Chapter 20 : The Complexity of Fungal Vision

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

The Complexity of Fungal Vision, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819583/9781555819576_Chap20-1.gif /docserver/preview/fulltext/10.1128/9781555819583/9781555819576_Chap20-2.gif


Sunlight, harvested by photosynthetic organisms (plants, algae, and some bacteria) and used to synthesize energy-rich molecules (sugars) from carbon dioxide and water, provides the energy required to sustain life on Earth. In addition, sunlight properties such as intensity, duration, polarization, and spectral composition are used as sources of information ( ). Indeed, all forms of life are continuously obtaining and decoding information from their environment. In fungi sunlight, ranging from ultraviolet (UV) to infrared wavelengths, regulates a diversity of biological processes including circadian rhythms, morphogenesis, tropism, and synthesis of pigments, among others (reviewed in reference ). UV light can be harmful, since DNA modification products of photochemical reactions may be transmitted to the next generation as a mutation. Visible light appears not only to provide early warning of the presence of impending UV radiation and further damage, but also seems to contribute to the capacity of these organisms to deal with abiotic stress in general ( ). Thus, the ability of most fungi to perceive and respond to light has very likely contributed to their survival and fitness.

Citation: Fischer R, Aguirre J, Herrera-Estrella A, Corrochano L. 2017. The Complexity of Fungal Vision, p 441-461. In Heitman J, Howlett B, Crous P, Stukenbrock E, James T, Gow N (ed), The Fungal Kingdom. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.FUNK-0020-2016
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Phenomena of fungal responses to light. Light has a large impact on fungal morphology and physiology. The pictures of were provided by Shanta Subba and Ursula Kües (University of Göttingen).

Citation: Fischer R, Aguirre J, Herrera-Estrella A, Corrochano L. 2017. The Complexity of Fungal Vision, p 441-461. In Heitman J, Howlett B, Crous P, Stukenbrock E, James T, Gow N (ed), The Fungal Kingdom. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.FUNK-0020-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Schemes of the photoreceptor proteins and their presence in , , and . The figure shows the set of photoreceptors and a comparison of the presence of homologous genes in other model fungi, including the LOV-domain photoreceptors WC-1 and VIVID (VVD) together with WC-2, the protein that interacts with WC-1 to form the WC complex. Other photoreceptors identified in the genome are a rhodopsin (NOP-1), a cryptochrome (CRY), and two phytochromes (PHY-1 and PHY-2). LOV-domain photoreceptors contain the flavin chromophore-binding domain (LOV) and may also contain the protein-interaction domains (PAS) and the Zn finger domain. Rhodopsins contain the retinal-binding domain. Cryptochromes contain the FAD chromophore-binding domain and the domain for binding the antenna cofactor. Phytochromes contain an amino-terminal sensory domain and a carboxy-terminal output domain. The sensory domain involved in binding the bilin chromophore is composed of three domains (PAS, GAF, and PHY). The output domain is composed of the histidine kinase domain (HK), the ATPase domain found in ATP binding proteins, and the response-regulator domain (RR) that is likely involved in relaying the light signal to other proteins. The number indicates the presence and number of photoreceptor protein encoding genes in the genomes of (A.n.), (T.a.), and (P.b.). The * indicates that the protein is present but lacks the critical lysine residue required for retinal binding.

Citation: Fischer R, Aguirre J, Herrera-Estrella A, Corrochano L. 2017. The Complexity of Fungal Vision, p 441-461. In Heitman J, Howlett B, Crous P, Stukenbrock E, James T, Gow N (ed), The Fungal Kingdom. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.FUNK-0020-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Model for WCC-dependent light signaling in . A simplified model for the activation of transcription by light and photoadaptation. Light reception by the FAD chromophore of WC-1 should trigger the formation of a flavin-cysteinyl adduct, causing a conformational change that leads to WCC dimerization, chromatin remodeling through the histone acetyltransferase NGF-1, and the activation of gene transcription. The modified histones are shown by stars at the site of promoter binding. Light exposure stimulates the transcription of , , and other light-induced genes. Newly synthesized VVD competes with the light-activated WC-1 and disrupts the formation of WCC dimers, reducing WCC binding to the promoter. The WCC bound to VVD is not transcriptionally active, and it results in the attenuation of the response to light. Different fractions of the light-activated WCC are stabilized by FRQ (not shown) and transiently phosphorylated (black dots) and partially degraded, probably through an interaction with the protein kinase C (PKC) and other kinases and phosphates, some of them not yet identified (not shown).

