Chapter 33 : Metabolic Perspectives on Persistence

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Metabolic Perspectives on Persistence, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819569/9781555819552_Chap31-1.gif /docserver/preview/fulltext/10.1128/9781555819569/9781555819552_Chap31-2.gif


DNA evidence indicates that and humans have cohabited with one another since the emergence of as a species ( ). In humans, resides chiefly within and amidst cells of the immune system. has thus evolved in close physical and functional proximity to host immunity.

Citation: Hartman T, Wang Z, Jansen R, Gardete S, Rhee K. 2017. Metabolic Perspectives on Persistence, p 653-669. In Jacobs, Jr. W, McShane H, Mizrahi V, Orme I (ed), Tuberculosis and the Tubercle Bacillus, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.TBTB2-0026-2016
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Gutierrez MC,, Brisse S,, Brosch R,, Fabre M,, Omaïs B,, Marmiesse M,, Supply P,, Vincent V . 2005. Ancient origin and gene mosaicism of the progenitor of Mycobacterium tuberculosis . PLoS Pathog 1 : e5 [CrossRef] [PubMed]
2. Russell DG,, Barry CE III,, Flynn JL . 2010. Tuberculosis: what we don’t know can, and does, hurt us. Science 328 : 852 856 [CrossRef] [PubMed]
3. Nathan C . 2012. Fresh approaches to anti-infective therapies. Sci Transl Med 4 : 140sr2 [CrossRef] [PubMed]
4. Kester JC,, Fortune SM . 2014. Persisters and beyond: mechanisms of phenotypic drug resistance and drug tolerance in bacteria. Crit Rev Biochem Mol Biol 49 : 91 101. [CrossRef] [PubMed]
5. Ehrt S,, Rhee K . 2013. Mycobacterium tuberculosis metabolism and host interaction: mysteries and paradoxes. Curr Top Microbiol Immunol 374 : 163 188. [CrossRef] [PubMed]
6. Gomez JE,, McKinney JD . 2004. M. tuberculosis persistence, latency, and drug tolerance. Tuberculosis (Edinb) 84 : 29 44. [CrossRef] [PubMed]
7. Kalscheuer R,, Syson K,, Veeraraghavan U,, Weinrick B,, Biermann KE,, Liu Z,, Sacchettini JC,, Besra G,, Bornemann S,, Jacobs WR Jr . 2010. Self-poisoning of Mycobacterium tuberculosis by targeting GlgE in an alpha-glucan pathway. Nat Chem Biol 6 : 376 384. [CrossRef] [PubMed]
8. Venugopal A,, Bryk R,, Shi S,, Rhee K,, Rath P,, Schnappinger D,, Ehrt S,, Nathan C . 2011. Virulence of Mycobacterium tuberculosis depends on lipoamide dehydrogenase, a member of three multienzyme complexes. Cell Host Microbe 9 : 21 31. [CrossRef]
9. Eoh H,, Rhee KY . 2014. Methylcitrate cycle defines the bactericidal essentiality of isocitrate lyase for survival of Mycobacterium tuberculosis on fatty acids. Proc Natl Acad Sci USA 111 : 4976 4981. [CrossRef]
10. Intlekofer AM,, Dematteo RG,, Venneti S,, Finley LW,, Lu C,, Judkins AR,, Rustenburg AS,, Grinaway PB,, Chodera JD,, Cross JR,, Thompson CB . 2015. Hypoxia induces production of L-2-hydroxyglutarate. Cell Metab 22 : 304 311 [CrossRef] [PubMed]
11. McCune RM Jr,, McDermott W,, Tompsett R . 1956. The fate of Mycobacterium tuberculosis in mouse tissues as determined by the microbial enumeration technique. II. The conversion of tuberculous infection to the latent state by the administration of pyrazinamide and a companion drug. J Exp Med 104 : 763 802. [CrossRef]
12. Ford CB,, Shah RR,, Maeda MK,, Gagneux S,, Murray MB,, Cohen T,, Johnston JC,, Gardy J,, Lipsitch M,, Fortune SM . 2013. Mycobacterium tuberculosis mutation rate estimates from different lineages predict substantial differences in the emergence of drug-resistant tuberculosis. Nat Genet 45 : 784 790 [CrossRef]
13. Gill WP,, Harik NS,, Whiddon MR,, Liao RP,, Mittler JE,, Sherman DR . 2009. A replication clock for Mycobacterium tuberculosis . Nat Med 15 : 211 214. [CrossRef] [PubMed]
14. Stead WW,, Eisenach KD,, Cave MD,, Beggs ML,, Templeton GL,, Thoen CO,, Bates JH . 1995. When did Mycobacterium tuberculosis infection first occur in the New World? An important question with public health implications. Am J Respir Crit Care Med 151 : 1267 1268.
