Chapter 33 : in the Face of Host-Imposed Nutrient Limitation

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

in the Face of Host-Imposed Nutrient Limitation, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819569/9781555819552_Chap33-1.gif /docserver/preview/fulltext/10.1128/9781555819569/9781555819552_Chap33-2.gif


Interactions of bacteria with the human host are, in the vast majority of cases, beneficial for both partners ( ). In fact, humans are dependent on their microbial associates for nutrition, defense, and development ( ). However, a minority of bacteria use the human organism as a vessel to proliferate and spread and, as a consequence, leave behind collateral damage of varying degrees. These so-called pathogens have typically evolved to inhabit niches in the human body with little competition from their commensal counterparts ( ). Many of these human pathogens are intracellular bacteria, meaning that their preferred niche of proliferation and persistence is within human cells. Intracellular pathogens invade phagocytic or nonphagocytic host cells, where they replicate in specialized phagosomal compartments or in the cytosol. After having made their way into their preferred niche, they try to benefit from host nutrients and other metabolites to satisfy their bioenergetic and biosynthetic requirements ( ). The dynamic metabolic interplay between pathogen and host is essential for virulence, disease progression, and infection control.

Citation: Berney M, Berney-Meyer L. 2017. in the Face of Host-Imposed Nutrient Limitation, p 699-715. In Jacobs, Jr. W, McShane H, Mizrahi V, Orme I (ed), Tuberculosis and the Tubercle Bacillus, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.TBTB2-0030-2016
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Chaston J,, Goodrich-Blair H . 2010. Common trends in mutualism revealed by model associations between invertebrates and bacteria. FEMS Microbiol Rev 34 : 41 58. [CrossRef]
2. Cambier CJ,, Falkow S,, Ramakrishnan L . 2014. Host evasion and exploitation schemes of Mycobacterium tuberculosis . Cell 159 : 1497 1509. [CrossRef]
3. Eisenreich W,, Heesemann J,, Rudel T,, Goebel W . 2013. Metabolic host responses to infection by intracellular bacterial pathogens. Front Cell Infect Microbiol 3 : 24.[CrossRef]
4. Zhang YJ,, Rubin EJ . 2013. Feast or famine: the host-pathogen battle over amino acids. Cell Microbiol 15 : 1079 1087. [CrossRef]
5. Appelberg R . 2006. Macrophage nutriprive antimicrobial mechanisms. J Leukoc Biol 79 : 1117 1128. [CrossRef]
6. Hood MI,, Skaar EP . 2012. Nutritional immunity: transition metals at the pathogen-host interface. Nat Rev Microbiol 10 : 525 537. [CrossRef]
7. Zhang YJ,, Reddy MC,, Ioerger TR,, Rothchild AC,, Dartois V,, Schuster BM,, Trauner A,, Wallis D,, Galaviz S,, Huttenhower C,, Sacchettini JC,, Behar SM,, Rubin EJ . 2013. Tryptophan biosynthesis protects mycobacteria from CD4 T-cell-mediated killing. Cell 155 : 1296 1308. [CrossRef]
8. Barber MF,, Elde NC . 2014. Escape from bacterial iron piracy through rapid evolution of transferrin. Science 346 : 1362 1366. [CrossRef]
9. Kehl-Fie TE,, Skaar EP . 2010. Nutritional immunity beyond iron: a role for manganese and zinc. Curr Opin Chem Biol 14 : 218 224. [CrossRef]
10. MacMicking JD . 2014. Cell-autonomous effector mechanisms against mycobacterium tuberculosis. Cold Spring Harb Perspect Med 4 : a018507.[CrossRef]
11. Michelucci A,, Cordes T,, Ghelfi J,, Pailot A,, Reiling N,, Goldmann O,, Binz T,, Wegner A,, Tallam A,, Rausell A,, Buttini M,, Linster CL,, Medina E,, Balling R,, Hiller K . 2013. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc Natl Acad Sci USA 110 : 7820 7825. [CrossRef]
12. Tattoli I,, Sorbara MT,, Vuckovic D,, Ling A,, Soares F,, Carneiro LA,, Yang C,, Emili A,, Philpott DJ,, Girardin SE . 2012. Amino acid starvation induced by invasive bacterial pathogens triggers an innate host defense program. Cell Host Microbe 11 : 563 575. [CrossRef]