Citation: Fischer R, Aguirre J, Herrera-Estrella A, Corrochano L. 2017. The Complexity of Fungal Vision, p 441-461. In Heitman J, Howlett B, Crous P, Stukenbrock E, James T, Gow N (ed), The Fungal Kingdom. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.FUNK-0020-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Phytochrome functions in light regulation in and the link of light and stress sensing in (A) and (B). There is good evidence that the light signal is perceived by FphA in the cytoplasm and transmitted into the nucleus by activating the SakA stress signal pathway. SakA becomes phosphorylated, shuttles into the nucleus, and activates the transcription factor AtfA. (modified after 177) Light signaling also involves chromatin remodeling of the promoters of light-regulated genes such as or . It was shown that the acetylation level of lysine 9 of histone H3 increases upon illumination, that LreA interacts with the acetyltransferease GcnE and the histone deacetylase HdaA, that deletion of the SAGA/Ada complex component AdaB causes reduction, whereas deletion of causes induction of the photoinduction, and that changes of lysine 9 in histone H3 phenocopy the phenotypes of or deletion strains. VeA is always bound to the or promoter, whereas LreA leaves the promoter upon illumination. Hence, LreA could keep GcnE inactive and stimulate HdaA in the dark. The situation would be reversed after illumination, and the acetylation level of the lysine residue 9 of histone H3 would increase. There is evidence that GcnE is further activated through FphA. Lysine 9 acetylation was dependent on FphA, but an interaction between the two proteins was only shown by split YFP and could not be verified by Co-IP. The arrows indicate protein interactions verified by different methods. It should be noted that the current models rely solely on the results obtained with two light-regulated genes, and . The link between light and stress regulation in . In a quick response light causes phosphorylation of the MAPK Tmk3, which requires the MAPKK Pbs2. Nevertheless, it is still unclear where the WCC is linked to the Tmk3 MAPK pathway. At the promoter of a set of light-regulated genes the WCC could interact either with Tmk3 or with a not-yet-identified AtfA ortholog. Light also stimulates the transcription of the gene, giving rise to higher levels of Tmk3, which may aid in keeping a sustained response.

Citation: Fischer R, Aguirre J, Herrera-Estrella A, Corrochano L. 2017. The Complexity of Fungal Vision, p 441-461. In Heitman J, Howlett B, Crous P, Stukenbrock E, James T, Gow N (ed), The Fungal Kingdom. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.FUNK-0020-2016
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Casas-Flores S,, Herrera-Estrella A, . 2016. The bright and dark sides of fungal life, p 41 77. In Druzhinina LS,, Kubicek CP (ed), Environmental and Microbial Relationships. Springer, Berlin, Germany.[CrossRef]
2. Berrocal-Tito G,, Sametz-Baron L,, Eichenberg K,, Horwitz BA,, Herrera-Estrella A . 1999. Rapid blue light regulation of a Trichoderma harzianum photolyase gene. J Biol Chem 274 : 14288 14294.[CrossRef]
3. Esquivel-Naranjo EU,, García-Esquivel M,, Medina-Castellanos E,, Correa-Pérez VA,, Parra-Arriaga JL,, Landeros-Jaime F,, Cervantes-Chávez JA,, Herrera-Estrella A . 2016. A Trichoderma atroviride stress-activated MAPK pathway integrates stress and light signals. Mol Microbiol 100 : 860 876.[CrossRef]
4. Yu Z,, Armant O,, Fischer R . 2016. Fungi use the SakA (HogA) pathway for phytochrome-dependent light signalling. Nat Microbiol 1 : 16019.[CrossRef]
5. Lamb TM,, Goldsmith CS,, Bennett L,, Finch KE,, Bell-Pedersen D . 2011. Direct transcriptional control of a p38 MAPK pathway by the circadian clock in Neurospora crassa . PLoS One 6 : e27149.[CrossRef]
6. Payen A . 1843. Extrait d’un rapport adressé à M. Le Maréchal Duc de Dalmatie, Ministre de la guerre, President du Conseil, sur und altération extraordinaire du pain de munition. Ann Chim Phys 9 : 5 21.
7. Marsh PB,, Taylor EE,, Bassler LM . 1959. A guide to the literature on certain effects of light on fungi: reproduction, morphology, pigmentation, and phototropic phenomena. Plant Dis Reptr 261( Suppl) : 251 312.