15. Jasmer RM,, Bozeman L,, Schwartzman K,, Cave MD,, Saukkonen JJ,, Metchock B,, Khan A,, Burman WJ , Tuberculosis Trials Consortium . 2004. Recurrent tuberculosis in the United States and Canada: relapse or reinfection? Am J Respir Crit Care Med 170 : 1360 1366. [CrossRef]
16. Hawken M,, Nunn P,, Godfrey-Faussett P,, McAdam KPWJ,, Morris J,, Odhiambo J,, Githui W,, Gilks C,, Hawken M,, Gathua S,, Nunn P,, Hawken M,, Brindle R,, Batchelor B . 1993. Increased recurrence of tuberculosis in HIV-1-infected patients in Kenya. Lancet 342 : 332 337. [CrossRef]
17. Bryant JM,, Harris SR,, Parkhill J,, Dawson R,, Diacon AH,, van Helden P,, Pym A,, Mahayiddin AA,, Chuchottaworn C,, Sanne IM,, Louw C,, Boeree MJ,, Hoelscher M,, McHugh TD,, Bateson AL,, Hunt RD,, Mwaigwisya S,, Wright L,, Gillespie SH,, Bentley SD . 2013. Whole-genome sequencing to establish relapse or re-infection with Mycobacterium tuberculosis: a retrospective observational study. Lancet Respir Med 1 : 786 792. [CrossRef]
18. Guerra-Assunção JA,, Houben RM,, Crampin AC,, Mzembe T,, Mallard K,, Coll F,, Khan P,, Banda L,, Chiwaya A,, Pereira RP,, McNerney R,, Harris D,, Parkhill J,, Clark TG,, Glynn JR . 2015. Recurrence due to relapse or reinfection with Mycobacterium tuberculosis: a whole-genome sequencing approach in a large, population-based cohort with a high HIV infection prevalence and active follow-up. J Infect Dis 211 : 1154 1163. [CrossRef]
19. Narayanan S,, Swaminathan S,, Supply P,, Shanmugam S,, Narendran G,, Hari L,, Ramachandran R,, Locht C,, Jawahar MS,, Narayanan PR . 2010. Impact of HIV infection on the recurrence of tuberculosis in South India. J Infect Dis 201 : 691 703. [CrossRef] [PubMed]
20. Crampin AC,, Mwaungulu JN,, Mwaungulu FD,, Mwafulirwa DT,, Munthali K,, Floyd S,, Fine PE,, Glynn JR . 2010. Recurrent TB: relapse or reinfection? The effect of HIV in a general population cohort in Malawi. AIDS 24 : 417 426. [CrossRef] [PubMed]
21. Vandiviere HM,, Loring WE,, Melvin I,, Willis S . 1956. The treated pulmonary lesion and its tubercle bacillus. II. The death and resurrection. Am J Med Sci 232 : 30 37, passim[CrossRef] [PubMed]
22. Zhang Y,, Mitchison D . 2003. The curious characteristics of pyrazinamide: a review. Int J Tuberc Lung Dis 7 : 6 21.[PubMed]
23. Mitchison D,, Davies G . 2012. The chemotherapy of tuberculosis: past, present and future. Int J Tuberc Lung Dis 16 : 724 732 [CrossRef] [PubMed]
24. Corper HJ,, Cohn ML . 1951. The viability and virulence of old cultures of tubercle bacilli: studies on 30-year-old broth cultures maintained at 37 degrees C. Tubercle 32 : 232 237. [CrossRef]
25. Warner DF,, Mizrahi V . 2006. Tuberculosis chemotherapy: the influence of bacillary stress and damage response pathways on drug efficacy. Clin Microbiol Rev 19 : 558 570. [CrossRef] [PubMed]
26. Keren I,, Minami S,, Rubin E,, Lewis K . 2011. Characterization and transcriptome analysis of Mycobacterium tuberculosis persisters. MBio 2 : e00100–11 [CrossRef] [PubMed]
27. Pethe K,, Sequeira PC,, Agarwalla S,, Rhee K,, Kuhen K,, Phong WY,, Patel V,, Beer D,, Walker JR,, Duraiswamy J,, Jiricek J,, Keller TH,, Chatterjee A,, Tan MP,, Ujjini M,, Rao SP,, Camacho L,, Bifani P,, Mak PA,, Ma I,, Barnes SW,, Chen Z,, Plouffe D,, Thayalan P,, Ng SH,, Au M,, Lee BH,, Tan BH,, Ravindran S,, Nanjundappa M,, Lin X,, Goh A,, Lakshminarayana SB,, Shoen C,, Cynamon M,, Kreiswirth B,, Dartois V,, Peters EC,, Glynne R,, Brenner S,, Dick T . 2010. A chemical genetic screen in Mycobacterium tuberculosis identifies carbon-source-dependent growth inhibitors devoid of in vivo efficacy. Nat Commun 1 : 57 [CrossRef]
28. Edson NL . 1951. The intermediary metabolism of the mycobacteria. Bacteriol Rev 15 : 147 182.[PubMed]
29. McDonough KA,, Kress Y,, Bloom BR . 1993. Pathogenesis of tuberculosis: interaction of Mycobacterium tuberculosis with macrophages. Infect Immun 61 : 2763 2773.[PubMed]
30. Rohde K,, Yates RM,, Purdy GE,, Russell DG . 2007. Mycobacterium tuberculosis and the environment within the phagosome. Immunol Rev 219 : 37 54. [CrossRef] [PubMed]
31. Pieters J . 2008. Mycobacterium tuberculosis and the macrophage: maintaining a balance. Cell Host Microbe 3 : 399 407 [CrossRef] [PubMed]
32. MacMicking JD,, North RJ,, LaCourse R,, Mudgett JS,, Shah SK,, Nathan CF . 1997. Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc Natl Acad Sci USA 94 : 5243 5248. [CrossRef] [PubMed]
33. MacMicking J,, Xie QW,, Nathan C . 1997. Nitric oxide and macrophage function. Annu Rev Immunol 15 : 323 350 [CrossRef] [PubMed]
34. van der Wel N,, Hava D,, Houben D,, Fluitsma D,, van Zon M,, Pierson J,, Brenner M,, Peters PJ . 2007. M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell 129 : 1287 1298. [CrossRef] [PubMed]
