinsohn DM . 2010. Human mucosal associated invariant T cells detect bacterially infected cells. PLoS Biol 8 : e1000407.[CrossRef]
41. Le Bourhis L,, Martin E,, Péguillet I,, Guihot A,, Froux N,, Coré M,, Lévy E,, Dusseaux M,, Meyssonnier V,, Premel V,, Ngo C,, Riteau B,, Duban L,, Robert D,, Huang S,, Rottman M,, Soudais C,, Lantz O . 2010. Antimicrobial activity of mucosal-associated invariant T cells. Nat Immunol 11 : 701 708. (Erratum 11:969.)[CrossRef]
42. Le Bourhis L,, Dusseaux M,, Bohineust A,, Bessoles S,, Martin E,, Premel V,, Coré M,, Sleurs D,, Serriari N-E,, Treiner E,, Hivroz C,, Sansonetti P,, Gougeon M-L,, Soudais C,, Lantz O . 2013. MAIT cells detect and efficiently lyse bacterially-infected epithelial cells. PLoS Pathog 9 : e1003681. [CrossRef]
43. Chua W-J,, Truscott SM,, Eickhoff CS,, Blazevic A,, Hoft DF,, Hansen TH . 2012. Polyclonal mucosa-associated invariant T cells have unique innate functions in bacterial infection. Infect Immun 80 : 3256 3267. [CrossRef]
44. Craig A,, Mai J,, Cai S,, Jeyaseelan S . 2009. Neutrophil recruitment to the lungs during bacterial pneumonia. Infect Immun 77 : 568 575. [CrossRef] [PubMed]
45. Wright JR . 1997. Immunomodulatory functions of surfactant. Physiol Rev 77 : 931 962.[PubMed]
46. Wright JR . 2005. Immunoregulatory functions of surfactant proteins. Nat Rev Immunol 5 : 58 68. [CrossRef]
47. Mason RJ,, Voelker DR . 1998. Regulatory mechanisms of surfactant secretion. Biochim Biophys Acta 1408 : 226 240 [CrossRef] [PubMed]
48. Crouch E,, Wright JR . 2001. Surfactant proteins a and d and pulmonary host defense. Annu Rev Physiol 63 : 521 554 [CrossRef] [PubMed]
49. Beharka AA,, Gaynor CD,, Kang BK,, Voelker DR,, McCormack FX,, Schlesinger LS . 2002. Pulmonary surfactant protein A up-regulates activity of the mannose receptor, a pattern recognition receptor expressed on human macrophages. J Immunol 169 : 3565 3573. [CrossRef]
50. Crowther JE,, Kutala VK,, Kuppusamy P,, Ferguson JS,, Beharka AA,, Zweier JL,, McCormack FX,, Schlesinger LS . 2004. Pulmonary surfactant protein a inhibits macrophage reactive oxygen intermediate production in response to stimuli by reducing NADPH oxidase activity. J Immunol 172 : 6866 6874. [CrossRef]
51. Nguyen HA,, Rajaram MVS,, Meyer DA,, Schlesinger LS . 2012. Pulmonary surfactant protein A and surfactant lipids upregulate IRAK-M, a negative regulator of TLR-mediated inflammation in human macrophages. Am J Physiol Lung Cell Mol Physiol 303 : L608 L616. [CrossRef]
52. van Iwaarden F,, Welmers B,, Verhoef J,, Haagsman HP,, van Golde LM . 1990. Pulmonary surfactant protein A enhances the host-defense mechanism of rat alveolar macrophages. Am J Respir Cell Mol Biol 2 : 91 98. [CrossRef] [PubMed]
53. Haagsman HP . 1998. Interactions of surfactant protein A with pathogens. Biochim Biophys Acta 1408 : 264 277. [CrossRef]
54. Carlson TK,, Brooks MN,, Rajaram MVS,, Henning LN,, Meyer DA,, Schlesinger LS, . 2010. Pulmonary innate immunity: soluble and cellular host defenses of the lung, p 167 211. In Marsh CB,, Hunter,, Tridandapani S,, Piper MG (ed), Regulation of Innate Immune Function. Transworld Research Signpost, STM Books.
55. Gaynor CD,, McCormack FX,, Voelker DR,, McGowan SE,, Schlesinger LS . 1995. Pulmonary surfactant protein A mediates enhanced phagocytosis of Mycobacterium tuberculosis by a direct interaction with human macrophages. J Immunol 155 : 5343 5351.[PubMed]
56. Downing JF,, Pasula R,, Wright JR,, Twigg HL III,, Martin WJ II . 1995. Surfactant protein a promotes attachment of Mycobacterium tuberculosis to alveolar macrophages during infection with human immunodeficiency virus. Proc Natl Acad Sci USA 92 : 4848 4852. [CrossRef]
57. Pasula R,, Downing JF,, Wright JR,, Kachel DL,, Davis TE Jr,, Martin WJ II . 1997. Surfactant protein A (SP-A) mediates attachment of Mycobacterium tuberculosis to murine alveolar macrophages. Am J Respir Cell Mol Biol 17 : 209 217. [CrossRef] [PubMed]
58. Sidobre S,, Nigou J,, Puzo G,, Rivière M . 2000. Lipoglycans are putative ligands for the human pulmonary surfactant protein A attachment to mycobacteria. Critical role of the lipids for lectin-carbohydrate recognition. J Biol Chem 275 : 2415 2422. [CrossRef]
59. Ferguson JS,, Voelker DR,, McCormack FX,, Schlesinger LS . 1999. Surfactant protein D binds to Mycobacterium tuberculosis bacilli and lipoarabinomannan via carbohydrate-lectin interactions resulting in reduced phagocytosis of the bacteria by macrophages. J Immunol 163 : 312 321.[PubMed]
60. Ferguson JS,, Martin JL,, Azad AK,, McCarthy TR,, Kang PB,, Voelker DR,, Crouch EC,, Schlesinger LS . 2006. Surfactant protein D increases fusion of Mycobacterium tuberculosis-containing phagosomes with lysosomes in human macrophages. Infect Immun 74 : 7005 7009. [CrossRef]
61. Ferguson JS,, Voelker DR,, Ufnar JA,, Dawson AJ,, Schlesinger LS . 2002. Surfactant protein D inhibition of human macrophage uptake of Mycobacterium tuberculosis is independent of bacterial agglutination. J Immunol 168 : 1309 1314. [CrossRef]
62. Ferguson JS,, Schlesinger LS . 2000. Pulmonary surfactant in innate immunity and the pathogenesis of tuberculosis. Tuber Lung Dis 80 : 173 184. [CrossRef]
63. Arcos J,, Diangelo LE,, Scordo JM,, Sasindran SJ,, Moliva JI,, Turner J,, Torrelles JB . 2015. Lung mucosa lining fluid modification of Mycobacterium tuberculosis to reprogram human neutrophil killing mechanisms. J Infect Dis 212 : 948 958. [CrossRef]
64. Herzog EL,, Brody AR,, Colby TV,, Mason R,, Williams MC . 2008. Knowns and unknowns of the alveolus. Proc Am Thorac Soc 5 : 778 782. [CrossRef] [PubMed]
65. Strunk RC,, Eidlen DM,, Mason RJ . 1988. Pulmonary alveolar type II epithelial cells synthesize and secrete proteins of the classical and alternative complement pathways. J Clin Invest 81 : 1419 1426. [CrossRef]
66. Cole FS,, Matthews WJ Jr,, Rossing TH,, Gash DJ,, Lichtenberg NA,, Pennington JE . 1983. Complement biosynthesis by human bronchoalveolar macrophages. Clin Immunol Immunopathol 27 : 153 159. [CrossRef]
67. Schlesinger LS,, Bellinger-Kawahara CG,, Payne NR,, Horwitz MA . 1990. Phagocytosis of Mycobacterium tuberculosis is mediated by human monocyte complement receptors and complement component C3. J Immunol 144 : 2771 2780.[PubMed]
68. Ferguson JS,, Weis JJ,, Martin JL,, Schlesinger LS . 2004. Complement protein C3 binding to Mycobacterium tuberculosis is initiated by the classical pathway in human bronchoalveolar lavage fluid. Infect Immun 72 : 2564 2573. [CrossRef]
69. Figueroa JE,, Densen P . 1991. Infectious diseases associated with complement deficiencies. Clin Microbiol Rev 4 : 359 395.[PubMed]
70. Mold C . 1999. Role of complement in host defense against bacterial infection. Microbes Infect 1 : 633 638. [CrossRef]
71. Tedesco F . 2008. Inherited complement deficiencies and bacterial infections. Vaccine 26( Suppl 8) : I3 I8. [CrossRef]
72. Moliva JI,, Rajaram MVS,, Sidiki S,, Sasindran SJ,, Guirado E,, Pan XJ,, Wang S-H,, Ross P Jr,, Lafuse WP,, Schlesinger LS,, Turner J,, Torrelles JB . 2014. Molecular composition of the alveolar lining fluid inthe aging lung. Age (Dordr) 36 : 9633. [CrossRef]
73. Arcos J,, Sasindran SJ,, Fujiwara N,, Turner J,, Schlesinger LS,, Torrelles JB . 2011. Human lung hydrolases delineate Mycobacterium tuberculosis-macrophage interactions and the capacity to control infection. J Immunol 187 : 372 381. [CrossRef]
74. Stahl PD . 1990. The macrophage mannose receptor: current status. Am J Respir Cell Mol Biol 2 : 317 318. [CrossRef]
75. Speert DP,, Silverstein SC . 1985. Phagocytosis of unopsonized zymosan by human monocyte-derived macrophages: maturation and inhibition by mannan. J Leukoc Biol 38 : 655 658.[PubMed]
76. Wileman TE,, Lennartz MR,, Stahl PD . 1986. Identification of the macrophage mannose receptor as a 175-kDa membrane protein. Proc Natl Acad Sci USA 83 : 2501 2505. [CrossRef] [PubMed]
77. McGreal EP,, Miller JL,, Gordon S . 2005. Ligand recognition by antigen-presenting cell C-type lectin receptors. Curr Opin Immunol 17 : 18 24. [CrossRef]
78. Stahl PD,, Ezekowitz RA . 1998. The mannose receptor is a pattern recognition receptor involved in host defense. Curr Opin Immunol 10 : 50 55. [CrossRef]
79. Martinez-Pomares L,, Linehan SA,, Taylor PR,, Gordon S . 2001. Binding properties of the mannose receptor. Immunobiology 204 : 527 535. [CrossRef]
80. Lee SJ,, Evers S,, Roeder D,, Parlow AF,, Risteli J,, Risteli L,, Lee YC,, Feizi T,, Langen H,, Nussenzweig MC . 2002. Mannose receptor-mediated regulation of serum glycoprotein homeostasis. Science 295 : 1898 1901. [CrossRef]
81. Medzhitov R,, Janeway C Jr . 2000. Innate immunity. N Engl J Med 343 : 338 344. [CrossRef]
82. Schlesinger LS,, Hull SR,, Kaufman TM . 1994. Binding of the terminal mannosyl units of lipoarabinomannan from a virulent strain of Mycobacterium tuberculosis to human macrophages. J Immunol 152 : 4070 4079.[PubMed]
83. Torrelles JB,, Schlesinger LS . 2010. Diversity in Mycobacterium tuberculosis mannosylated cell wall determinants impacts adaptation to the host. Tuberculosis (Edinb) 90 : 84 93. [CrossRef]
84. Torrelles JB,, Azad AK,, Schlesinger LS . 2006. Fine discrimination in the recognition of individual species of phosphatidyl-myo-inositol mannosides from Mycobacterium tuberculosis by C-type lectin pattern recognition receptors. J Immunol 177 : 1805 1816. [CrossRef]
85. Schlesinger LS,, Kaufman TM,, Iyer S,, Hull SR,, Marchiando LK . 1996. Differences in mannose receptor-mediated uptake of lipoarabinomannan from virulent and attenuated strains of Mycobacterium tuberculosis by human macrophages. J Immunol 157 : 4568 4575.[PubMed]
86. Torrelles JB,, Knaup R,, Kolareth A,, Slepushkina T,, Kaufman TM,, Kang P,, Hill PJ,, Brennan PJ,, Chatterjee D,, Belisle JT,, Musser JM,, Schlesinger LS . 2008. Identification of Mycobacterium tuberculosis clinical isolates with altered phagocytosis by human macrophages due to a truncated lipoarabinomannan. J Biol Chem 283 : 31417 31428. [CrossRef]
87. Kang PB,, Azad AK,, Torrelles JB,, Kaufman TM,, Beharka A,, Tibesar E,, DesJardin LE,, Schlesinger LS . 2005. The human macrophage mannose receptor directs Mycobacterium tuberculosis lipoarabinomannan-mediated phagosome biogenesis. J Exp Med 202 : 987 999. [CrossRef]
88. Aderem A,, Underhill DM . 1999. Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 17 : 593 623. [CrossRef]
89. Singh CR,, Moulton RA,, Armitige LY,, Bidani A,, Snuggs M,, Dhandayuthapani S,, Hunter RL,, Jagannath C . 2006. Processing and presentation of a mycobacterial antigen 85B epitope by murine macrophages is dependent on the phagosomal acquisition of vacuolar proton ATPase and in situ activation of cathepsin D. J Immunol 177 : 3250 3259. [CrossRef]
90. Sturgill-Koszycki S,, Schlesinger PH,, Chakraborty P,, Haddix PL,, Collins HL,, Fok AK,, Allen RD,, Gluck SL,, Heuser J,, Russell DG . 1994. Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 263 : 678 681. [CrossRef]
91. Astarie-Dequeker C,, N’Diaye EN,, Le Cabec V,, Rittig MG,, Prandi J,, Maridonneau-Parini I . 1999. The mannose receptor mediates uptake of pathogenic and nonpathogenic mycobacteria and bypasses bactericidal responses in human macrophages. Infect Immun 67 : 469 477.[PubMed]
92. Chieppa M,, Bianchi G,, Doni A,, Del Prete A,, Sironi M,, Laskarin G,, Monti P,, Piemonti L,, Biondi A,, Mantovani A,, Introna M,, Allavena P . 2003. Cross-linking of the mannose receptor on monocyte-derived dendritic cells activates an anti-inflammatory immunosuppressive program. J Immunol 171 : 4552 4560. [CrossRef]
93. Azad AK,, Rajaram MVS,, Schlesinger LS . 2014. Exploitation of the macrophage mannose receptor (CD206) in infectious disease diagnostics and therapeutics. J Cytol Mol Biol 1 : 1000003. [CrossRef]
94. McNally AK,, DeFife KM,, Anderson JM . 1996. Interleukin-4-induced macrophage fusion is prevented by inhibitors of mannose receptor activity. Am J Pathol 149 : 975 985.[PubMed]
95. Gordon S,, Martinez FO . 2010. Alternative activation of macrophages: mechanism and functions. Immunity 32 : 593 604. [CrossRef] [PubMed]
96. Gordon S,, Keshav S,, Stein M . 1994. BCG-induced granuloma formation in murine tissues. Immunobiology 191 : 369 377. [CrossRef]