8. Horwitz BA,, Perlman A,, Gressel J . 1990. Induction of Trichoderma sporulation by nanosecond laser pulses: evidence against cryptochrome cycling. Photochem Photobiol 51 : 99 104.[CrossRef]
9. Betina V,, Zajacová J . 1978. Inhibition of photo-induced Trichoderma viride conidiation by inhibitors of RNA synthesis. Folia Microbiol (Praha) 23 : 460 464.[CrossRef]
10. Corrochano LM . 2007. Fungal photoreceptors: sensory molecules for fungal development and behaviour. Photochem Photobiol Sci 6 : 725 736.[CrossRef]
11. Purschwitz J,, Müller S,, Kastner C,, Fischer R . 2006. Seeing the rainbow: light sensing in fungi. Curr Opin Microbiol 9 : 566 571.[CrossRef]
12. Herrera-Estrella A,, Horwitz BA . 2007. Looking through the eyes of fungi: molecular genetics of photoreception. Mol Microbiol 64 : 5 15.[CrossRef]
13. Rodriguez-Romero J,, Hedtke M,, Kastner C,, Müller S,, Fischer R . 2010. Fungi, hidden in soil or up in the air: light makes a difference. Annu Rev Microbiol 64 : 585 610.[CrossRef]
14. Bayram O,, Braus GH,, Fischer R,, Rodriguez-Romero J . 2010. Spotlight on Aspergillus nidulans photosensory systems. Fungal Genet Biol 47 : 900 908.[CrossRef]
15. Dasgupta A,, Fuller KK,, Dunlap JC,, Loros JJ . 2016. Seeing the world differently: variability in the photosensory mechanisms of two model fungi. Environ Microbiol 18 : 5 20.[CrossRef]
16. Fuller KK,, Loros JJ,, Dunlap JC . 2015. Fungal photobiology: visible light as a signal for stress, space and time. Curr Genet 61 : 275 288.[CrossRef]
17. Idnurm A,, Verma S,, Corrochano LM . 2010. A glimpse into the basis of vision in the kingdom Mycota. Fungal Genet Biol 47 : 881 892.[CrossRef]
18. Okamoto S,, Furuya K,, Nozaki S,, Aoki K,, Niki H . 2013. Synchronous activation of cell division by light or temperature stimuli in the dimorphic yeast Schizosaccharomyces japonicus . Eukaryot Cell 12 : 1235 1243.[CrossRef]
19. Bayram O,, Biesemann C,, Krappmann S,, Galland P,, Braus GH . 2008. More than a repair enzyme: Aspergillus nidulans photolyase-like CryA is a regulator of sexual development. Mol Biol Cell 19 : 3254 3262.[CrossRef]
20. Bejarano ER,, Avalos J,, Lipson ED,, Cerdá-Olmedo E . 1991. Photoinduced accumulation of carotene in Phycomyces. Planta 183 : 1 9.[CrossRef]
21. De Fabo EC,, Harding RW,, Shropshire W . 1976. Action spectrum between 260 and 800 nanometers for the photoinduction of carotenoid biosynthesis in Neurospora crassa . Plant Physiol 57 : 440 445.[CrossRef]
22. Galland P,, Lipson ED . 1985. Modified action spectra of photogeotropic equilibrium in Phycomyces blakesleeanus mutants with defects in genes madA, madB, madC, and madH . Photochem Photobiol 41 : 331 335.[CrossRef]
23. Corrochano LM,, Galland P,, Lipson ED,, Cerdá-Olmedo E . 1988. Photomorphogenesis in Phycomyces: fluence-response curves and action spectra. Planta 174 : 315 320.[CrossRef]
24. Kües U . 2000. Life history and developmental processes in the basidiomycete Coprinus cinereus . Microbiol Mol Biol Rev 64 : 316 353.[CrossRef]
25. Lu BC . 1965. The role of light in fructification of the basidiomnycete Cyathus stercoreus . Am J Bot 52 : 432 437.[CrossRef]
26. Lu BC,, Gallo N,, Kües U . 2003. White-cap mutants and meiotic apoptosis in the basidiomycete Coprinus cinereus . Fungal Genet Biol 39 : 82 93.[CrossRef]
27. Morimoto N,, Oda Y . 1973. Effects of light on fruit-body formation in a basidiomycete, Coprinus macrorhizus . Plant Cell Physiol 14 : 217 225.