35. Smith I . 2003. Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin Microbiol Rev 16 : 463 496. [CrossRef] [PubMed]
36. Liu Y,, Tan S,, Huang L,, Abramovitch RB,, Rohde KH,, Zimmerman MD,, Chen C,, Dartois V,, VanderVen BC,, Russell DG . 2016. Immune activation of the host cell induces drug tolerance in Mycobacterium tuberculosis both in vitro and in vivo . J Exp Med 213 : 809 825. [CrossRef] [PubMed]
37. Connolly LE,, Edelstein PH,, Ramakrishnan L . 2007. Why is long-term therapy required to cure tuberculosis? PLoS Med 4 : e120 [CrossRef] [PubMed]
38. Wakamoto Y,, Dhar N,, Chait R,, Schneider K,, Signorino-Gelo F,, Leibler S,, McKinney JD . 2013. Dynamic persistence of antibiotic-stressed mycobacteria. Science 339 : 91 95. [CrossRef] [PubMed]
39. Maglica Ž,, Özdemir E,, McKinney JD . 2015. Single-cell tracking reveals antibiotic-induced changes in mycobacterial energy metabolism. MBio 6 : e02236–14 [CrossRef]
40. Aldridge BB,, Fernandez-Suarez M,, Heller D,, Ambravaneswaran V,, Irimia D,, Toner M,, Fortune SM . 2012. Asymmetry and aging of mycobacterial cells lead to variable growth and antibiotic susceptibility. Science 335 : 100 104. [CrossRef]
41. Barr DA,, Kamdolozi M,, Nishihara Y,, Ndhlovu V,, Khonga M,, Davies GR,, Sloan DJ . 2016. Serial image analysis of Mycobacterium tuberculosis colony growth reveals a persistent subpopulation in sputum during treatment of pulmonary TB. Tuberculosis (Edinb) 98 : 110 115. [CrossRef]
42. Murry JP,, Rubin EJ . 2005. New genetic approaches shed light on TB virulence. Trends Microbiol 13 : 366 372. [CrossRef] [PubMed]
43. Sassetti CM,, Boyd DH,, Rubin EJ . 2001. Comprehensive identification of conditionally essential genes in mycobacteria. Proc Natl Acad Sci USA 98 : 12712 12717. [CrossRef]
44. Griffin JE,, Gawronski JD,, Dejesus MA,, Ioerger TR,, Akerley BJ,, Sassetti CM . 2011. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. PLoS Pathog 7 : e1002251 [CrossRef]
45. Zhang YJ,, Ioerger TR,, Huttenhower C,, Long JE,, Sassetti CM,, Sacchettini JC,, Rubin EJ . 2012. Global assessment of genomic regions required for growth in Mycobacterium tuberculosis . PLoS Pathog 8 : e1002946 [CrossRef] [Erratum, doi:10.1371/annotation/4669e9e7-fd12-4a01-be2a-617b956ec0bb.]
46. Sassetti CM,, Boyd DH,, Rubin EJ . 2003. Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48 : 77 84. [CrossRef] [PubMed]
47. Lamichhane G,, Tyagi S,, Bishai WR . 2005. Designer arrays for defined mutant analysis to detect genes essential for survival of Mycobacterium tuberculosis in mouse lungs. Infect Immun 73 : 2533 2540. [CrossRef]
48. Fortune SM,, Chase MR,, Rubin EJ . 2006. Dividing oceans into pools: strategies for the global analysis of bacterial genes. Microbes Infect 8 : 1631 1636. [CrossRef]
49. Kruh NA,, Troudt J,, Izzo A,, Prenni J,, Dobos KM . 2010. Portrait of a pathogen: the Mycobacterium tuberculosis proteome in vivo . PLoS One 5 : e13938 [CrossRef]
50. Hisert KB,, Kirksey MA,, Gomez JE,, Sousa AO,, Cox JS,, Jacobs WR Jr,, Nathan CF,, McKinney JD . 2004. Identification of Mycobacterium tuberculosis counterimmune (cim) mutants in immunodeficient mice by differential screening. Infect Immun 72 : 5315 5321. [CrossRef]
51. Dhar N,, McKinney JD . 2010. Mycobacterium tuberculosis persistence mutants identified by screening in isoniazid-treated mice. Proc Natl Acad Sci USA 107 : 12275 12280 [CrossRef]
52. Shui W,, Gilmore SA,, Sheu L,, Liu J,, Keasling JD,, Bertozzi CR . 2009. Quantitative proteomic profiling of host-pathogen interactions: the macrophage response to Mycobacterium tuberculosis lipids. J Proteome Res 8 : 282 289. [CrossRef]
53. Bell C,, Smith GT,, Sweredoski MJ,, Hess S . 2012. Characterization of the Mycobacterium tuberculosis proteome by liquid chromatography mass spectrometry-based proteomics techniques: a comprehensive resource for tuberculosis research. J Proteome Res 11 : 119 130. [CrossRef]
54. Beste DJV,, Espasa M,, Bonde B,, Kierzek AM,, Stewart GR,, McFadden J . 2009. The genetic requirements for fast and slow growth in mycobacteria. PLoS One 4 : e5349 [CrossRef] [PubMed] [CrossRef]
55. Beste DJV,, Nöh K,, Niedenführ S,, Mendum TA,, Hawkins ND,, Ward JL,, Beale MH,, Wiechert W,, McFadden J . 2013. 13C-flux spectral analysis of host-pathogen metabolism reveals a mixed diet for intracellular Mycobacterium tuberculosis . Chem Biol 20 : 1012 1021. [CrossRef] [PubMed]
56. Darby CM,, Ingólfsson HI,, Jiang X,, Shen C,, Sun M,, Zhao N,, Burns K,, Liu G,, Ehrt S,, Warren JD,, Anderson OS,, Brickner SJ,, Nathan C . 2013. Whole cell screen for inhibitors of pH homeostasis in Mycobacterium tuberculosis . PLoS One 8 : e68942 [CrossRef] [Erratum, doi:10.1371/annotation/760b5b07-4922-42c4-b33a-162c1e9ae188.]