13. Silva NM,, Rodrigues CV,, Santoro MM,, Reis LF,, Alvarez-Leite JI,, Gazzinelli RT . 2002. Expression of indoleamine 2,3-dioxygenase, tryptophan degradation, and kynurenine formation during in vivo infection with Toxoplasma gondii: induction by endogenous gamma interferon and requirement of interferon regulatory factor 1. Infect Immun 70 : 859 868. [CrossRef]
14. Fujigaki S,, Saito K,, Takemura M,, Maekawa N,, Yamada Y,, Wada H,, Seishima M . 2002. l-tryptophan- l-kynurenine pathway metabolism accelerated by Toxoplasma gondii infection is abolished in gamma interferon-gene-deficient mice: cross-regulation between inducible nitric oxide synthase and indoleamine-2,3-dioxygenase. Infect Immun 70 : 779 786. [CrossRef]
15. Rottenberg ME,, Gigliotti Rothfuchs A,, Gigliotti D,, Ceausu M,, Une C,, Levitsky V,, Wigzell H . 2000. Regulation and role of IFN-gamma in the innate resistance to infection with Chlamydia pneumoniae . J Immunol 164 : 4812 4818. [CrossRef]
16. Price CT,, Richards AM,, Von Dwingelo JE,, Samara HA,, Abu Kwaik Y . 2014. Amoeba host- Legionella synchronization of amino acid auxotrophy and its role in bacterial adaptation and pathogenic evolution. Environ Microbiol 16 : 330 338. [CrossRef]
17. Meibom KL,, Charbit A . 2010. Francisella tularensis metabolism and its relation to virulence. Front Microbiol 1 : 140.[CrossRef]
18. Schneebeli R,, Egli T . 2013. A defined, glucose-limited mineral medium for the cultivation of Listeria spp. Appl Environ Microbiol 79 : 2503 2511. [CrossRef]
19. Abu Kwaik Y,, Bumann D . 2013. Microbial quest for food in vivo: ‘nutritional virulence’ as an emerging paradigm. Cell Microbiol 15 : 882 890. [CrossRef]
20. Flynn JL,, Chan J,, Lin PL . 2011. Macrophages and control of granulomatous inflammation in tuberculosis. Mucosal Immunol 4 : 271 278. [CrossRef]
21. Comas I,, Coscolla M,, Luo T,, Borrell S,, Holt KE,, Kato-Maeda M,, Parkhill J,, Malla B,, Berg S,, Thwaites G,, Yeboah-Manu D,, Bothamley G,, Mei J,, Wei L,, Bentley S,, Harris SR,, Niemann S,, Diel R,, Aseffa A,, Gao Q,, Young D,, Gagneux S . 2013. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat Genet 45 : 1176 1182. [CrossRef]
22. Cambier CJ,, Takaki KK,, Larson RP,, Hernandez RE,, Tobin DM,, Urdahl KB,, Cosma CL,, Ramakrishnan L . 2014. Mycobacteria manipulate macrophage recruitment through coordinated use of membrane lipids. Nature 505 : 218 222. [CrossRef]
23. van der Wel N,, Hava D,, Houben D,, Fluitsma D,, van Zon M,, Pierson J,, Brenner M,, Peters PJ . 2007. M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell 129 : 1287 1298. [CrossRef]
24. Davis JM,, Ramakrishnan L . 2009. The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell 136 : 37 49. [CrossRef]
25. Clay H,, Davis JM,, Beery D,, Huttenlocher A,, Lyons SE,, Ramakrishnan L . 2007. Dichotomous role of the macrophage in early Mycobacterium marinum infection of the zebrafish. Cell Host Microbe 2 : 29 39. [CrossRef]
26. Fortune SM,, Rubin EJ . 2007. The complex relationship between mycobacteria and macrophages: it’s not all bliss. Cell Host Microbe 2 : 5 6. [CrossRef]
27. Eisenreich W,, Dandekar T,, Heesemann J,, Goebel W . 2010. Carbon metabolism of intracellular bacterial pathogens and possible links to virulence. Nat Rev Microbiol 8 : 401 412. [CrossRef]
28. Fuchs TM,, Eisenreich W,, Heesemann J,, Goebel W . 2012. Metabolic adaptation of human pathogenic and related nonpathogenic bacteria to extra- and intracellular habitats. FEMS Microbiol Rev 36 : 433 462. [CrossRef]
29. Cheng J,, Che N,, Li H,, Ma K,, Wu S,, Fang J,, Rong Gao JL,, Yan X,, Fangting CL,, Dong F . 2013. Gas chromatography time-of-flight mass-spectrometry-based metabolomic analysis of human macrophages infected by M. tuberculosis . Anal Lett 46 : 1922 1936. [CrossRef]
30. Beste DJ,, Nöh K,, Niedenführ S,, Mendum TA,, Hawkins ND,, Ward JL,, Beale MH,, Wiechert W,, McFadden J . 2013. 13C-flux spectral analysis of host-pathogen metabolism reveals a mixed diet for intracellular Mycobacterium tuberculosis . Chem Biol 20 : 1012 1021. [CrossRef]