28. Kertesz-Chaloupková K,, Walser PJ,, Granado JD,, Aebi M,, Kües U . 1998. Blue light overrides repression of asexual sporulation by mating type genes in the basidiomcycete Coprinus cinereus . Fungal Genet Biol 23 : 95 109.[CrossRef]
29. Lu YK,, Sun KH,, Shen WC . 2005. Blue light negatively regulates the sexual filamentation via the Cwc1 and Cwc2 proteins in Cryptococcus neoformans . Mol Microbiol 56 : 480 491.[CrossRef]
30. Idnurm A,, Heitman J . 2005. Light controls growth and development via a conserved pathway in the fungal kingdom. PLoS Biol 3 : e95.[CrossRef]
31. Tan KK . 1974. Blue-light inhibition of sporulation in Botrytis cinerea . J Gen Microbiol 82 : 191 200.[CrossRef]
32. Lukens RJ . 1963. Photo-inhibition of sporulation in Alternaria solani . Am J Bot 50 : 720 724.[CrossRef]
33. Tan KK . 1974. Red-far-red reversible photoreaction in the recovery from blue-light inhibition of sporulation in Botrytis cinerea . J Gen Microbiol 8a : 201 202.[CrossRef]
34. Purschwitz J,, Müller S,, Kastner C,, Schöser M,, Haas H,, Espeso EA,, Atoui A,, Calvo AM,, Fischer R . 2008. Functional and physical interaction of blue- and red-light sensors in Aspergillus nidulans . Curr Biol 18 : 255 259.[CrossRef]
35. Mooney JL,, Yager LN . 1990. Light is required for conidiation in Aspergillus nidulans . Genes Dev 4 : 1473 1482.[CrossRef]
36. Chen CL,, Kuo HC,, Tung SY,, Hsu PW,, Wang CL,, Seibel C,, Schmoll M,, Chen RS,, Wang TF . 2012. Blue light acts as a double-edged sword in regulating sexual development of Hypocrea jecorina ( Trichoderma reesei). PLoS One 7 : e44969.[CrossRef]
37. Innocenti FD,, Pohl U,, Russo VE . 1983. Photoinduction of protoperithecia in Neurospora crassa by blue light. Photochem Photobiol 37 : 49 51.[CrossRef]
38. Oda K,, Hasunuma K . 1997. Genetic analysis of signal transduction through light-induced protein phosphorylation in Neurospora crassa perithecia. Mol Gen Genet 256 : 593 601.[CrossRef]
39. Harding RW,, Melles S . 1983. Genetic analysis of phototropism of Neurospora crassa perithecial beaks using white collar and albino mutants. Plant Physiol 72 : 996 1000.[CrossRef]
40. Lauter FR,, Marchfelder U,, Russo VE,, Yamashiro CT,, Yatzkan E,, Yarden O . 1998. Photoregulation of cot-1, a kinase-encoding gene involved in hyphal growth in Neurospora crassa . Fungal Genet Biol 23 : 300 310.[CrossRef]
41. Fuller KK,, Ringelberg CS,, Loros JJ,, Dunlap JC . 2013. The fungal pathogen Aspergillus fumigatus regulates growth, metabolism, and stress resistance in response to light. MBio 4 : e00142-13.[CrossRef]
42. Röhrig J,, Kastner C,, Fischer R . 2013. Light inhibits spore germination through phytochrome in Aspergillus nidulans . Curr Genet 59 : 55 62.[CrossRef]
43. Chen C,, Dickman MB . 2002. Colletotrichum trifolii TB3 kinase, a COT1 homolog, is light inducible and becomes localized in the nucleus during hyphal elongation. Eukaryot Cell 1 : 626 633.[CrossRef]
44. Ambra R,, Grimaldi B,, Zamboni S,, Filetici P,, Macino G,, Ballario P . 2004. Photomorphogenesis in the hypogeous fungus Tuber borchii: isolation and characterization of Tbwc-1, the homologue of the blue-light photoreceptor of Neurospora crassa . Fungal Genet Biol 41 : 688 697.[CrossRef]
45. Casas-Flores S,, Rios-Momberg M,, Bibbins M,, Ponce-Noyola P,, Herrera-Estrella A . 2004. BLR-1 and BLR-2, key regulatory elements of photoconidiation and mycelial growth in Trichoderma atroviride . Microbiology 150 : 3561 3569.[CrossRef]
46. Zalokar M . 1954. Studies on biosynthesis of carotenoids in Neurospora crassa . Arch Biochem Biophys 50 : 71 80.[CrossRef]
47. Avalos J,, Schrott EL . 1990. Photoinduction of carotenoid biosynthesis in Gibberella fujikuroi . FEMS Lett 66 : 295 298.[CrossRef]