57. Gold B,, Warrier T,, Nathan C . 2015. A multi-stress model for high throughput screening against non-replicating Mycobacterium tuberculosis . Methods Mol Biol 1285 : 293 315 [CrossRef]
58. Gold B,, Smith R,, Nguyen Q,, Roberts J,, Ling Y,, Lopez Quezada L,, Somersan S,, Warrier T,, Little D,, Pingle M,, Zhang D,, Ballinger E,, Zimmerman M,, Dartois V,, Hanson P,, Mitscher LA,, Porubsky P,, Rogers S,, Schoenen FJ,, Nathan C,, Aubé J . 2016. Novel cephalosporins selectively active on nonreplicating Mycobacterium tuberculosis . J Med Chem 59 : 6027 6044. [CrossRef]
59. Aly S,, Wagner K,, Keller C,, Malm S,, Malzan A,, Brandau S,, Bange FC,, Ehlers S . 2006. Oxygen status of lung granulomas in Mycobacterium tuberculosis-infected mice. J Pathol 210 : 298 305. [CrossRef] [PubMed]
60. Cunningham-Bussel A,, Zhang T,, Nathan CF . 2013. Nitrite produced by Mycobacterium tuberculosis in human macrophages in physiologic oxygen impacts bacterial ATP consumption and gene expression. Proc Natl Acad Sci USA 110 : E4256 E4265. [CrossRef]
61. Heng Y,, Seah PG,, Siew JY,, Tay HC,, Singhal A,, Mathys V,, Kiass M,, Bifani P,, Dartois V,, Hervé M . 2011. Mycobacterium tuberculosis infection induces hypoxic lung lesions in the rat. Tuberculosis (Edinb) 91 : 339 341. [CrossRef]
62. Via LE,, Lin PL,, Ray SM,, Carrillo J,, Allen SS,, Eum SY,, Taylor K,, Klein E,, Manjunatha U,, Gonzales J,, Lee EG,, Park SK,, Raleigh JA,, Cho SN,, McMurray DN,, Flynn JL,, Barry CE III . 2008. Tuberculous granulomas are hypoxic in guinea pigs, rabbits, and nonhuman primates. Infect Immun 76 : 2333 2340. [CrossRef]
63. Wayne LG,, Hayes LG . 1996. An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect Immun 64 : 2062 2069.[PubMed]
64. Hartman T,, Weinrick B,, Vilchèze C,, Berney M,, Tufariello J,, Cook GM,, Jacobs WR Jr . 2014. Succinate dehydrogenase is the regulator of respiration in Mycobacterium tuberculosis . PLoS Pathog 10 : e1004510 [CrossRef]
65. Shi L,, Sohaskey CD,, Kana BD,, Dawes S,, North RJ,, Mizrahi V,, Gennaro ML . 2005. Changes in energy metabolism of Mycobacterium tuberculosis in mouse lung and under in vitro conditions affecting aerobic respiration. Proc Natl Acad Sci USA 102 : 15629 15634. [CrossRef]
66. Talaat AM,, Lyons R,, Howard ST,, Johnston SA . 2004. The temporal expression profile of Mycobacterium tuberculosis infection in mice. Proc Natl Acad Sci USA 101 : 4602 4607. [CrossRef]
67. Timm J,, Post FA,, Bekker LG,, Walther GB,, Wainwright HC,, Manganelli R,, Chan WT,, Tsenova L,, Gold B,, Smith I,, Kaplan G,, McKinney JD . 2003. Differential expression of iron-, carbon-, and oxygen-responsive mycobacterial genes in the lungs of chronically infected mice and tuberculosis patients. Proc Natl Acad Sci USA 100 : 14321 14326 [CrossRef]
68. Wayne LG . 1977. Synchronized replication of Mycobacterium tuberculosis . Infect Immun 17 : 528 530.[PubMed]
69. Wayne LG,, Sohaskey CD . 2001. Nonreplicating persistence of mycobacterium tuberculosis. Annu Rev Microbiol 55 : 139 163 [CrossRef] [PubMed]
70. McCormick CC,, Li WP,, Calero M . 2000. Oxygen tension limits nitric oxide synthesis by activated macrophages. Biochem J 350 : 709 716. [CrossRef]
71. Watanabe S,, Zimmermann M,, Goodwin MB,, Sauer U,, Barry CE III,, Boshoff HI . 2011. Fumarate reductase activity maintains an energized membrane in anaerobic Mycobacterium tuberculosis . PLoS Pathog 7 : e1002287 [CrossRef]
72. Eoh H,, Rhee KY . 2013. Multifunctional essentiality of succinate metabolism in adaptation to hypoxia in Mycobacterium tuberculosis . Proc Natl Acad Sci USA 110 : 6554 6559 [CrossRef]
73. Diacon AH,, Pym A,, Grobusch M,, Patientia R,, Rustomjee R,, Page-Shipp L,, Pistorius C,, Krause R,, Bogoshi M,, Churchyard G,, Venter A,, Allen J,, Palomino JC,, De Marez T,, van Heeswijk RP,, Lounis N,, Meyvisch P,, Verbeeck J,, Parys W,, de Beule K,, Andries K,, Mc Neeley DF . 2009. The diarylquinoline TMC207 for multidrug-resistant tuberculosis. N Engl J Med 360 : 2397 2405. [CrossRef]