31. Gouzy A,, Larrouy-Maumus G,, Bottai D,, Levillain F,, Dumas A,, Wallach JB,, Caire-Brandli I,, de Chastellier C,, Wu TD,, Poincloux R,, Brosch R,, Guerquin-Kern JL,, Schnappinger D,, Sório de Carvalho LP,, Poquet Y,, Neyrolles O . 2014. Mycobacterium tuberculosis exploits asparagine to assimilate nitrogen and resist acid stress during infection. PLoS Pathog 10 : e1003928. [CrossRef]
32. Gouzy A,, Larrouy-Maumus G,, Wu TD,, Peixoto A,, Levillain F,, Lugo-Villarino G,, Guerquin-Kern JL,, de Carvalho LP,, Poquet Y,, Neyrolles O . 2013. Mycobacterium tuberculosis nitrogen assimilation and host colonization require aspartate. Nat Chem Biol 9 : 674 676. [CrossRef]
33. de Carvalho LP,, Fischer SM,, Marrero J,, Nathan C,, Ehrt S,, Rhee KY . 2010. Metabolomics of Mycobacterium tuberculosis reveals compartmentalized co-catabolism of carbon substrates. Chem Biol 17 : 1122 1131. [CrossRef]
34. Noy T,, Vergnolle O,, Hartman TE,, Rhee KY,, Jacobs WR Jr,, Berney M,, Blanchard JS . 2016. Central role of pyruvate kinase in carbon co-catabolism of Mycobacterium tuberculosis . J Biol Chem 291 : 7060 7069. [CrossRef]
35. Mehrotra P,, Jamwal SV,, Saquib N,, Sinha N,, Siddiqui Z,, Manivel V,, Chatterjee S,, Rao KV . 2014. Pathogenicity of Mycobacterium tuberculosis is expressed by regulating metabolic thresholds of the host macrophage. PLoS Pathog 10 : e1004265.[CrossRef]
36. Watrous JD,, Dorrestein PC . 2011. Imaging mass spectrometry in microbiology. Nat Rev Microbiol 9 : 683 694. [CrossRef]
37. Marakalala MJ,, Raju RM,, Sharma K,, Zhang YJ,, Eugenin EA,, Prideaux B,, Daudelin IB,, Chen PY,, Booty MG,, Kim JH,, Eum SY,, Via LE,, Behar SM,, Barry CE III,, Mann M,, Dartois V,, Rubin EJ . 2016. Inflammatory signaling in human tuberculosis granulomas is spatially organized. Nat Med 22 : 531 538. [CrossRef]
38. Prideaux B,, Via LE,, Zimmerman MD,, Eum S,, Sarathy J,, O’Brien P,, Chen C,, Kaya F,, Weiner DM,, Chen PY,, Song T,, Lee M,, Shim TS,, Cho JS,, Kim W,, Cho SN,, Olivier KN,, Barry CE III,, Dartois V . 2015. The association between sterilizing activity and drug distribution into tuberculosis lesions. Nat Med 21 : 1223 1227. [CrossRef]
39. Fletcher JS,, Kotze HL,, Armitage EG,, Lockyer NP,, Vickerman JC . 2013. Evaluating the challenges associated with time-of-flight secondary ion mass spectrometry for metabolomics using pure and mixed metabolites. Metabolomics 9 : 533 544. [CrossRef]
40. Shin JH,, Yang JY,, Jeon BY,, Yoon YJ,, Cho SN,, Kang YH,, Ryu DH,, Hwang GS . 2011. (1)H NMR-based metabolomic profiling in mice infected with Mycobacterium tuberculosis . J Proteome Res 10 : 2238 2247.[PubMed]
41. Somashekar BS,, Amin AG,, Rithner CD,, Troudt J,, Basaraba R,, Izzo A,, Crick DC,, Chatterjee D . 2011. Metabolic profiling of lung granuloma in Mycobacterium tuberculosis infected guinea pigs: ex vivo 1H magic angle spinning NMR studies. J Proteome Res 10 : 4186 4195. [CrossRef]
42. Lederberg J,, Tatum EL . 1953. Sex in bacteria; genetic studies, 1945–1952. Science 118 : 169 175. [CrossRef]
43. Lederberg J,, Tatum EL . 1946. Gene recombination in Escherichia coli . Nature 158 : 558.[CrossRef]
44. Lederberg J,, Tatum EL . 1946. Detection of biochemical mutants of microorganisms. J Biol Chem 165 : 381. [PubMed]
45. Tatum EL,, Lederberg J . 1947. Gene recombination in the bacterium Escherichia coli . J Bacteriol 53 : 673 684.[PubMed]
46. Davis BD . 1950. Nonfiltrability of the agents of genetic recombination in Escherichia coli . J Bacteriol 60 : 507 508.[PubMed]
47. McAdam RA,, Weisbrod TR,, Martin J,, Scuderi JD,, Brown AM,, Cirillo JD,, Bloom BR,, Jacobs WR Jr . 1995. In vivo growth characteristics of leucine and methionine auxotrophic mutants of Mycobacterium bovis BCG generated by transposon mutagenesis. Infect Immun 63 : 1004 1012.[PubMed]
48. Parish T,, Gordhan BG,, McAdam RA,, Duncan K,, Mizrahi V,, Stoker NG . 1999. Production of mutants in amino acid biosynthesis genes of Mycobacterium tuberculosis by homologous recombination. Microbiology 145 : 3497 3303. [CrossRef]