48. Calvo AM . 2008. The VeA regulatory system and its role in morphological and chemical development in fungi. Fungal Genet Biol 45 : 1053 1061.[CrossRef]
49. Atoui A,, Kastner C,, Larey CM,, Thokala R,, Etxebeste O,, Espeso EA,, Fischer R,, Calvo AM . 2010. Cross-talk between light and glucose regulation controls toxin production and morphogenesis in Aspergillus nidulans . Fungal Genet Biol 47 : 962 972.[CrossRef]
50. Montenegro-Montero A,, Canessa P,, Larrondo LF . 2015. Around the fungal clock: recent advances in the molecular study of circadian clocks in Neurospora and other fungi. Adv Genet 92 : 107 184.[CrossRef]
51. Hurley J,, Loros JJ,, Dunlap JC . 2015. Dissecting the mechanisms of the clock in Neurospora . Methods Enzymol 551 : 29 52.[CrossRef]
52. Baker CL,, Loros JJ,, Dunlap JC . 2012. The circadian clock of Neurospora crassa . FEMS Microbiol Rev 36 : 95 110.[CrossRef]
53. Merrow M,, Boesl C,, Ricken J,, Messerschmitt M,, Goedel M,, Roenneberg T . 2006. Entrainment of the Neurospora circadian clock. Chronobiol Int 23 : 71 80.[CrossRef]
54. Froehlich AC,, Liu Y,, Loros JJ,, Dunlap JC . 2002. White collar-1, a circadian blue light photoreceptor, binding to the frequency promoter. Science 297 : 815 819.[CrossRef]
55. He Q,, Cheng P,, Yang Y,, Wang L,, Gardner KH,, Liu Y . 2002. White collar-1, a DNA binding transcription factor and a light sensor. Science 297 : 840 843.[CrossRef]
56. Corrochano LM,, Garre V . 2010. Photobiology in the Zygomycota: multiple photoreceptor genes for complex responses to light. Fungal Genet Biol 47 : 893 899.[CrossRef]
57. Saranak J,, Foster KW . 1997. Rhodopsin guides fungal phototaxis. Nature 387 : 465 466.[CrossRef]
58. Avelar GM,, Schumacher RI,, Zaini PA,, Leonard G,, Richards TA,, Gomes SL . 2014. A rhodopsin-guanylyl cyclase gene fusion functions in visual perception in a fungus. Curr Biol 24 : 1234 1240.[CrossRef]
59. Ruger-Herreros C,, Rodríguez-Romero J,, Fernández-Barranco R,, Olmedo M,, Fischer R,, Corrochano LM,, Canovas D . 2011. Regulation of conidiation by light in Aspergillus nidulans . Genetics 188 : 809 822.[CrossRef]
60. Sánchez-Arreguín A,, Pérez-Martínez AS,, Herrera-Estrella A . 2012. Proteomic analysis of Trichoderma atroviride reveals independent roles for transcription factors BLR-1 and BLR-2 in light and darkness. Eukaryot Cell 11 : 30 41.[CrossRef]
61. Bayram Ö,, Feussner K,, Dumkow M,, Herrfurth C,, Feussner I,, Braus GH . 2016. Changes of global gene expression and secondary metabolite accumulation during light-dependent Aspergillus nidulans development. Fungal Genet Biol 87 : 30 53.[CrossRef]
62. Wu C,, Yang F,, Smith KM,, Peterson M,, Dekhang R,, Zhang Y,, Zucker J,, Bredeweg EL,, Mallappa C,, Zhou X,, Lyubetskaya A,, Townsend JP,, Galagan JE,, Freitag M,, Dunlap JC,, Bell-Pedersen D,, Sachs MS . 2014. Genome-wide characterization of light-regulated genes in Neurospora crassa . G3 (Bethesda) 4 : 1731 1745.[CrossRef]
63. Corrochano LM,, Galland P, . 2016. Photomorphogenesis and gravitropism in fungi, p 235–266. In Wendland J (ed), The Mycota. I. Growth, Differentiation and Sexuality. Springer, Berlin, Germany.[CrossRef]
64. García-Esquivel M,, Esquivel-Naranjo EU,, Hernández-Oñate MA,, Ibarra-Laclette E,, Herrera-Estrella A . 2016. The Trichoderma atroviride cryptochrome/photolyase genes regulate the expression of blr1-independent genes both in red and blue light. Fungal Biol 120 : 500 512.[CrossRef]
65. Cetz-Chel JE,, Balcázar-López E,, Esquivel-Naranjo EU,, Herrera-Estrella A . 2016. The Trichoderma atroviride putative transcription factor Blu7 controls light responsiveness and tolerance. BMC Genomics 17 : 327.[CrossRef]
66. Corrochano LM , , et al . 2016. Expansion of signal transduction pathways in fungi by extensive genome duplication. Curr Biol 26 : 1577 1584.