74. Dawson R,, Diacon AH,, Everitt D,, van Niekerk C,, Donald PR,, Burger DA,, Schall R,, Spigelman M,, Conradie A,, Eisenach K,, Venter A,, Ive P,, Page-Shipp L,, Variava E,, Reither K,, Ntinginya NE,, Pym A,, von Groote-Bidlingmaier F,, Mendel CM . 2015. Efficiency and safety of the combination of moxifloxacin, pretomanid (PA-824), and pyrazinamide during the first 8 weeks of antituberculosis treatment: a phase 2b, open-label, partly randomised trial in patients with drug-susceptible or drug-resistant pulmonary tuberculosis. Lancet 385 : 1738 1747. [CrossRef]
75. Gler MT,, Skripconoka V,, Sanchez-Garavito E,, Xiao H,, Cabrera-Rivero JL,, Vargas-Vasquez DE,, Gao M,, Awad M,, Park SK,, Shim TS,, Suh GY,, Danilovits M,, Ogata H,, Kurve A,, Chang J,, Suzuki K,, Tupasi T,, Koh WJ,, Seaworth B,, Geiter LJ,, Wells CD . 2012. Delamanid for multidrug-resistant pulmonary tuberculosis. N Engl J Med 366 : 2151 2160. [CrossRef]
76. Preiss L,, Langer JD,, Yildiz Ö,, Eckhardt-Strelau L,, Guillemont JE,, Koul A,, Meier T . 2015. Structure of the mycobacterial ATP synthase Fo rotor ring in complex with the anti-TB drug bedaquiline. Sci Adv 1 : e1500106 [CrossRef] [PubMed]
77. Andries K,, Verhasselt P,, Guillemont J,, Göhlmann HW,, Neefs JM,, Winkler H,, Van Gestel J,, Timmerman P,, Zhu M,, Lee E,, Williams P,, de Chaffoy D,, Huitric E,, Hoffner S,, Cambau E,, Truffot-Pernot C,, Lounis N,, Jarlier V . 2005. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis . Science 307 : 223 227. [CrossRef]
78. Koul A,, Vranckx L,, Dendouga N,, Balemans W,, Van den Wyngaert I,, Vergauwen K,, Göhlmann HW,, Willebrords R,, Poncelet A,, Guillemont J,, Bald D,, Andries K . 2008. Diarylquinolines are bactericidal for dormant mycobacteria as a result of disturbed ATP homeostasis. J Biol Chem 283 : 25273 25280. [CrossRef] [PubMed]
79. Gengenbacher M,, Rao SPS,, Pethe K,, Dick T . 2010. Nutrient-starved, non-replicating Mycobacterium tuberculosis requires respiration, ATP synthase and isocitrate lyase for maintenance of ATP homeostasis and viability. Microbiology 156 : 81 87. [CrossRef]
80. Rao SPS,, Alonso S,, Rand L,, Dick T,, Pethe K . 2008. The protonmotive force is required for maintaining ATP homeostasis and viability of hypoxic, nonreplicating Mycobacterium tuberculosis . Proc Natl Acad Sci USA 105 : 11945 11950. [CrossRef]
81. Diacon AH,, Pym A,, Grobusch MP,, de los Rios JM,, Gotuzzo E,, Vasilyeva I,, Leimane V,, Andries K,, Bakare N,, De Marez T,, Haxaire-Theeuwes M,, Lounis N,, Meyvisch P,, De Paepe E,, van Heeswijk RP,, Dannemann B , TMC207-C208 Study Group . 2014. Multidrug-resistant tuberculosis and culture conversion with bedaquiline. N Engl J Med 371 : 723 732. [CrossRef]
82. Singh R,, Manjunatha U,, Boshoff HI,, Ha YH,, Niyomrattanakit P,, Ledwidge R,, Dowd CS,, Lee IY,, Kim P,, Zhang L,, Kang S,, Keller TH,, Jiricek J,, Barry CE III . 2008. PA-824 kills nonreplicating Mycobacterium tuberculosis by intracellular NO release. Science 322 : 1392 1395. [CrossRef]
83. Manjunatha U,, Boshoff HI,, Barry CE . 2009. The mechanism of action of PA-824: novel insights from transcriptional profiling. Commun Integr Biol 2 : 215 218. [CrossRef] [PubMed]
84. Stover CK,, Warrener P,, VanDevanter DR,, Sherman DR,, Arain TM,, Langhorne MH,, Anderson SW,, Towell JA,, Yuan Y,, McMurray DN,, Kreiswirth BN,, Barry CE,, Baker WR . 2000. A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature 405 : 962 966. [CrossRef]
85. Tyagi S,, Nuermberger E,, Yoshimatsu T,, Williams K,, Rosenthal I,, Lounis N,, Bishai W,, Grosset J . 2005. Bactericidal activity of the nitroimidazopyran PA-824 in a murine model of tuberculosis. Antimicrob Agents Chemother 49 : 2289 2293. [CrossRef]
86. Dawson R,, Diacon AH,, Everitt D,, van Niekerk C,, Donald PR,, Burger DA,, Schall R,, Spigelman M,, Conradie A,, Eisenach K,, Venter A,, Ive P,, Page-Shipp L,, Variava E,, Reither K,, Ntinginya NE,, Pym A,, von Groote-Bidlingmaier F,, Mendel CM . 2015. Efficiency and safety of the combination of moxifloxacin, pretomanid (PA-824), and pyrazinamide during the first 8 weeks of antituberculosis treatment: a phase 2b, open-label, partly randomised trial in patients with drug-susceptible or drug-resistant pulmonary tuberculosis. Lancet 385 : 1738 1747. [CrossRef]
87. Diacon AH,, Dawson R,, von Groote-Bidlingmaier F,, Symons G,, Venter A,, Donald PR,, van Niekerk C,, Everitt D,, Winter H,, Becker P,, Mendel CM,, Spigelman MK . 2012. 14-day bactericidal activity of PA-824, bedaquiline, pyrazinamide, and moxifloxacin combinations: a randomised trial. Lancet 380 : 986 993. [CrossRef]
88. Betts JC,, Lukey PT,, Robb LC,, McAdam RA,, Duncan K . 2002. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol 43 : 717 731. [CrossRef]
89. Rohde KH,, Abramovitch RB,, Russell DG . 2007. Mycobacterium tuberculosis invasion of macrophages: linking bacterial gene expression to environmental cues. Cell Host Microbe 2 : 352 364. [CrossRef]
90. Fisher MA,, Plikaytis BB,, Shinnick TM . 2002. Microarray analysis of the Mycobacterium tuberculosis transcriptional response to the acidic conditions found in phagosomes. J Bacteriol 184 : 4025 4032. [CrossRef]
91. Sassetti CM,, Rubin EJ . 2003. Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci USA 100 : 12989 12994. [CrossRef] [PubMed]
92. Daniel J,, Maamar H,, Deb C,, Sirakova TD,, Kolattukudy PE . 2011. Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages. PLoS Pathog 7 : e1002093 [CrossRef]
93. Garton NJ,, Waddell SJ,, Sherratt AL,, Lee SM,, Smith RJ,, Senner C,, Hinds J,, Rajakumar K,, Adegbola RA,, Besra GS,, Butcher PD,, Barer MR . 2008. Cytological and transcript analyses reveal fat and lazy persister-like bacilli in tuberculous sputum. PLoS Med 5 : e75 [CrossRef]
94. Rachman H,, Strong M,, Ulrichs T,, Grode L,, Schuchhardt J,, Mollenkopf H,, Kosmiadi GA,, Eisenberg D,, Kaufmann SH . 2006. Unique transcriptome signature of Mycobacterium tuberculosis in pulmonary tuberculosis. Infect Immun 74 : 1233 1242. [CrossRef]
95. Ward SK,, Abomoelak B,, Marcus SA,, Talaat AM . 2010. Transcriptional profiling of Mycobacterium tuberculosis during infection: lessons learned. Front Microbiol 1 : 121 [CrossRef]
96. Klotzsche M,, Ehrt S,, Schnappinger D . 2009. Improved tetracycline repressors for gene silencing in mycobacteria. Nucleic Acids Res 37 : 1778 1788. [CrossRef] [PubMed]
97. McKinney JD,, Höner zu Bentrup K,, Muñoz-Elías EJ,, Miczak A,, Chen B,, Chan WT,, Swenson D,, Sacchettini JC,, Jacobs WR Jr,, Russell DG . 2000. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406 : 735 738 [CrossRef]
98. Muñoz-Elías EJ,, McKinney JD . 2005. Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat Med 11 : 638 644. [CrossRef]
99. Gould TA,, van de Langemheen H,, Muñoz-Elías EJ,, McKinney JD,, Sacchettini JC . 2006. Dual role of isocitrate lyase 1 in the glyoxylate and methylcitrate cycles in Mycobacterium tuberculosis . Mol Microbiol 61 : 940 947 [CrossRef]
100. Upton AM,, Mushtaq A,, Victor TC,, Sampson SL,, Sandy J,, Smith DM,, van Helden PV,, Sim E . 2001. Arylamine N-acetyltransferase of Mycobacterium tuberculosis is a polymorphic enzyme and a site of isoniazid metabolism. Mol Microbiol 42 : 309 317. [CrossRef]
101. Nandakumar M,, Nathan C,, Rhee KY . 2014. Isocitrate lyase mediates broad antibiotic tolerance in Mycobacterium tuberculosis . Nat Commun 5 : 4306 [CrossRef] [PubMed]
102. Marrero J,, Rhee KY,, Schnappinger D,, Pethe K,, Ehrt S . 2010. Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for Mycobacterium tuberculosis to establish and maintain infection. Proc Natl Acad Sci USA 107 : 9819 9824. [CrossRef]
103. Machová I,, Snašel J,, Zimmermann M,, Laubitz D,, Plocinski P,, Oehlmann W,, Singh M,, Dostál J,, Sauer U,, Pichová I . 2014. Mycobacterium tuberculosis phosphoenolpyruvate carboxykinase is regulated by redox mechanisms and interaction with thioredoxin. J Biol Chem 289 : 13066 13078. [CrossRef]
104. Marrero J,, Trujillo C,, Rhee KY,, Ehrt S . 2013. Glucose phosphorylation is required for Mycobacterium tuberculosis persistence in mice. PLoS Pathog 9 : e1003116 [CrossRef]
105. Ganapathy U,, Marrero J,, Calhoun S,, Eoh H,, de Carvalho LP,, Rhee K,, Ehrt S . 2015. Two enzymes with redundant fructose bisphosphatase activity sustain gluconeogenesis and virulence in Mycobacterium tuberculosis . Nat Commun 6 : 7912 [CrossRef] [CrossRef]