49. Hondalus MK,, Bardarov S,, Russell R,, Chan J,, Jacobs WR Jr,, Bloom BR . 2000. Attenuation of and protection induced by a leucine auxotroph of Mycobacterium tuberculosis . Infect Immun 68 : 2888 2898. [CrossRef]
50. Smith DA,, Parish T,, Stoker NG,, Bancroft GJ . 2001. Characterization of auxotrophic mutants of Mycobacterium tuberculosis and their potential as vaccine candidates. Infect Immun 69 : 1142 1150. [CrossRef]
51. Woong Park S,, Klotzsche M,, Wilson DJ,, Boshoff HI,, Eoh H,, Manjunatha U,, Blumenthal A,, Rhee K,, Barry CE III,, Aldrich CC,, Ehrt S,, Schnappinger D . 2011. Evaluating the sensitivity of Mycobacterium tuberculosis to biotin deprivation using regulated gene expression. PLoS Pathog 7 : e1002264.[CrossRef]
52. Dick T,, Manjunatha U,, Kappes B,, Gengenbacher M . 2010. Vitamin B6 biosynthesis is essential for survival and virulence of Mycobacterium tuberculosis . Mol Microbiol 78 : 980 988. [CrossRef]
53. Pavelka MS Jr,, Chen B,, Kelley CL,, Collins FM,, Jacobs WR Jr . 2003. Vaccine efficacy of a lysine auxotroph of Mycobacterium tuberculosis . Infect Immun 71 : 4190 4192. [CrossRef]
54. Vilchèze C,, Weinrick B,, Wong KW,, Chen B,, Jacobs WR Jr . 2010. NAD+ auxotrophy is bacteriocidal for the tubercle bacilli. Mol Microbiol 76 : 365 377. [CrossRef]
55. Gordhan BG,, Smith DA,, Alderton H,, McAdam RA,, Bancroft GJ,, Mizrahi V . 2002. Construction and phenotypic characterization of an auxotrophic mutant of Mycobacterium tuberculosis defective in l-arginine biosynthesis. Infect Immun 70 : 3080 3084. [CrossRef]
56. Sambandamurthy VK,, Wang X,, Chen B,, Russell RG,, Derrick S,, Collins FM,, Morris SL,, Jacobs WR Jr . 2002. A pantothenate auxotroph of Mycobacterium tuberculosis is highly attenuated and protects mice against tuberculosis. Nat Med 8 : 1171 1174. [CrossRef]
57. Berney M,, Berney-Meyer L,, Wong KW,, Chen B,, Chen M,, Kim J,, Wang J,, Harris D,, Parkhill J,, Chan J,, Wang F,, Jacobs WR Jr . 2015. Essential roles of methionine and S-adenosylmethionine in the autarkic lifestyle of Mycobacterium tuberculosis . Proc Natl Acad Sci USA 112 : 10008 10013. [CrossRef]
58. Jain P,, Hsu T,, Arai M,, Biermann K,, Thaler DS,, Nguyen A,, González PA,, Tufariello JM,, Kriakov J,, Chen B,, Larsen MH,, Jacobs WR Jr . 2014. Specialized transduction designed for precise high-throughput unmarked deletions in Mycobacterium tuberculosis . MBio 5 : e01245-14 [CrossRef]
59. Thompson RW,, Pesce JT,, Ramalingam T,, Wilson MS,, White S,, Cheever AW,, Ricklefs SM,, Porcella SF,, Li L,, Ellies LG,, Wynn TA . 2008. Cationic amino acid transporter-2 regulates immunity by modulating arginase activity. PLoS Pathog 4 : e1000023.[CrossRef]
60. Murray PJ . 2016. Amino acid auxotrophy as a system of immunological control nodes. Nat Immunol 17 : 132 139. [CrossRef]
61. Qualls JE,, Murray PJ . 2016. Immunometabolism within the tuberculosis granuloma: amino acids, hypoxia, and cellular respiration. Semin Immunopathol 38 : 139 152. [CrossRef]
62. El Kasmi KC,, Qualls JE,, Pesce JT,, Smith AM,, Thompson RW,, Henao-Tamayo M,, Basaraba RJ,, König T,, Schleicher U,, Koo MS,, Kaplan G,, Fitzgerald KA,, Tuomanen EI,, Orme IM,, Kanneganti TD,, Bogdan C,, Wynn TA,, Murray PJ . 2008. Toll-like receptor-induced arginase 1 in macrophages thwarts effective immunity against intracellular pathogens. Nat Immunol 9 : 1399 1406. [CrossRef]
63. Senaratne RH,, De Silva AD,, Williams SJ,, Mougous JD,, Reader JR,, Zhang T,, Chan S,, Sidders B,, Lee DH,, Chan J,, Bertozzi CR,, Riley LW . 2006. 5′-Adenosinephosphosulphate reductase (CysH) protects Mycobacterium tuberculosis against free radicals during chronic infection phase in mice. Mol Microbiol 59 : 1744 1753. [CrossRef]
64. Wooff E,, Michell SL,, Gordon SV,, Chambers MA,, Bardarov S,, Jacobs WR Jr,, Hewinson RG,, Wheeler PR . 2002. Functional genomics reveals the sole sulphate transporter of the Mycobacterium tuberculosis complex and its relevance to the acquisition of sulphur in vivo . Mol Microbiol 43 : 653 663. [CrossRef]