67. Delbrück M,, Shropshire W . 1960. Action and transmission spectra of Phycomyces. Plant Physiol 35 : 194 204.[CrossRef]
68. Bergman K,, Eslava AP,, Cerdá-Olmedo E . 1973. Mutants of Phycomyces with abnormal phototropism. Mol Gen Genet 123 : 1 16.[CrossRef]
69. Gressel JB,, Hartmann KM . 1968. Morphogenesis in Trichoderma: action spectrum of photoinduced sporulation. Planta 79 : 271 274.[CrossRef]
70. Kumagai T,, Oda Y . 1969. An action spectrum for photoinduced sporulation in the fungus Trichoderma viride . Plant Cell Physiol 10 : 387 392.
71. Otto MK,, Jayaram M,, Hamilton RM,, Delbrück M . 1981. Replacement of riboflavin by an analogue in the blue-light photoreceptor of Phycomyces. Proc Natl Acad Sci USA 78 : 266 269.[CrossRef]
72. Ballario P,, Vittorioso P,, Magrelli A,, Talora C,, Cabibbo A,, Macino G . 1996. White collar-1, a central regulator of blue light responses in Neurospora, is a zinc finger protein. EMBO J 15 : 1650 1657.
73. Ballario P,, Macino G . 1997. White collar proteins: PASsing the light signal in Neurospora crassa . Trends Microbiol 5 : 458 462.[CrossRef]
74. Blumenstein A,, Vienken K,, Tasler R,, Purschwitz J,, Veith D,, Frankenberg-Dinkel N,, Fischer R . 2005. The Aspergillus nidulans phytochrome FphA represses sexual development in red light. Curr Biol 15 : 1833 1838.[CrossRef]
75. Schleicher E,, Kowalczyk RM,, Kay CW,, Hegemann P,, Bacher A,, Fischer M,, Bittl R,, Richter G,, Weber S . 2004. On the reaction mechanism of adduct formation in LOV domains of the plant blue-light receptor phototropin. J Am Chem Soc 126 : 11067 11076.[CrossRef]
76. Taylor BL,, Zhulin IB . 1999. PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol Mol Biol Rev 63 : 479 506.
77. Smith KM,, Sancar G,, Dekhang R,, Sullivan CM,, Li S,, Tag AG,, Sancar C,, Bredeweg EL,, Priest HD,, McCormick RF,, Thomas TL,, Carrington JC,, Stajich JE,, Bell-Pedersen D,, Brunner M,, Freitag M . 2010. Transcription factors in light and circadian clock signaling networks revealed by genomewide mapping of direct targets for Neurospora white collar complex. Eukaryot Cell 9 : 1549 1556.[CrossRef]
78. Wang B,, Zhou X,, Loros JJ,, Dunlap JC . 2016. Alternative use of DNA binding domains by the Neurospora white collar complex dictates circadian regulation and light responses. Mol Cell Biol 36 : 781 793.[CrossRef]
79. Silva F,, Torres-Martínez S,, Garre V . 2006. Distinct white collar-1 genes control specific light responses in Mucor circinelloides . Mol Microbiol 61 : 1023 1037.[CrossRef]
80. Silva F,, Navarro E,, Peñaranda A,, Murcia-Flores L,, Torres-Martínez S,, Garre V . 2008. A RING-finger protein regulates carotenogenesis via proteolysis-independent ubiquitylation of a white collar-1-like activator. Mol Microbiol 70 : 1026 1036.
81. Sanz C,, Rodríguez-Romero J,, Idnurm A,, Christie JM,, Heitman J,, Corrochano LM,, Eslava AP . 2009. Phycomyces MADB interacts with MADA to form the primary photoreceptor complex for fungal phototropism. Proc Natl Acad Sci USA 106 : 7095 7100.[CrossRef]
82. Idnurm A,, Rodríguez-Romero J,, Corrochano LM,, Sanz C,, Iturriaga EA,, Eslava AP,, Heitman J . 2006. The Phycomyces madA gene encodes a blue-light photoreceptor for phototropism and other light responses. Proc Natl Acad Sci USA 103 : 4546 4551.[CrossRef]
83. Larhammar D,, Nordström K,, Larsson TA . 2009. Evolution of vertebrate rod and cone phototransduction genes. Philos Trans R Soc Lond B Biol Sci 364 : 2867 2880.[CrossRef]
84. Zoltowski BD,, Schwerdtfeger C,, Widom J,, Loros JJ,, Bilwes AM,, Dunlap JC,, Crane BR . 2007. Conformational switching in the fungal light sensor Vivid. Science 316 : 1054 1057.[CrossRef]
85. Lokhandwala J,, Hopkins HC,, Rodriguez-Iglesias A,, Dattenböck C,, Schmoll M,, Zoltowski BD . 2015. Structural biochemistry of a fungal LOV domain photoreceptor reveals an evolutionarily conserved pathway integrating light and oxidative stress. Structure 23 : 116 125.[CrossRef]
86. Lokhandwala J,, Silverman y de la Vega RI,, Hopkins HC,, Britton CW,, Rodriguez-Iglesias A,, Bogomolni R,, Schmoll M,, Zoltowski BD . 2016. A native threonine coordinates ordered water to tune LOV photocycle kinetics and osmotic stress signaling in Trichoderma reesei ENVOY. J Biol Chem 291 : 14839 14850.
87. Malzahn E,, Ciprianidis S,, Káldi K,, Schafmeier T,, Brunner M . 2010. Photoadaptation in Neurospora by competitive interaction of activating and inhibitory LOV domains. Cell 142 : 762 772.[CrossRef]
88. Vaidya AT,, Chen CH,, Dunlap JC,, Loros JJ,, Crane BR . 2011. Structure of a light-activated LOV protein dimer that regulates transcription. Sci Signal 4 : ra50.[CrossRef]
89. Hughes J,, Lamparter T,, Mittmann F,, Hartmann E,, Gärtner W,, Wilde A,, Börner T . 1997. A prokaryotic phytochrome. Nature 386 : 663.[CrossRef]
90. Butler WL,, Norris KH,, Siegelman HW,, Hendricks SB . 1959. Detection, assay, and preliminary purification of the pigment controlling photoresponsive development of plants. Proc Natl Acad Sci USA 45 : 1703 1708.[CrossRef]
91. Yeh K-C,, Wu S-H,, Murphy JT,, Lagarias JC . 1997. A cyanobacterial phytochrome two-component light sensory system. Science 277 : 1505 1508.[CrossRef]
92. Fortunato AE,, Jaubert M,, Enomoto G,, Bouly JP,, Raniello R,, Thaler M,, Malviya S,, Bernardes JS,, Rappaport F,, Gentili B,, Huysman MJ,, Carbone A,, Bowler C,, d’Alcalà MR,, Ikeuchi M,, Falciatore A . 2016. Diatom phytochromes reveal the existence of far-red-light-based sensing in the ocean. Plant Cell 28 : 616 628.[CrossRef]
93. Rockwell NC,, Duanmu D,, Martin SS,, Bachy C,, Price DC,, Bhattacharya D,, Worden AZ,, Lagarias JC . 2014. Eukaryotic algal phytochromes span the visible spectrum. Proc Natl Acad Sci USA 111 : 3871 3876. (Erratum, http://www.pnas.org/content/112/9/E1051.full.)[CrossRef]
94. Burgie ES,, Bussell AN,, Walker JM,, Dubiel K,, Vierstra RD . 2014. Crystal structure of the photosensing module from a red/far-red light-absorbing plant phytochrome. Proc Natl Acad Sci USA 111 : 10179 10184.[CrossRef]
95. Scheerer P,, Michael N,, Park JH,, Noack S,, Förster C,, Hammam MA,, Inomata K,, Choe HW,, Lamparter T,, Krauss N . 2006. Crystallization and preliminary X-ray crystallographic analysis of the N-terminal photosensory module of phytochrome Agp1, a biliverdin-binding photoreceptor from Agrobacterium tumefaciens . J Struct Biol 153 : 97 102.[CrossRef]
96. Rockwell NC,, Lagarias JC . 2006. The structure of phytochrome: a picture is worth a thousand spectra. Plant Cell 18 : 4 14.[CrossRef]
97. Brandt S,, von Stetten D,, Günther M,, Hildebrandt P,, Frankenberg-Dinkel N . 2008. The fungal phytochrome FphA from Aspergillus nidulans . J Biol Chem 283 : 34605 34614.[CrossRef]
98. Njimona I,, Yang R,, Lamparter T . 2014. Temperature effects on bacterial phytochrome. PLoS One 9 : e109794.[CrossRef]
99. Hughes J,, Lamparter T . 1999. Prokaryotes and phytochrome. The connection to chromophores and signaling. Plant Physiol 121 : 1059 1068.[CrossRef]
100. Kooß S,, Lamparter T . 2016. Cyanobacterial origin of plant phytochromes. Protoplasma. [Epub ahead of print.][CrossRef]
101. Azuma N,, Kanamaru K,, Matsushika A,, Yamashino T,, Mizuno T,, Kato M,, Kobayashi T . 2007. In vitro analysis of His-Asp phosphorelays in Aspergillus nidulans: the first direct biochemical evidence for the existence of His-Asp phosphotransfer systems in filamentous fungi. Biosci Biotechnol Biochem 71 : 2493 2502.[CrossRef]
102. Canessa P,, Schumacher J,, Hevia MA,, Tudzynski P,, Larrondo LF . 2013. Assessing the effects of light on differentiation and virulence of the plant pathogen Botrytis cinerea: characterization of the White Collar Complex. PLoS One 8 : e84223.[CrossRef]
103. Wang Z,, Li N,, Li J,, Dunlap JC,, Trail F,, Townsend JP . 2016. The fast-evolving phy-2 gene modulates sexual development in response to light in the model fungus Neurospora crassa . MBio 7 : e02148-15.[CrossRef]
104. Chaves I,, Pokorny R,, Byrdin M,, Hoang N,, Ritz T,, Brettel K,, Essen LO,, van der Horst GT,, Batschauer A,, Ahmad M . 2011. The cryptochromes: blue light photoreceptors in plants and animals. Annu Rev Plant Biol 62 : 335 364.[CrossRef]
105. Liu H,, Liu B,, Zhao C,, Pepper M,, Lin C . 2011. The action mechanisms of plant cryptochromes. Trends Plant Sci 16 : 684 691.[CrossRef]
106. Froehlich AC,, Chen CH,, Belden WJ,, Madeti C,, Roenneberg T,, Merrow M,, Loros JJ,, Dunlap JC . 2010. Genetic and molecular characterization of a cryptochrome from the filamentous fungus Neurospora crassa . Eukaryot Cell 9 : 738 750.[CrossRef]
107. Olmedo M,, Ruger-Herreros C,, Luque EM,, Corrochano LM . 2010. A complex photoreceptor system mediates the regulation by light of the conidiation genes con-10 and con-6 in Neurospora crassa . Fungal Genet Biol 47 : 352 363.[CrossRef]
108. Nsa IY,, Karunarathna N,, Liu X,, Huang H,, Boetteger B,, Bell-Pedersen D . 2015. A novel cryptochrome-dependent oscillator in Neurospora crassa . Genetics 199 : 233 245.[CrossRef]
109. Castrillo M,, García-Martínez J,, Avalos J . 2013. Light-dependent functions of the Fusarium fujikuroi CryD DASH cryptochrome in development and secondary metabolism. Appl Environ Microbiol 79 : 2777 2788.[CrossRef]
110. Veluchamy S,, Rollins JA . 2008. A CRY-DASH-type photolyase/cryptochrome from Sclerotinia sclerotiorum mediates minor UV-A-specific effects on development. Fungal Genet Biol 45 : 1265 1276.[CrossRef]
111. Guzmán-Moreno J,, Flores-Martínez A,, Brieba LG,, Herrera-Estrella A . 2014. The Trichoderma reesei Cry1 protein is a member of the cryptochrome/photolyase family with 6-4 photoproduct repair activity. PLoS One 9 : e100625.[CrossRef]
112. Campuzano V,, Galland P,, Alvarez MI,, Eslava AP . 1996. Blue-light receptor requirement for gravitropism, autochemotropism and ethylene response in Phycomyces. Photochem Photobiol 63 : 686 694.[CrossRef]
113. Tagua VG,, Pausch M,, Eckel M,, