Chapter 24 : Mycobacterial Biofilms: Revisiting Tuberculosis Bacilli in Extracellular Necrotizing Lesions

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Mycobacterial Biofilms: Revisiting Tuberculosis Bacilli in Extracellular Necrotizing Lesions, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819569/9781555819552_Chap24-1.gif /docserver/preview/fulltext/10.1128/9781555819569/9781555819552_Chap24-2.gif


The ongoing emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains of not only underscores the limitations of our current tuberculosis (TB) control strategies but is also escalating the TB epidemic to a new level. Realizing the imminent threats of MDR- and XDR-TB and the urgency for new TB control measures, the World Health Organization has maintained TB control as high priority and set an ambitious goal of eradicating the disease by 2030 ( ). What remains an urgent need is the development of a shorter-duration combination of antimicrobial drug treatments that is more effective at eradicating drug-susceptible and drug-resistant strains of . However, progress toward this goal is hampered by a lack of understanding of factors that contribute to the expression of drug tolerance by , which contributes significantly to the need to treat patients from 6 to 9 months with antimicrobial drug combinations that have toxic side effects. In this review, we discuss the current state of our understanding of the host and pathogen factors that contribute to drug tolerance. Moreover, we highlight potential strategies that can be used to improve the efficacy of existing drugs against drug-tolerant . These strategies are based on our current knowledge of how and where drug-tolerant bacilli persist and on features of the complex host response that likely limit the penetration of antibiotics. A better understanding of the factors that contribute to the expression of drug tolerance reveals the potential value of adjunctive therapies that can be used to potentiate the effectiveness of existing and future anti-TB drugs.

Citation: Basaraba R, Ojha A. 2017. Mycobacterial Biofilms: Revisiting Tuberculosis Bacilli in Extracellular Necrotizing Lesions, p 533-539. In Jacobs, Jr. W, McShane H, Mizrahi V, Orme I (ed), Tuberculosis and the Tubercle Bacillus, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.TBTB2-0024-2016
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Visualization of growth in a microfluidic device by time-lapse microscopy. The numbers at the bottom of the snapshots denote the time in minutes at which the snaps were taken. Note the distinct foci of multicellular communities from growth of individual cells. (Data collected by Jacob Richards in the laboratory of Anil Ojha).

Citation: Basaraba R, Ojha A. 2017. Mycobacterial Biofilms: Revisiting Tuberculosis Bacilli in Extracellular Necrotizing Lesions, p 533-539. In Jacobs, Jr. W, McShane H, Mizrahi V, Orme I (ed), Tuberculosis and the Tubercle Bacillus, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.TBTB2-0024-2016
Permissions and Reprints Request Permissions
Download as Powerpoint


1. WHO . 2015. The WHO End TB Strategy. http://www.who.int/tb/post2015_strategy/en/ [PubMed]
2. Hunter RL,, Actor JK,, Hwang SA,, Karev V,, Jagannath C . 2014. Pathogenesis of post primary tuberculosis: immunity and hypersensitivity in the development of cavities. Ann Clin Lab Sci 44 : 365 387.
3. Hunter RL . 2011. Pathology of post primary tuberculosis of the lung: an illustrated critical review. Tuberculosis (Edinb) 91 : 497 509. [CrossRef]
4. Hunter RL . 2016. Tuberculosis as a three-act play: a new paradigm for the pathogenesis of pulmonary tuberculosis. Tuberculosis (Edinb) 97 : 8 17. [CrossRef]
5. Grosset J . 2003. Mycobacterium tuberculosis in the extracellular compartment: an underestimated adversary. Antimicrob Agents Chemother 47 : 833 836. [CrossRef]
6. Hoff DR,, Ryan GJ,, Driver ER,, Ssemakulu CC,, De Groote MA,, Basaraba RJ,, Lenaerts AJ . 2011. Location of intra- and extracellular M. tuberculosis populations in lungs of mice and guinea pigs during disease progression and after drug treatment. PLoS One 6 : e17550.[CrossRef]
7. Lenaerts A,, Barry CE III,, Dartois V . 2015. Heterogeneity in tuberculosis pathology, microenvironments and therapeutic responses. Immunol Rev 264 : 288 307. [CrossRef]
8. Barclay WR,, Ebert RH,, Manthei RW,, Roth LJ . 1953. Distribution of C14 labeled isoniazid in sensitive and resistant tubercle bacilli and in infected and uninfected tissues in tuberculous patients. Trans Annu Meet Natl Tuberc Assoc 49 : 192 195.[PubMed]
9. Manthei RW,, Roth LJ,, Barclay WR,, Ebert RH . 1954. The distribution of C14 labeled isoniazid in normal and infected guinea pigs. Arch Int Pharmacodyn Ther 98 : 183 192.[PubMed]
10. Prideaux B,, ElNaggar MS,, Zimmerman M,, Wiseman JM,, Li X,, Dartois V . 2015. Mass spectrometry imaging of levofloxacin distribution in TB-infected pulmonary lesions by MALDI-MSI and continuous liquid microjunction surface sampling. Int J Mass Spectrom 377 : 699 708. [CrossRef]
11. Datta M,, Via LE,, Chen W,, Baish JW,, Xu L,, Barry CE III,, Jain RK . 2016. Mathematical model of oxygen transport in tuberculosis granulomas. Ann Biomed Eng 44 : 863 872. [CrossRef]
12. Via LE,, Lin PL,, Ray SM,, Carrillo J,, Allen SS,, Eum SY,, Taylor K,, Klein E,, Manjunatha U,, Gonzales J,, Lee EG,, Park SK,, Raleigh JA,, Cho SN,, McMurray DN,, Flynn JL,, Barry CE III . 2008. Tuberculous granulomas are hypoxic in guinea pigs, rabbits, and nonhuman primates. Infect Immun 76 : 2333 2340. [CrossRef]
13. Via LE,, Schimel D,, Weiner DM,, Dartois V,, Dayao E,, Cai Y,, Yoon YS,, Dreher MR,, Kastenmayer RJ,, Laymon CM,, Carny JE,, Flynn JL,, Herscovitch P,, Barry CE III . 2012. Infection dynamics and response to chemotherapy in a rabbit model of tuberculosis using [ 18F]2-fluoro-deoxy- d-glucose positron emission tomography and computed tomography. Antimicrob Agents Chemother 56 : 4391 4402. [CrossRef]
14. Prideaux B,, Via LE,, Zimmerman MD,, Eum S,, Sarathy J,, O’Brien P,, Chen C,, Kaya F,, Weiner DM,, Chen PY,, Song T,, Lee M,, Shim TS,, Cho JS,, Kim W,, Cho SN,, Olivier KN,, Barry CE III,, Dartois V . 2015. The association between sterilizing activity and drug distribution into tuberculosis lesions. Nat Med 21 : 1223 1227. [CrossRef]
15. Karakousis PC,, Yoshimatsu T,, Lamichhane G,, Woolwine SC,, Nuermberger EL,, Grosset J,, Bishai WR . 2004. Dormancy phenotype displayed by extracellular Mycobacterium tuberculosis within artificial granulomas in mice. J Exp Med 200 : 647 657. [CrossRef]
16. Goren MB,, D’Arcy Hart P,, Young MR,, Armstrong JA . 1976. Prevention of phagosome-lysosome fusion in cultured macrophages by sulfatides of Mycobacterium tuberculosis . Proc Natl Acad Sci USA 73 : 2510 2514. [CrossRef]
17. Weiss G,, Schaible UE . 2015. Macrophage defense mechanisms against intracellular bacteria. Immunol Rev 264 : 182 203. [CrossRef] [PubMed]
18. Canetti G . 1950. Exogenous reinfection and pulmonary tuberculosis a study of the pathology. Tubercle 31 : 224 233. [CrossRef] [PubMed]
19. Canetti G . 1956. Dynamic aspects of the pathology and bacteriology of tuberculous lesions. Am Rev Tuberc 74 : 13 21, discussion, 22–27.[PubMed]
20. Canetti G,, Israel R,, Hertzog P,, Daumet P,, Toty L . 1954. [Koch’s bacillus in resected tuberculous lesions after chemotherapy: 97 cases]. Poumon Coeur 10 : 465 485.[PubMed]
21. Canetti GJ . 1959. Changes in tuberculosis as seen by a pathologist. Am Rev Tuberc 79 : 684 686.[PubMed]
22. Ryan GJ,, Shapiro HM,, Lenaerts AJ . 2014. Improving acid-fast fluorescent staining for the detection of mycobacteria using a new nucleic acid staining approach. Tuberculosis (Edinb) 94 : 511 518. [CrossRef]