97. Bleijs DA,, Geijtenbeek TB,, Figdor CG,, van Kooyk Y . 2001. DC-SIGN and LFA-1: a battle for ligand. Trends Immunol 22 : 457 463. [CrossRef] [PubMed]
98. Tailleux L,, Pham-Thi N,, Bergeron-Lafaurie A,, Herrmann J-L,, Charles P,, Schwartz O,, Scheinmann P,, Lagrange PH,, de Blic J,, Tazi A,, Gicquel B,, Neyrolles O . 2005. DC-SIGN induction in alveolar macrophages defines privileged target host cells for mycobacteria in patients with tuberculosis. PLoS Med 2 : e381. [CrossRef]
99. Puig-Kröger A,, Serrano-Gómez D,, Caparrós E,, Domínguez-Soto A,, Relloso M,, Colmenares M,, Martínez-Muñoz L,, Longo N,, Sánchez-Sánchez N,, Rincon M,, Rivas L,, Sánchez-Mateos P,, Fernández-Ruiz E,, Corbí AL . 2004. Regulated expression of the pathogen receptor dendritic cell-specific intercellular adhesion molecule 3 (ICAM-3)-grabbing nonintegrin in THP-1 human leukemic cells, monocytes, and macrophages. J Biol Chem 279 : 25680 25688. [CrossRef]
100. Geijtenbeek TBH,, Van Vliet SJ,, Koppel EA,, Sanchez-Hernandez M,, Vandenbroucke-Grauls CMJE,, Appelmelk B,, Van Kooyk Y . 2003. Mycobacteria target DC-SIGN to suppress dendritic cell function. J Exp Med 197 : 7 17. [CrossRef]
101. Tailleux L,, Schwartz O,, Herrmann JL,, Pivert E,, Jackson M,, Amara A,, Legres L,, Dreher D,, Nicod LP,, Gluckman JC,, Lagrange PH,, Gicquel B,, Neyrolles O . 2003. DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells. J Exp Med 197 : 121 127. [CrossRef]
102. Guirado E,, Schlesinger LS,, Kaplan G . 2013. Macrophages in tuberculosis: friend or foe. Semin Immunopathol 35 : 563 583. [CrossRef]
103. Matsumoto M,, Tanaka T,, Kaisho T,, Sanjo H,, Copeland NG,, Gilbert DJ,, Jenkins NA,, Akira S . 1999. A novel LPS-inducible C-type lectin is a transcriptional target of NF-IL6 in macrophages. J Immunol 163 : 5039 5048.[PubMed]
104. Yamasaki S,, Matsumoto M,, Takeuchi O,, Matsuzawa T,, Ishikawa E,, Sakuma M,, Tateno H,, Uno J,, Hirabayashi J,, Mikami Y,, Takeda K,, Akira S,, Saito T . 2009. C-type lectin Mincle is an activating receptor for pathogenic fungus, Malassezia . Proc Natl Acad Sci USA 106 : 1897 1902. [CrossRef]
105. Yamasaki S,, Ishikawa E,, Sakuma M,, Hara H,, Ogata K,, Saito T . 2008. Mincle is an ITAM-coupled activating receptor that senses damaged cells. Nat Immunol 9 : 1179 1188. [CrossRef]
106. Ishikawa E,, Ishikawa T,, Morita YS,, Toyonaga K,, Yamada H,, Takeuchi O,, Kinoshita T,, Akira S,, Yoshikai Y,, Yamasaki S . 2009. Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin Mincle. J Exp Med 206 : 2879 2888. [CrossRef]
107. Schoenen H,, Bodendorfer B,, Hitchens K,, Manzanero S,, Werninghaus K,, Nimmerjahn F,, Agger EM,, Stenger S,, Andersen P,, Ruland J,, Brown GD,, Wells C,, Lang R . 2010. Cutting edge: mincle is essential for recognition and adjuvanticity of the mycobacterial cord factor and its synthetic analog trehalose-dibehenate. J Immunol 184 : 2756 2760. [CrossRef]
108. Heitmann L,, Schoenen H,, Ehlers S,, Lang R,, Hölscher C . 2013. Mincle is not essential for controlling Mycobacterium tuberculosis infection. Immunobiology 218 : 506 516. [CrossRef]
109. Tsoni SV,, Brown GD . 2008. beta-Glucans and dectin-1. Ann N Y Acad Sci 1143 : 45 60 [CrossRef]
110. Taylor PR,, Brown GD,, Reid DM,, Willment JA,, Martinez-Pomares L,, Gordon S,, Wong SY . 2002. The β-glucan receptor, dectin-1, is predominantly expressed on the surface of cells of the monocyte/macrophage and neutrophil lineages. J Immunol 169 : 3876 3882. [CrossRef]
111. van de Veerdonk FL,, Teirlinck AC,, Kleinnijenhuis J,, Kullberg BJ,, van Crevel R,, van der Meer JWM,, Joosten LAB,, Netea MG . 2010. Mycobacterium tuberculosis induces IL-17A responses through TLR4 and dectin-1 and is critically dependent on endogenous IL-1. J Leukoc Biol 88 : 227 232. [CrossRef]
112. Rothfuchs AG,, Báfica A,, Feng CG,, Egen JG,, Williams DL,, Brown GD,, Sher A . 2007. Dectin-1 interaction with Mycobacterium tuberculosis leads to enhanced IL-12p40 production by splenic dendritic cells. J Immunol 179 : 3463 3471. [CrossRef]
113. Yadav M,, Schorey JS . 2006. The beta-glucan receptor dectin-1 functions together with TLR2 to mediate macrophage activation by mycobacteria. Blood 108 : 3168 3175. [CrossRef]
114. Betz BE,, Azad AK,, Morris JD,, Rajaram MVS,, Schlesinger LS . 2011. β-Glucans inhibit intracellular growth of Mycobacterium bovis BCG but not virulent Mycobaterium tuberculosis in human macrophages. Microb Pathog 51 : 233 242. [CrossRef]
115. Taylor PR,, Reid DM,, Heinsbroek SEM,, Brown GD,, Gordon S,, Wong SYC . 2005. Dectin-2 is predominantly myeloid restricted and exhibits unique activation-dependent expression on maturing inflammatory monocytes elicited in vivo . Eur J Immunol 35 : 2163 2174. [CrossRef]
116. Yonekawa A,, Saijo S,, Hoshino Y,, Miyake Y,, Ishikawa E,, Suzukawa M,, Inoue H,, Tanaka M,, Yoneyama M,, Oh-Hora M,, Akashi K,, Yamasaki S . 2014. Dectin-2 is a direct receptor for mannose-capped lipoarabinomannan of mycobacteria. Immunity 41 : 402 413. [CrossRef]
117. Zhao X-Q,, Zhu L-L,, Chang Q,, Jiang C,, You Y,, Luo T,, Jia X-M,, Lin X . 2014. C-type lectin receptor dectin-3 mediates trehalose 6,6′-dimycolate (TDM)-induced Mincle expression through CARD9/Bcl10/MALT1-dependent nuclear factor (NF)-κB activation. J Biol Chem 289 : 30052 30062. [CrossRef]
118. Miyake Y,, Toyonaga K,, Mori D,, Kakuta S,, Hoshino Y,, Oyamada A,, Yamada H,, Ono K,, Suyama M,, Iwakura Y,, Yoshikai Y,, Yamasaki S . 2013. C-type lectin MCL is an FcRγ-coupled receptor that mediates the adjuvanticity of mycobacterial cord factor. Immunity 38 : 1050 1062. [CrossRef]
119. Myones BL,, Dalzell JG,, Hogg N,, Ross GD . 1988. Neutrophil and monocyte cell surface p150,95 has iC3b-receptor (CR4) activity resembling CR3. J Clin Invest 82 : 640 651. [CrossRef] [PubMed]
120. Arnaout MA . 1990. Structure and function of the leukocyte adhesion molecules CD11/CD18. Blood 75 : 1037 1050.[PubMed]
121. Schlesinger LS,, Azad AK, . 2008. Determinants of phagocytosis, phagosome biogenesis and autophagy for Mycobacterium tuberculosis , p 1 22. In Kaufmann SHE,, Britton WJ (ed), Handbook of Tuberculosis: Immunology and Cell Biology. Wiley VCH Publishers, Weinheim, Germany.
122. Schlesinger LS . 1993. Macrophage phagocytosis of virulent but not attenuated strains of Mycobacterium tuberculosis is mediated by mannose receptors in addition to complement receptors. J Immunol 150 : 2920 2930.[PubMed]
123. Cywes C,, Hoppe HC,, Daffé M,, Ehlers MR . 1997. Nonopsonic binding of Mycobacterium tuberculosis to complement receptor type 3 is mediated by capsular polysaccharides and is strain dependent. Infect Immun 65 : 4258 4266.[PubMed]
124. Villeneuve C,, Gilleron M,, Maridonneau-Parini I,, Daffé M,, Astarie-Dequeker C,, Etienne G . 2005. Mycobacteria use their surface-exposed glycolipids to infect human macrophages through a receptor-dependent process. J Lipid Res 46 : 475 483. [CrossRef]
125. Armstrong JA,, Hart PD . 1975. Phagosome-lysosome interactions in cultured macrophages infected with virulent tubercle bacilli. Reversal of the usual nonfusion pattern and observations on bacterial survival. J Exp Med 142 : 1 16. [CrossRef]
126. Basu S,, Fenton MJ . 2004. Toll-like receptors: function and roles in lung disease. Am J Physiol Lung Cell Mol Physiol 286 : L887 L892. [CrossRef]
127. Pandey S,, Kawai T,, Akira S . 2015. Microbial sensing by Toll-like receptors and intracellular nucleic acid sensors. Cold Spring Harb Perspect Biol 7 : a016246.[CrossRef] [PubMed]
128. Kawasaki T,, Kawai T . 2014. Toll-like receptor signaling pathways. Front Immunol 5 : 461. [CrossRef]
129. Kawai T,, Akira S . 2011. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34 : 637 650. [CrossRef]
130. Cambi A,, Koopman M,, Figdor CG . 2005. How C-type lectins detect pathogens. Cell Microbiol 7 : 481 488. [CrossRef]
131. Poltorak A,, He X,, Smirnova I,, Liu MY,, Van Huffel C,, Du X,, Birdwell D,, Alejos E,, Silva M,, Galanos C,, Freudenberg M,, Ricciardi-Castagnoli P,, Layton B,, Beutler B . 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282 : 2085 2088. [CrossRef] [PubMed]
132. Malhotra R,, Thiel S,, Reid KB,, Sim RB . 1990. Human leukocyte C1q receptor binds other soluble proteins with collagen domains. J Exp Med 172 : 955 959. [CrossRef]
133. Akira S,, Uematsu S,, Takeuchi O . 2006. Pathogen recognition and innate immunity. Cell 124 : 783 801. [CrossRef]
134. Yamamoto M,, Takeda K,, Akira S . 2004. TIR domain-containing adaptors define the specificity of TLR signaling. Mol Immunol 40 : 861 868. [CrossRef] [PubMed]
135. Kobayashi K,, Hernandez LD,, Galán JE,, Janeway CA Jr,, Medzhitov R,, Flavell RA . 2002. IRAK-M is a negative regulator of Toll-like receptor signaling. Cell 110 : 191 202. [CrossRef]
136. Means TK,, Lien E,, Yoshimura A,, Wang S,, Golenbock DT,, Fenton MJ . 1999. The CD14 ligands lipoarabinomannan and lipopolysaccharide differ in their requirement for Toll-like receptors. J Immunol 163 : 6748 6755.