65. Hwang BJ,, Yeom HJ,, Kim Y,, Lee HS . 2002. Corynebacterium glutamicum utilizes both transsulfuration and direct sulfhydrylation pathways for methionine biosynthesis. J Bacteriol 184 : 1277 1286. [CrossRef]
66. Parish T . 2003. Starvation survival response of Mycobacterium tuberculosis . J Bacteriol 185 : 6702 6706. [CrossRef]
67. Berney M,, Weimar MR,, Heikal A,, Cook GM . 2012. Regulation of proline metabolism in mycobacteria and its role in carbon metabolism under hypoxia. Mol Microbiol 84 : 664 681. [CrossRef]
68. Lagautriere T,, Bashiri G,, Paterson NG,, Berney M,, Cook GM,, Baker EN . 2014. Characterization of the proline-utilization pathway in Mycobacterium tuberculosis through structural and functional studies. Acta Crystallogr D Biol Crystallogr 70 : 968 980. [CrossRef]
69. Pavelka MS Jr,, Jacobs WR Jr . 1999. Comparison of the construction of unmarked deletion mutations in Mycobacterium smegmatis, Mycobacterium bovis bacillus Calmette-Guérin, and Mycobacterium tuberculosis H37Rv by allelic exchange. J Bacteriol 181 : 4780 4789.[PubMed]
70. Sambandamurthy VK,, Derrick SC,, Jalapathy KV,, Chen B,, Russell RG,, Morris SL,, Jacobs WR Jr . 2005. Long-term protection against tuberculosis following vaccination with a severely attenuated double lysine and pantothenate auxotroph of Mycobacterium tuberculosis . Infect Immun 73 : 1196 1203. [CrossRef]
71. Larsen MH,, Biermann K,, Chen B,, Hsu T,, Sambandamurthy VK,, Lackner AA,, Aye PP,, Didier P,, Huang D,, Shao L,, Wei H,, Letvin NL,, Frothingham R,, Haynes BF,, Chen ZW,, Jacobs WR Jr . 2009. Efficacy and safety of live attenuated persistent and rapidly cleared Mycobacterium tuberculosis vaccine candidates in non-human primates. Vaccine 27 : 4709 4717. [CrossRef]
72. Covarrubias AS,, Högbom M,, Bergfors T,, Carroll P,, Mannerstedt K,, Oscarson S,, Parish T,, Jones TA,, Mowbray SL . 2008. Structural, biochemical, and in vivo investigations of the threonine synthase from Mycobacterium tuberculosis . J Mol Biol 381 : 622 633. [CrossRef]
73. Sampson SL,, Dascher CC,, Sambandamurthy VK,, Russell RG,, Jacobs WR Jr,, Bloom BR,, Hondalus MK . 2004. Protection elicited by a double leucine and pantothenate auxotroph of Mycobacterium tuberculosis in guinea pigs. Infect Immun 72 : 3031 3037. [CrossRef]
74. Awasthy D,, Gaonkar S,, Shandil RK,, Yadav R,, Bharath S,, Marcel N,, Subbulakshmi V,, Sharma U . 2009. Inactivation of the ilvB1 gene in Mycobacterium tuberculosis leads to branched-chain amino acid auxotrophy and attenuation of virulence in mice. Microbiology 155 : 2978 2987. [CrossRef]
75. Wherry JC,, Schreiber RD,, Unanue ER . 1991. Regulation of gamma interferon production by natural killer cells in scid mice: roles of tumor necrosis factor and bacterial stimuli. Infect Immun 59 : 1709 1715.[PubMed]
76. Hayward AR,, Chmura K,, Cosyns M . 2000. Interferon-gamma is required for innate immunity to Cryptosporidium parvum in mice. J Infect Dis 182 : 1001 1004. [CrossRef]
77. Bell LV,, Else KJ . 2011. Regulation of colonic epithelial cell turnover by IDO contributes to the innate susceptibility of SCID mice to Trichuris muris infection. Parasite Immunol 33 : 244 249. [CrossRef]
78. Harth G,, Maslesa-Galić S,, Tullius MV,, Horwitz MA . 2005. All four Mycobacterium tuberculosis glnA genes encode glutamine synthetase activities but only GlnA1 is abundantly expressed and essential for bacterial homeostasis. Mol Microbiol 58 : 1157 1172. [CrossRef]
79. Tullius MV,, Harth G,, Horwitz MA . 2003. Glutamine synthetase GlnA1 is essential for growth of Mycobacterium tuberculosis in human THP-1 macrophages and guinea pigs. Infect Immun 71 : 3927 3936. [CrossRef]
80. Harth G,, Horwitz MA . 2003. Inhibition of Mycobacterium tuberculosis glutamine synthetase as a novel antibiotic strategy against tuberculosis: demonstration of efficacy in vivo . Infect Immun 71 : 456 464. [CrossRef]
81. Tullius MV,, Harth G,, Horwitz MA . 2001. High extracellular levels of Mycobacterium tuberculosis glutamine synthetase and superoxide dismutase in actively growing cultures are due to high expression and extracellular stability rather than to a protein-specific export mechanism. Infect Immun 69 : 6348 6363. [CrossRef]
82. Mowbray SL,, Kathiravan MK,, Pandey AA,, Odell LR . 2014. Inhibition of glutamine synthetase: a potential drug target in Mycobacterium tuberculosis . Molecules 19 : 13161 13176. [CrossRef]
83. Gouzy A,, Poquet Y,, Neyrolles O . 2014. Nitrogen metabolism in Mycobacterium tuberculosis physiology and virulence. Nat Rev Microbiol 12 : 729 737. [CrossRef]
84. Doucette CD,, Schwab DJ,, Wingreen NS,, Rabinowitz JD . 2011. α-Ketoglutarate coordinates carbon and nitrogen utilization via enzyme I inhibition. Nat Chem Biol 7 : 894 901. [CrossRef]
85. Lyon RH,, Hall WH,, Costas-Martinez C . 1970. Utilization of amino acids during growth of Mycobacterium tuberculosis in rotary cultures. Infect Immun 1 : 513 520.[PubMed]
86. Song H,, Niederweis M . 2012. Uptake of sulfate but not phosphate by Mycobacterium tuberculosis is slower than that for Mycobacterium smegmatis . J Bacteriol 194 : 956 964. [CrossRef]
87. Cowley S,, Ko M,, Pick N,, Chow R,, Downing KJ,, Gordhan BG,, Betts JC,, Mizrahi V,, Smith DA,, Stokes RW,, Av-Gay Y . 2004. The Mycobacterium tuberculosis protein serine/threonine kinase PknG is linked to cellular glutamate/glutamine levels and is important for growth in vivo . Mol Microbiol 52 : 1691 1702. [CrossRef]
88. Ventura M,, Rieck B,, Boldrin F,, Degiacomi G,, Bellinzoni M,, Barilone N,, Alzaidi F,, Alzari PM,, Manganelli R,, O’Hare HM . 2013. GarA is an essential regulator of metabolism in Mycobacterium tuberculosis . Mol Microbiol 90 : 336 366.[PubMed]
89. Gallant JL,, Viljoen AJ,, van Helden PD,, Wiid IJ . 2016. Glutamate dehydrogenase is required by Mycobacterium bovis BCG for resistance to cellular stress. PLoS One 11 : e0147706. [CrossRef]
90. Viljoen AJ,, Kirsten CJ,, Baker B,, van Helden PD,, Wiid IJ . 2013. The role of glutamine oxoglutarate aminotransferase and glutamate dehydrogenase in nitrogen metabolism in Mycobacterium bovis BCG. PLoS One 8 : e84452. [CrossRef]
91. Boshoff HI,, Xu X,, Tahlan K,, Dowd CS,, Pethe K,, Camacho LR,, Park TH,, Yun CS,, Schnappinger D,, Ehrt S,, Williams KJ,, Barry CE III . 2008. Biosynthesis and recycling of nicotinamide cofactors in Mycobacterium tuberculosis. An essential role for NAD in nonreplicating bacilli. J Biol Chem 283 : 19329 19341. [CrossRef]
92. Kim JH,, O’Brien KM,, Sharma R,, Boshoff HI,, Rehren G,, Chakraborty S,, Wallach JB,, Monteleone M,, Wilson DJ,, Aldrich CC,, Barry CE III,, Rhee KY,, Ehrt S,, Schnappinger D . 2013. A genetic strategy to identify targets for the development of drugs that prevent bacterial persistence. Proc Natl Acad Sci USA 110 : 19095 19100. [CrossRef]
93. Rodionova IA,, Schuster BM,, Guinn KM,, Sorci L,, Scott DA,, Li X,, Kheterpal I,, Shoen C,, Cynamon M,, Locher C,, Rubin EJ,, Osterman AL . 2014. Metabolic and bactericidal effects of targeted suppression of NadD and NadE enzymes in mycobacteria. MBio 5 : e00747-13. [CrossRef]
94. Reddy BK,, Landge S,, Ravishankar S,, Patil V,, Shinde V,, Tantry S,, Kale M,, Raichurkar A,, Menasinakai S,, Mudugal NV,, Ambady A,, Ghosh A,, Tunduguru R,, Kaur P,, Singh R,, Kumar N,, Bharath S,, Sundaram A,, Bhat J,, Sambandamurthy VK,, Björkelid C,, Jones TA,, Das K,, Bandodkar B,, Malolanarasimhan K,, Mukherjee K,, Ramachandran V . 2014. Assessment of Mycobacterium tuberculosis pantothenate kinase vulnerability through target knockdown and mechanistically diverse inhibitors. Antimicrob Agents Chemother 58 : 3312 3326. [CrossRef]
95. Sambandamurthy VK,, Jacobs WR Jr . 2005. Live attenuated mutants of Mycobacterium tuberculosis as candidate vaccines against tuberculosis. Microbes Infect 7 : 955 961. [CrossRef]
96. Gengenbacher M,, Vogelzang A,, Schuerer S,, Lazar D,, Kaiser P,, Kaufmann SH . 2014. Dietary pyridoxine controls efficacy of vitamin B6-auxotrophic tuberculosis vaccine bacillus Calmette-Guérin ΔureC:hly Δpdx1 in mice. MBio 5 : e01262-14. [CrossRef]
97. Salaemae W,, Booker GW,, Polyak SW . 2016. The role of biotin in bacterial physiology and virulence: a novel antibiotic target for Mycobacterium tuberculosis . Microbiol Spectr 4 : VMBF-0008-2015.[CrossRef]
98. Park SW,, Casalena DE,, Wilson DJ,, Dai R,, Nag PP,, Liu F,, Boyce JP,, Bittker JA,, Schreiber SL,, Finzel BC,, Schnappinger D,, Aldrich CC . 2015. Target-based identification of whole-cell active inhibitors of biotin biosynthesis in Mycobacterium tuberculosis . Chem Biol 22 : 76 86. [CrossRef]
99. Kana BD,, Karakousis PC,, Parish T,, Dick T . 2014. Future target-based drug discovery for tuberculosis? Tuberculosis (Edinb) 94 : 551 556. [CrossRef]
100. Gengenbacher M,, Dick T . 2015. Antibacterial drug discovery: doing it right. Chem Biol 22 : 5 6. [CrossRef]
101. Nixon MR,, Saionz KW,, Koo MS,, Szymonifka MJ,, Jung H,, Roberts JP,, Nandakumar M,, Kumar A,, Liao R,, Rustad T,, Sacchettini JC,, Rhee KY,, Freundlich JS,, Sherman DR . 2014. Folate pathway disruption leads to critical disruption of methionine derivatives in Mycobacterium tuberculosis . Chem Biol 21 : 819 830. [CrossRef]
102. Minato Y,, Thiede JM,, Kordus SL,, McKlveen EJ,, Turman BJ,, Baughn AD . 2015. Mycobacterium tuberculosis folate metabolism and the mechanistic basis for para-aminosalicylic acid susceptibility and resistance. Antimicrob Agents Chemother 59 : 5097 5106. [CrossRef]
103. Chakraborty S,, Gruber T,, Barry CE III,, Boshoff HI,, Rhee KY . 2013. Para-aminosalicylic acid acts as an alternative substrate of folate metabolism in Mycobacterium tuberculosis . Science 339 : 88 91. [CrossRef]
104. Lehmann J . 1946. Para-aminosalicylic acid in the treatment of tuberculosis. Lancet 247 : 15 16. [CrossRef]
105. Kumar A,, Zhang M,, Zhu L,, Liao RP,, Mutai C,, Hafsat S,, Sherman DR,, Wang MW . 2012. High-throughput screening and sensitized bacteria identify an M. tuberculosis dihydrofolate reductase inhibitor with whole cell activity. PLoS One 7 : e39961. [CrossRef]
106. Kumar A,, Guardia A,, Colmenarejo G,, Pérez E,, Gonzalez RR,, Torres P,, Calvo D,, Gómez RM,, Ortega F,, Jiménez E,, Gabarro RC,, Rullás J,, Ballell L,, Sherman DR . 2015. A focused screen identifies antifolates with activity on Mycobacterium tuberculosis . ACS Infect Dis 1 : 604 614. [CrossRef]
107. Cole ST,, Brosch R,, Parkhill J,, Garnier T,, Churcher C,, Harris D,, Gordon SV,, Eiglmeier K,, Gas S,, Barry CE III,, Tekaia F,, Badcock K,, Basham D,, Brown D,, Chillingworth T,, Connor R,, Davies R,, Devlin K,, Feltwell T,, Gentles S,, Hamlin N,, Holroyd S,, Hornsby T,, Jagels K,, Krogh A,, McLean J,, Moule S,, Murphy L,, Oliver K,, Osborne J,, Quail MA,, Rajandream MA,, Rogers J,, Rutter S,, Seeger K,, Skelton J,, Squares R,, Squares S,, Sulston JE,, Taylor K,, Whitehead S,, Barrell BG . 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393 : 537 544. [CrossRef]
108. Gopinath K,, Moosa A,, Mizrahi V,, Warner DF . 2013. Vitamin B(12) metabolism in Mycobacterium tuberculosis . Future Microbiol 8 : 1405 1418. [CrossRef]
109. Young DB,, Comas I,, de Carvalho LP . 2015. Phylogenetic analysis of vitamin B12-related metabolism in Mycobacterium tuberculosis . Front Mol Biosci 2 : 6. [CrossRef]
110. Griffin JE,, Pandey AK,, Gilmore SA,, Mizrahi V,, McKinney JD,, Bertozzi CR,, Sassetti CM . 2012. Cholesterol catabolism by Mycobacterium tuberculosis requires transcriptional and metabolic adaptations. Chem Biol 19 : 218 227. [CrossRef]
111. Savvi S,, Warner DF,, Kana BD,, McKinney JD,, Mizrahi V,, Dawes SS . 2008. Functional characterization of a vitamin B12-dependent methylmalonyl pathway in Mycobacterium tuberculosis: implications for propionate metabolism during growth on fatty acids. J Bacteriol 190 : 3886 3895. [CrossRef]
112. Lee W,, VanderVen BC,, Fahey RJ,, Russell DG . 2013. Intracellular Mycobacterium tuberculosis exploits host-derived fatty acids to limit metabolic stress. J Biol Chem 288 : 6788 6800. [CrossRef]
113. Warner DF,, Savvi S,, Mizrahi V,, Dawes SS . 2007. A riboswitch regulates expression of the coenzyme B12-independent methionine synthase in Mycobacterium tuberculosis: implications for differential methionine synthase function in strains H37Rv and CDC1551. J Bacteriol 189 : 3655 3659. [CrossRef]
114. Gopinath K,, Venclovas C,, Ioerger TR,, Sacchettini JC,, McKinney JD,, Mizrahi V,, Warner DF . 2013. A vitamin B 12 transporter in Mycobacterium tuberculosis . Open Biol 3 : 120175. [CrossRef]
115. Jackson M,, Phalen SW,, Lagranderie M,, Ensergueix D,, Chavarot P,, Marchal G,, McMurray DN,, Gicquel B,, Guilhot C . 1999. Persistence and protective efficacy of a Mycobacterium tuberculosis auxotroph vaccine. Infect Immun 67 : 2867 2873.[PubMed]
116. Senaratne RH,, Mougous JD,, Reader JR,, Williams SJ,, Zhang T,, Bertozzi CR,, Riley LW . 2007. Vaccine efficacy of an attenuated but persistent Mycobacterium tuberculosis cysH mutant. J Med Microbiol 56 : 454 458. [CrossRef]
117. Niederweis M . 2008. Nutrient acquisition by mycobacteria. Microbiology 154 : 679 692. [CrossRef]
118. Yu XJ,, Walker DH,, Liu Y,, Zhang L . 2009. Amino acid biosynthesis deficiency in bacteria associated with human and animal hosts. Infect Genet Evol 9 : 514 517. [CrossRef]
119. Gómez-Valero L,, Rocha EP,, Latorre A,, Silva FJ . 2007. Reconstructing the ancestor of Mycobacterium leprae: the dynamics of gene loss and genome reduction. Genome Res 17 : 1178 1185. [CrossRef]
120. Rohmer L,, Hocquet D,, Miller SI . 2011. Are pathogenic bacteria just looking for food? Metabolism and microbial pathogenesis. Trends Microbiol 19 : 341 348. [CrossRef]
121. Houben EN,, Korotkov KV,, Bitter W . 2014. Take five: type VII secretion systems of mycobacteria. Biochim Biophys Acta 1843 : 1707 1716. [CrossRef]
122. Tufariello JM,, Chapman JR,, Kerantzas CA,, Wong KW,, Vilchèze C,, Jones CM,, Cole LE,, Tinaztepe E,, Thompson V,, Fenyö D,, Niederweis M,, Ueberheide B,, Philips JA,, Jacobs WR Jr . 2016. Separable roles for Mycobacterium tuberculosis ESX-3 effectors in iron acquisition and virulence. Proc Natl Acad Sci USA 113 : E348 E337. [CrossRef]
123. Marquis H,, Bouwer HG,, Hinrichs DJ,, Portnoy DA . 1993. Intracytoplasmic growth and virulence of Listeria monocytogenes auxotrophic mutants. Infect Immun 61 : 3756 3760.[PubMed]
124. Premaratne RJ,, Lin WJ,, Johnson EA . 1991. Development of an improved chemically defined minimal medium for Listeria monocytogenes . Appl Environ Microbiol 57 : 3046 3048.[PubMed]
125. Portnoy DA,, Jacks PS,, Hinrichs DJ . 1988. Role of hemolysin for the intracellular growth of Listeria monocytogenes . J Exp Med 167 : 1459 1471. [CrossRef]
126. Abu Kwaik Y,, Bumann D . 2015. Host delivery of favorite meals for intracellular pathogens. PLoS Pathog 11 : e1004866. [CrossRef]
127. Ihssen J,, Egli T . 2005. Global physiological analysis of carbon- and energy-limited growing Escherichia coli confirms a high degree of catabolic flexibility and preparedness for mixed substrate utilization. Environ Microbiol 7 : 1568 1581. [CrossRef]
128. Cohen SS,, Barner HD . 1954. Studies on unbalanced growth in Escherichia coli . Proc Natl Acad Sci USA 40 : 885 893. [CrossRef]
129. Hall JD,, Craven RR,, Fuller JR,, Pickles RJ,, Kawula TH . 2007. Francisella tularensis replicates within alveolar type II epithelial cells in vitro and in vivo following inhalation. Infect Immun 75 : 1034 1039.[PubMed]
130. Horwitz MA . 1983. The Legionnaires’ disease bacterium ( Legionella pneumophila) inhibits phagosome-lysosome fusion in human monocytes. J Exp Med 158 : 2108 2126.[PubMed]
131. Marquis H,, Bouwer HG,, Hinrichs DJ,, Portnoy DA . 1993. Intracytoplasmic growth and virulence of Listeria monocytogenes auxotrophic mutants. Infect Immun 61 : 3756 3760.[PubMed]

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error