23. Nyka W,, O’Neill EF . 1970. A new approach to the study of non-acid-fast mycobacteria. Ann N Y Acad Sci 174( 2 Unusual Isola) : 862 871. [CrossRef]
24. Nyka W . 1977. The chromophobic tubercle bacilli and the problem of endogenous reactivation of tuberculosis. Mater Med Pol 9 : 175 185.[PubMed]
25. Nyka W . 1967. Method for staining both acid-fast and chromophobic tubercle bacilli with carbolfuschsin. J Bacteriol 93 : 1458 1460.[PubMed]
26. Nyka W . 1963. Studies on Mycobacterium tuberculosis in lesions of the human lung. A new method of staining tubercle bacilli in tissue sections. Am Rev Respir Dis 88 : 670 679.[PubMed]
27. Richards JP,, Ojha AK . 2014. Mycobacterial biofilms. Microbiol Spectr 2 : [CrossRef]
28. López D,, Vlamakis H,, Kolter R . 2010. Biofilms. Cold Spring Harb Perspect Biol 2 : a000398 [CrossRef] [PubMed]
29. Stoodley P,, Sauer K,, Davies DG,, Costerton JW . 2002. Biofilms as complex differentiated communities. Annu Rev Microbiol 56 : 187 209. [CrossRef] [PubMed]
30. Mah TF,, O’Toole GA . 2001. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9 : 34 39. [CrossRef]
31. Davies D . 2003. Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2 : 114 122. [CrossRef] [PubMed]
32. Ojha A,, Anand M,, Bhatt A,, Kremer L,, Jacobs WR Jr,, Hatfull GF . 2005. GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell 123 : 861 873. [CrossRef]
33. Ojha AK,, Baughn AD,, Sambandan D,, Hsu T,, Trivelli X,, Guerardel Y,, Alahari A,, Kremer L,, Jacobs WR Jr,, Hatfull GF . 2008. Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant bacteria. Mol Microbiol 69 : 164 174. [CrossRef]
34. Recht J,, Kolter R . 2001. Glycopeptidolipid acetylation affects sliding motility and biofilm formation in Mycobacterium smegmatis. J Bacteriol 183 : 5718 5724. [CrossRef]
35. Marsollier L,, Brodin P,, Jackson M,, Korduláková J,, Tafelmeyer P,, Carbonnelle E,, Aubry J,, Milon G,, Legras P,, André JP,, Leroy C,, Cottin J,, Guillou ML,, Reysset G,, Cole ST . 2007. Impact of Mycobacterium ulcerans biofilm on transmissibility to ecological niches and Buruli ulcer pathogenesis. PLoS Pathog 3 : e62.[CrossRef]
36. Hall-Stoodley L,, Brun OS,, Polshyna G,, Barker LP . 2006. Mycobacterium marinum biofilm formation reveals cording morphology. FEMS Microbiol Lett 257 : 43 49. [CrossRef]
37. Wong KW,, Jacobs WR Jr . 2016. postprimary tuberculosis and macrophage necrosis: is there a big conNECtion? MBio 7 : e01589-15.[CrossRef] [PubMed]
38. Orme IM . 2014. A new unifying theory of the pathogenesis of tuberculosis. Tuberculosis (Edinb) 94 : 8 14. [CrossRef]
39. Anderson GG,, Dodson KW,, Hooton TM,, Hultgren SJ . 2004. Intracellular bacterial communities of uropathogenic Escherichia coli in urinary tract pathogenesis. Trends Microbiol 12 : 424 430. [CrossRef]
40. Berry RE,, Klumpp DJ,, Schaeffer AJ . 2009. Urothelial cultures support intracellular bacterial community formation by uropathogenic Escherichia coli . Infect Immun 77 : 2762 2772. [CrossRef]
41. Hunstad DA,, Justice SS . 2010. Intracellular lifestyles and immune evasion strategies of uropathogenic Escherichia coli . Annu Rev Microbiol 64 : 203 221. [CrossRef]
42. Scott VC,, Haake DA,, Churchill BM,, Justice SS,, Kim JH . 2015. Intracellular bacterial communities: a potential etiology for chronic lower urinary tract symptoms. Urology 86 : 425 431. [CrossRef]
43. Lanoix JP,, Lenaerts AJ,, Nuermberger EL . 2015. Heterogeneous disease progression and treatment response in a C3HeB/FeJ mouse model of tuberculosis. Dis Model Mech 8 : 603 610. [CrossRef]
44. Lenaerts AJ,, Hoff D,, Aly S,, Ehlers S,, Andries K,, Cantarero L,, Orme IM,, Basaraba RJ . 2007. Location of persisting mycobacteria in a Guinea pig model of tuberculosis revealed by r207910. Antimicrob Agents Chemother 51 : 3338 3345. [CrossRef]
45. Ojha AK,, Trivelli X,, Guerardel Y,, Kremer L,, Hatfull GF . 2010. Enzymatic hydrolysis of trehalose dimycolate releases free mycolic acids during mycobacterial growth in biofilms. J Biol Chem 285 : 17380 17389. [CrossRef]