137. Jones BW,, Means TK,, Heldwein KA,, Keen MA,, Hill PJ,, Belisle JT,, Fenton MJ . 2001. Different Toll-like receptor agonists induce distinct macrophage responses. J Leukoc Biol 69 : 1036 1044.[PubMed]
138. Kindrachuk J,, Potter J,, Wilson HL,, Griebel P,, Babiuk LA,, Napper S . 2008. Activation and regulation of toll-like receptor 9: CpGs and beyond. Mini Rev Med Chem 8 : 590 600. [CrossRef]
139. Báfica A,, Scanga CA,, Feng CG,, Leifer C,, Cheever A,, Sher A . 2005. TLR9 regulates Th1 responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis . J Exp Med 202 : 1715 1724. [CrossRef]
140. Drennan MB,, Nicolle D,, Quesniaux VJF,, Jacobs M,, Allie N,, Mpagi J,, Frémond C,, Wagner H,, Kirschning C,, Ryffel B . 2004. Toll-like receptor 2-deficient mice succumb to Mycobacterium tuberculosis infection. Am J Pathol 164 : 49 57. [CrossRef]
141. Abel B,, Thieblemont N,, Quesniaux VJF,, Brown N,, Mpagi J,, Miyake K,, Bihl F,, Ryffel B . 2002. Toll-like receptor 4 expression is required to control chronic Mycobacterium tuberculosis infection in mice. J Immunol 169 : 3155 3162. [CrossRef]
142. Reiling N,, Hölscher C,, Fehrenbach A,, Kröger S,, Kirschning CJ,, Goyert S,, Ehlers S . 2002. Cutting edge: toll-like receptor (TLR)2- and TLR4-mediated pathogen recognition in resistance to airborne infection with Mycobacterium tuberculosis . J Immunol 169 : 3480 3484. [CrossRef]
143. Hölscher C,, Reiling N,, Schaible UE,, Hölscher A,, Bathmann C,, Korbel D,, Lenz I,, Sonntag T,, Kröger S,, Akira S,, Mossmann H,, Kirschning CJ,, Wagner H,, Freudenberg M,, Ehlers S . 2008. Containment of aerogenic Mycobacterium tuberculosis infection in mice does not require MyD88 adaptor function for TLR2, -4 and -9. Eur J Immunol 38 : 680 694. [CrossRef]
144. Fremond CM,, Yeremeev V,, Nicolle DM,, Jacobs M,, Quesniaux VF,, Ryffel B . 2004. Fatal Mycobacterium tuberculosis infection despite adaptive immune response in the absence of MyD88. J Clin Invest 114 : 1790 1799. [CrossRef]
145. Mayer-Barber KD,, Barber DL,, Shenderov K,, White SD,, Wilson MS,, Cheever A,, Kugler D,, Hieny S,, Caspar P,, Núñez G,, Schlueter D,, Flavell RA,, Sutterwala FS,, Sher A . 2010. Caspase-1 independent IL-1beta production is critical for host resistance to Mycobacterium tuberculosis and does not require TLR signaling in vivo . J Immunol 184 : 3326 3330. [CrossRef]
146. Canton J,, Neculai D,, Grinstein S . 2013. Scavenger receptors in homeostasis and immunity. Nat Rev Immunol 13 : 621 634. [CrossRef]
147. Doi T,, Higashino K,, Kuriharag Y,, Wada Y,, Miyazaki T,, Nakamura H,, Uesugi S,, Imanishi T,, Kawabe Y,, Itakura H,, Yazaki Y,, Matsumoto A,, Kodama T . 1993. Charged collagen structure mediates the recognition of negatively charged macromolecules by macrophage scavenger receptors. J Biol Chem 268 : 2126 2133.[PubMed]
148. Yamamoto K,, Nishimura N,, Doi T,, Imanishi T,, Kodama T,, Suzuki K,, Tanaka T . 1997. The lysine cluster in the collagen-like domain of the scavenger receptor provides for its ligand binding and ligand specificity. FEBS Lett 414 : 182 186. [CrossRef]
149. Arredouani MS,, Palecanda A,, Koziel H,, Huang Y-C,, Imrich A,, Sulahian TH,, Ning YY,, Yang Z,, Pikkarainen T,, Sankala M,, Vargas SO,, Takeya M,, Tryggvason K,, Kobzik L . 2005. MARCO is the major binding receptor for unopsonized particles and bacteria on human alveolar macrophages. J Immunol 175 : 6058 6064. [CrossRef]
150. Reddy RC . 2008. Immunomodulatory role of PPAR-gamma in alveolar macrophages. J Investig Med 56 : 522 527. [CrossRef]
151. Zimmerli S,, Edwards S,, Ernst JD . 1996. Selective receptor blockade during phagocytosis does not alter the survival and growth of Mycobacterium tuberculosis in human macrophages. Am J Respir Cell Mol Biol 15 : 760 770. [CrossRef]
152. Bowdish DME,, Sakamoto K,, Kim M-J,, Kroos M,, Mukhopadhyay S,, Leifer CA,, Tryggvason K,, Gordon S,, Russell DG . 2009. MARCO, TLR2, and CD14 are required for macrophage cytokine responses to mycobacterial trehalose dimycolate and Mycobacterium tuberculosis . PLoS Pathog 5 : e1000474.[CrossRef]
153. Mahajan S,, Dkhar HK,, Chandra V,, Dave S,, Nanduri R,, Janmeja AK,, Agrewala JN,, Gupta P . 2012. Mycobacterium tuberculosis modulates macrophage lipid-sensing nuclear receptors PPARγ and TR4 for survival. J Immunol 188 : 5593 5603. [CrossRef]
154. Almeida PE,, Roque NR,, Magalhães KG,, Mattos KA,, Teixeira L,, Maya-Monteiro C,, Almeida CJ,, Castro-Faria-Neto HC,, Ryffel B,, Quesniaux VFJ,, Bozza PT . 2014. Differential TLR2 downstream signaling regulates lipid metabolism and cytokine production triggered by Mycobacterium bovis BCG infection. Biochim Biophys Acta 1841 : 97 107.[PubMed]
155. Asada K,, Sasaki S,, Suda T,, Chida K,, Nakamura H . 2004. Antiinflammatory roles of peroxisome proliferator-activated receptor γ in human alveolar macrophages. Am J Respir Crit Care Med 169 : 195 200. [CrossRef]
156. Court N,, Vasseur V,, Vacher R,, Frémond C,, Shebzukhov Y,, Yeremeev VV,, Maillet I,, Nedospasov SA,, Gordon S,, Fallon PG,, Suzuki H,, Ryffel B,, Quesniaux VFJ . 2010. Partial redundancy of the pattern recognition receptors, scavenger receptors, and C-type lectins for the long-term control of Mycobacterium tuberculosis infection. J Immunol 184 : 7057 7070. [CrossRef]
157. Arredouani MS,, Yang Z,, Imrich A,, Ning Y,, Qin G,, Kobzik L . 2006. The macrophage scavenger receptor SR-AI/II and lung defense against pneumococci and particles. Am J Respir Cell Mol Biol 35 : 474 478. [CrossRef] [PubMed]
158. Hollifield M,, Bou Ghanem E,, de Villiers WJS,, Garvy BA . 2007. Scavenger receptor A dampens induction of inflammation in response to the fungal pathogen Pneumocystis carinii . Infect Immun 75 : 3999 4005. [CrossRef]
159. Arredouani M,, Yang Z,, Ning Y,, Qin G,, Soininen R,, Tryggvason K,, Kobzik L . 2004. The scavenger receptor MARCO is required for lung defense against pneumococcal pneumonia and inhaled particles. J Exp Med 200 : 267 272. [CrossRef]
160. Hawkes M,, Li X,, Crockett M,, Diassiti A,, Finney C,, Min-Oo G,, Liles WC,, Liu J,, Kain KC . 2010. CD36 deficiency attenuates experimental mycobacterial infection. BMC Infect Dis 10 : 299 [CrossRef]
161. Flannagan RS,, Jaumouillé V,, Grinstein S . 2012. The cell biology of phagocytosis. Annu Rev Pathol 7 : 61 98. [CrossRef]
162. Russell DG . 2001. Mycobacterium tuberculosis: here today, and here tomorrow. Nat Rev Mol Cell Biol 2 : 569 577. [CrossRef]
163. Reiner NE . 1994. Altered cell signaling and mononuclear phagocyte deactivation during intracellular infection. Immunol Today 15 : 374 381. [CrossRef]
164. Deretic V,, Singh S,, Master S,, Harris J,, Roberts E,, Kyei G,, Davis A,, de Haro S,, Naylor J,, Lee H-H,, Vergne I . 2006. Mycobacterium tuberculosis inhibition of phagolysosome biogenesis and autophagy as a host defence mechanism. Cell Microbiol 8 : 719 727. [CrossRef]
165. Lugo-Villarino G,, Neyrolles O . 2014. Manipulation of the mononuclear phagocyte system by Mycobacterium tuberculosis . Cold Spring Harb Perspect Med 4 : a018549.[CrossRef] [CrossRef] [PubMed]
166. Shukla S,, Richardson ET,, Athman JJ,, Shi L,, Wearsch PA,, McDonald D,, Banaei N,, Boom WH,, Jackson M,, Harding CV . 2014. Mycobacterium tuberculosis lipoprotein LprG binds lipoarabinomannan and determines its cell envelope localization to control phagolysosomal fusion. PLoS Pathog 10 : e1004471. (Correction 10:e1004596.)[CrossRef]
167. Gaur RL,, Ren K,, Blumenthal A,, Bhamidi S,, González-Nilo FD,, Jackson M,, Zare RN,, Ehrt S,, Ernst JD,, Banaei N . 2014. LprG-mediated surface expression of lipoarabinomannan is essential for virulence of Mycobacterium tuberculosis . PLoS Pathog 10 : e1004376.[CrossRef] (Errata 10:e1004489, 10:e1004494.)[CrossRef] [PubMed]
168. Welin A,, Lerm M . 2012. Inside or outside the phagosome? The controversy of the intracellular localization of Mycobacterium tuberculosis . Tuberculosis (Edinb) 92 : 113 120. [CrossRef]
169. Leake ES,, Myrvik QN,, Wright MJ . 1984. Phagosomal membranes of Mycobacterium bovis BCG-immune alveolar macrophages are resistant to disruption by Mycobacterium tuberculosis H37Rv. Infect Immun 45 : 443 446.[PubMed]