106. Maksymiuk C,, Balakrishnan A,, Bryk R,, Rhee KY,, Nathan CF . 2015. E1 of α-ketoglutarate dehydrogenase defends Mycobacterium tuberculosis against glutamate anaplerosis and nitroxidative stress. Proc Natl Acad Sci USA 112 : E5834 E5843. [CrossRef] [Erratum, 112:E6257.[CrossRef]]
107. Gandotra S,, Lebron MB,, Ehrt S . 2010. The Mycobacterium tuberculosis proteasome active site threonine is essential for persistence yet dispensable for replication and resistance to nitric oxide. PLoS Pathog 6 : e1001040 [CrossRef]
108. Primm TP,, Andersen SJ,, Mizrahi V,, Avarbock D,, Rubin H,, Barry CE III . 2000. The stringent response of Mycobacterium tuberculosis is required for long-term survival. J Bacteriol 182 : 4889 4898. [CrossRef]
109. Dahl JL,, Kraus CN,, Boshoff HI,, Doan B,, Foley K,, Avarbock D,, Kaplan G,, Mizrahi V,, Rubin H,, Barry CE III . 2003. The role of RelMtb-mediated adaptation to stationary phase in long-term persistence of Mycobacterium tuberculosis in mice. Proc Natl Acad Sci USA 100 : 10026 10031 [CrossRef] [PubMed]
110. Berney M,, Berney-Meyer L,, Wong KW,, Chen B,, Chen M,, Kim J,, Wang J,, Harris D,, Parkhill J,, Chan J,, Wang F,, Jacobs WR Jr . 2015. Essential roles of methionine and S-adenosylmethionine in the autarkic lifestyle of Mycobacterium tuberculosis . Proc Natl Acad Sci USA 112 : 10008 10013 [CrossRef]
111. Glickman MS,, Cox JS,, Jacobs WR Jr . 2000. A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis . Mol Cell 5 : 717 727. [CrossRef]
112. Flentie K,, Garner AL,, Stallings CL . 2016. Mycobacterium tuberculosis transcription machinery: ready to respond to host attacks. J Bacteriol 198 : 1360 1373. [CrossRef]
113. Mak PA,, Rao SP,, Ping Tan M,, Lin X,, Chyba J,, Tay J,, Ng SH,, Tan BH,, Cherian J,, Duraiswamy J,, Bifani P,, Lim V,, Lee BH,, Ling Ma N,, Beer D,, Thayalan P,, Kuhen K,, Chatterjee A,, Supek F,, Glynne R,, Zheng J,, Boshoff HI,, Barry CE III,, Dick T,, Pethe K,, Camacho LR . 2012. A high-throughput screen to identify inhibitors of ATP homeostasis in non-replicating Mycobacterium tuberculosis . ACS Chem Biol 7 : 1190 1197. [CrossRef]
114. Rao V,, Fujiwara N,, Porcelli SA,, Glickman MS . 2005. Mycobacterium tuberculosis controls host innate immune activation through cyclopropane modification of a glycolipid effector molecule. J Exp Med 201 : 535 543. [CrossRef]
115. Bloch H,, Segal W . 1956. Biochemical differentiation of Mycobacterium tuberculosis grown in vivo and in vitro . J Bacteriol 72 : 132 141.[PubMed]
116. Cole ST,, Brosch R,, Parkhill J,, Garnier T,, Churcher C,, Harris D,, Gordon SV,, Eiglmeier K,, Gas S,, Barry CE III,, Tekaia F,, Badcock K,, Basham D,, Brown D,, Chillingworth T,, Connor R,, Davies R,, Devlin K,, Feltwell T,, Gentles S,, Hamlin N,, Holroyd S,, Hornsby T,, Jagels K,, Krogh A,, McLean J,, Moule S,, Murphy L,, Oliver K,, Osborne J,, Quail MA,, Rajandream MA,, Rogers J,, Rutter S,, Seeger K,, Skelton J,, Squares R,, Squares S,, Sulston JE,, Taylor K,, Whitehead S,, Barrell BG . 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393 : 537 544. [CrossRef]
117. Williams KJ,, Boshoff HI,, Krishnan N,, Gonzales J,, Schnappinger D,, Robertson BD . 2011. The Mycobacterium tuberculosis β-oxidation genes echA5 and fadB3 are dispensable for growth in vitro and in vivo . Tuberculosis (Edinb) 91 : 549 555. [CrossRef] [PubMed]
118. Daniel J,, Deb C,, Dubey VS,, Sirakova TD,, Abomoelak B,, Morbidoni HR,, Kolattukudy PE . 2004. Induction of a novel class of diacylglycerol acyltransferases and triacylglycerol accumulation in Mycobacterium tuberculosis as it goes into a dormancy-like state in culture. J Bacteriol 186 : 5017 5030. [CrossRef]
119. Pandey AK,, Sassetti CM . 2008. Mycobacterial persistence requires the utilization of host cholesterol. Proc Natl Acad Sci USA 105 : 4376 4380. [CrossRef] [Erratum, 105:9130.[CrossRef]] [PubMed]
120. Griffin JE,, Pandey AK,, Gilmore SA,, Mizrahi V,, McKinney JD,, Bertozzi CR,, Sassetti CM . 2012. Cholesterol catabolism by Mycobacterium tuberculosis requires transcriptional and metabolic adaptations. Chem Biol 19 : 218 227. [CrossRef]