46. Basaraba RJ . 2008. Experimental tuberculosis: the role of comparative pathology in the discovery of improved tuberculosis treatment strategies. Tuberculosis (Edinb) 88( Suppl 1) : S35 S47. [CrossRef]
47. Parks QM,, Young RL,, Poch KR,, Malcolm KC,, Vasil ML,, Nick JA . 2009. Neutrophil enhancement of Pseudomonas aeruginosa biofilm development: human F-actin and DNA as targets for therapy. J Med Microbiol 58 : 492 502. [CrossRef]
48. Walker TS,, Tomlin KL,, Worthen GS,, Poch KR,, Lieber JG,, Saavedra MT,, Fessler MB,, Malcolm KC,, Vasil ML,, Nick JA . 2005. Enhanced Pseudomonas aeruginosa biofilm development mediated by human neutrophils. Infect Immun 73 : 3693 3701. [CrossRef]
49. Ackart DF,, Hascall-Dove L,, Caceres SM,, Kirk NM,, Podell BK,, Melander C,, Orme IM,, Leid JG,, Nick JA,, Basaraba RJ . 2014. Expression of antimicrobial drug tolerance by attached communities of Mycobacterium tuberculosis . Pathog Dis 70 : 359 369. [CrossRef]
50. Ackart DF,, Lindsey EA,, Podell BK,, Melander RJ,, Basaraba RJ,, Melander C . 2014. Reversal of Mycobacterium tuberculosis phenotypic drug resistance by 2-aminoimidazole-based small molecules. Pathog Dis 70 : 370 378. [CrossRef]
51. Furlani RE,, Richardson MA,, Podell BK,, Ackart DF,, Haugen JD,, Melander RJ,, Basaraba RJ,, Melander C . 2015. Second generation 2-aminoimidazole based advanced glycation end product inhibitors and breakers. Bioorg Med Chem Lett 25 : 4820 4823. [CrossRef]
52. Domenech M,, Ramos-Sevillano E,, García E,, Moscoso M,, Yuste J . 2013. Biofilm formation avoids complement immunity and phagocytosis of Streptococcus pneumoniae . Infect Immun 81 : 2606 2615. [CrossRef]
53. Hernández-Jiménez E,, Del Campo R,, Toledano V,, Vallejo-Cremades MT,, Muñoz A,, Largo C,, Arnalich F,, García-Rio F,, Cubillos-Zapata C,, López-Collazo E . 2013. Biofilm vs. planktonic bacterial mode of growth: which do human macrophages prefer? Biochem Biophys Res Commun 441 : 947 952. [CrossRef]
54. Hirschfeld J . 2014. Dynamic interactions of neutrophils and biofilms. J Oral Microbiol 6 : 26102.[CrossRef] [PubMed]
55. Ryan GJ,, Hoff DR,, Driver ER,, Voskuil MI,, Gonzalez-Juarrero M,, Basaraba RJ,, Crick DC,, Spencer JS,, Lenaerts AJ . 2010. Multiple M. tuberculosis phenotypes in mouse and guinea pig lung tissue revealed by a dual-staining approach. PLoS One 5 : e11108.[CrossRef]
56. Arciola CR . 2010. Host defense against implant infection: the ambivalent role of phagocytosis. Int J Artif Organs 33 : 565 567.[PubMed]
57. Montanaro L,, Poggi A,, Visai L,, Ravaioli S,, Campoccia D,, Speziale P,, Arciola CR . 2011. Extracellular DNA in biofilms. Int J Artif Organs 34 : 824 831. [CrossRef] [PubMed]
58. Yuan Y,, Lee RE,, Besra GS,, Belisle JT,, Barry CE III . 1995. Identification of a gene involved in the biosynthesis of cyclopropanated mycolic acids in Mycobacterium tuberculosis . Proc Natl Acad Sci USA 92 : 6630 6634. [CrossRef] [PubMed]
59. Dkhar HK,, Nanduri R,, Mahajan S,, Dave S,, Saini A,, Somavarapu AK,, Arora A,, Parkesh R,, Thakur KG,, Mayilraj S,, Gupta P . 2014. Mycobacterium tuberculosis keto-mycolic acid and macrophage nuclear receptor TR4 modulate foamy biogenesis in granulomas: a case of a heterologous and noncanonical ligand-receptor pair. J Immunol 193 : 295 305. [CrossRef]
60. Sambandan D,, Dao DN,, Weinrick BC,, Vilchèze C,, Gurcha SS,, Ojha A,, Kremer L,, Besra GS,, Hatfull GF,, Jacobs WR Jr . 2013. Keto-mycolic acid-dependent pellicle formation confers tolerance to drug-sensitive Mycobacterium tuberculosis. MBio 4 : e00222-13.[CrossRef]
61. Dubnau E,, Chan J,, Raynaud C,, Mohan VP,, Lanéelle MA,, Yu K,, Quémard A,, Smith I,, Daffé M . 2000. Oxygenated mycolic acids are necessary for virulence of Mycobacterium tuberculosis in mice. Mol Microbiol 36 : 630 637. [CrossRef]

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error