170. McDonough KA,, Kress Y,, Bloom BR . 1993. Pathogenesis of tuberculosis: interaction of Mycobacterium tuberculosis with macrophages. Infect Immun 61 : 2763 2773.[PubMed]
171. Myrvik QN,, Leake ES,, Wright MJ . 1984. Disruption of phagosomal membranes of normal alveolar macrophages by the H37Rv strain of Mycobacterium tuberculosis. A correlate of virulence. Am Rev Respir Dis 129 : 322 328.[PubMed]
172. Simeone R,, Bobard A,, Lippmann J,, Bitter W,, Majlessi L,, Brosch R,, Enninga J . 2012. Phagosomal rupture by Mycobacterium tuberculosis results in toxicity and host cell death. PLoS Pathog 8 : e1002507.[CrossRef] [PubMed]
173. van der Wel N,, Hava D,, Houben D,, Fluitsma D,, van Zon M,, Pierson J,, Brenner M,, Peters PJ . 2007. M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell 129 : 1287 1298. [CrossRef]
174. Houben D,, Demangel C,, van Ingen J,, Perez J,, Baldeón L,, Abdallah AM,, Caleechurn L,, Bottai D,, van Zon M,, de Punder K,, van der Laan T,, Kant A,, Bossers-de Vries R,, Willemsen P,, Bitter W,, van Soolingen D,, Brosch R,, van der Wel N,, Peters PJ . 2012. ESX-1-mediated translocation to the cytosol controls virulence of mycobacteria. Cell Microbiol 14 : 1287 1298. [CrossRef]
175. Manzanillo PS,, Shiloh MU,, Portnoy DA,, Cox JS . 2012. Mycobacterium tuberculosis activates the DNA-dependent cytosolic surveillance pathway within macrophages. Cell Host Microbe 11 : 469 480. [CrossRef]
176. Watson RO,, Manzanillo PS,, Cox JS . 2012. Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway. Cell 150 : 803 815. [CrossRef]
177. Shen H-M,, Mizushima N . 2014. At the end of the autophagic road: an emerging understanding of lysosomal functions in autophagy. Trends Biochem Sci 39 : 61 71. [CrossRef]
178. Mizushima N,, Komatsu M . 2011. Autophagy: renovation of cells and tissues. Cell 147 : 728 741. [CrossRef]
179. Levine B,, Mizushima N,, Virgin HW . 2011. Autophagy in immunity and inflammation. Nature 469 : 323 335. [CrossRef] [PubMed] [CrossRef]
180. Deretic V . 2014. Autophagy in tuberculosis. Cold Spring Harb Perspect Med 4 : a018481.[CrossRef]
181. Yang C-S,, Kim J-J,, Lee H-M,, Jin HS,, Lee S-H,, Park J-H,, Kim SJ,, Kim J-M,, Han Y-M,, Lee M-S,, Kweon GR,, Shong M,, Jo E-K . 2014. The AMPK-PPARGC1A pathway is required for antimicrobial host defense through activation of autophagy. Autophagy 10 : 785 802. [CrossRef]
182. Abnave P,, Mottola G,, Gimenez G,, Boucherit N,, Trouplin V,, Torre C,, Conti F,, Ben Amara A,, Lepolard C,, Djian B,, Hamaoui D,, Mettouchi A,, Kumar A,, Pagnotta S,, Bonatti S,, Lepidi H,, Salvetti A,, Abi-Rached L,, Lemichez E,, Mege J-L,, Ghigo E . 2014. Screening in planarians identifies MORN2 as a key component in LC3-associated phagocytosis and resistance to bacterial infection. Cell Host Microbe 16 : 338 350. [CrossRef]
183. Romagnoli A,, Etna MP,, Giacomini E,, Pardini M,, Remoli ME,, Corazzari M,, Falasca L,, Goletti D,, Gafa V,, Simeone R,, Delogu G,, Piacentini M,, Brosch R,, Fimia GM,, Coccia EM . 2012. ESX-1 dependent impairment of autophagic flux by Mycobacterium tuberculosis in human dendritic cells. Autophagy 8 : 1357 1370. [CrossRef]
184. Shin D-M,, Jeon B-Y,, Lee H-M,, Jin HS,, Yuk J-M,, Song C-H,, Lee S-H,, Lee Z-W,, Cho S-N,, Kim J-M,, Friedman RL,, Jo E-K . 2010. Mycobacterium tuberculosiseis regulates autophagy, inflammation, and cell death through redox-dependent signaling. PLoS Pathog 6 : e1001230.[CrossRef]
185. Gutierrez MG,, Master SS,, Singh SB,, Taylor GA,, Colombo MI,, Deretic V . 2004. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119 : 753 766. [CrossRef]
186. Fabri M,, Stenger S,, Shin D-M,, Yuk J-M,, Liu PT,, Realegeno S,, Lee H-M,, Krutzik SR,, Schenk M,, Sieling PA,, Teles R,, Montoya D,, Iyer SS,, Bruns H,, Lewinsohn DM,, Hollis BW,, Hewison M,, Adams JS,, Steinmeyer A,, Zügel U,, Cheng G,, Jo E-K,, Bloom BR,, Modlin RL . 2011. Vitamin D is required for IFN-gamma-mediated antimicrobial activity of human macrophages. Sci Transl Med 3 : 104ra102.[CrossRef]