121. Nesbitt NM,, Yang X,, Fontán P,, Kolesnikova I,, Smith I,, Sampson NS,, Dubnau E . 2010. A thiolase of Mycobacterium tuberculosis is required for virulence and production of androstenedione and androstadienedione from cholesterol. Infect Immun 78 : 275 282. [CrossRef]
122. Yang X,, Gao J,, Smith I,, Dubnau E,, Sampson NS . 2011. Cholesterol is not an essential source of nutrition for Mycobacterium tuberculosis during infection. J Bacteriol 193 : 1473 1476. [CrossRef] [PubMed]
123. Kim J-H,, O’Brien KM,, Sharma R,, Boshoff HI,, Rehren G,, Chakraborty S,, Wallach JB,, Monteleone M,, Wilson DJ,, Aldrich CC,, Barry CE III,, Rhee KY,, Ehrt S,, Schnappinger D . 2013. A genetic strategy to identify targets for the development of drugs that prevent bacterial persistence. Proc Natl Acad Sci USA 110 : 19095 19100. [CrossRef]
124. Woong Park S,, Klotzsche M,, Wilson DJ,, Boshoff HI,, Eoh H,, Manjunatha U,, Blumenthal A,, Rhee K,, Barry CE III,, Aldrich CC,, Ehrt S,, Schnappinger D . 2011. Evaluating the sensitivity of Mycobacterium tuberculosis to biotin deprivation using regulated gene expression. PLoS Pathog 7 : e1002264 [CrossRef]
125. Wayne LG,, Lin KY . 1982. Glyoxylate metabolism and adaptation of Mycobacterium tuberculosis to survival under anaerobic conditions. Infect Immun 37 : 1042 1049.[PubMed]
126. Schubert OT,, Mouritsen J,, Ludwig C,, Röst HL,, Rosenberger G,, Arthur PK,, Claassen M,, Campbell DS,, Sun Z,, Farrah T,, Gengenbacher M,, Maiolica A,, Kaufmann SH,, Moritz RL,, Aebersold R . 2013. The Mtb proteome library: a resource of assays to quantify the complete proteome of Mycobacterium tuberculosis . Cell Host Microbe 13 : 602 612. [CrossRef]
127. Ortega C,, Liao R,, Anderson LN,, Rustad T,, Ollodart AR,, Wright AT,, Sherman DR,, Grundner C . 2014. Mycobacterium tuberculosis Ser/Thr protein kinase B mediates an oxygen-dependent replication switch. PLoS Biol 12 : e1001746 [CrossRef]
128. Galagan JE,, Minch K,, Peterson M,, Lyubetskaya A,, Azizi E,, Sweet L,, Gomes A,, Rustad T,, Dolganov G,, Glotova I,, Abeel T,, Mahwinney C,, Kennedy AD,, Allard R,, Brabant W,, Krueger A,, Jaini S,, Honda B,, Yu WH,, Hickey MJ,, Zucker J,, Garay C,, Weiner B,, Sisk P,, Stolte C,, Winkler JK,, Van de Peer Y,, Iazzetti P,, Camacho D,, Dreyfuss J,, Liu Y,, Dorhoi A,, Mollenkopf HJ,, Drogaris P,, Lamontagne J,, Zhou Y,, Piquenot J,, Park ST,, Raman S,, Kaufmann SH,, Mohney RP,, Chelsky D,, Moody DB,, Sherman DR,, Schoolnik GK . 2013. The Mycobacterium tuberculosis regulatory network and hypoxia. Nature 499 : 178 183. [CrossRef]
129. Baek S-H,, Li AH,, Sassetti CM . 2011. Metabolic regulation of mycobacterial growth and antibiotic sensitivity. PLoS Biol 9 : e1001065 [CrossRef] [PubMed]
130. Shi L,, Sohaskey CD,, Pheiffer C,, Datta P,, Parks M,, McFadden J,, North RJ,, Gennaro ML . 2010. Carbon flux rerouting during Mycobacterium tuberculosis growth arrest. Mol Microbiol 78 : 1199 1215. [CrossRef] [Erratum, 99:1179.]
131. Bertram R,, Prax M . 2014. Metabolic aspects of bacterial persister cells. Front Cell Infect Microbiol 4 : 1 6.[PubMed]
132. Allison KR,, Brynildsen MP,, Collins JJ . 2011. Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature 473 : 216 220. [CrossRef] [PubMed]
133. Orman MA,, Brynildsen MP . 2015. Inhibition of stationary phase respiration impairs persister formation in E. coli . Nat Commun 6 : 7983 [CrossRef]
134. Schuetz R,, Kuepfer L,, Sauer U . 2007. Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli . Mol Syst Biol 3 : 119 [CrossRef]
135. Dutta NK,, Bandyopadhyay N,, Veeramani B,, Lamichhane G,, Karakousis PC,, Bader JS . 2014. Systems biology-based identification of Mycobacterium tuberculosis persistence genes in mouse lungs. MBio 5 : e01066-13 [CrossRef]


Generic image for table
Table 1

Predicted essential genes for survival of at 8 weeks that are not significantly inhibited at 4 weeks

Citation: Hartman T, Wang Z, Jansen R, Gardete S, Rhee K. 2017. Metabolic Perspectives on Persistence, p 653-669. In Jacobs, Jr. W, McShane H, Mizrahi V, Orme I (ed), Tuberculosis and the Tubercle Bacillus, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.TBTB2-0026-2016

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error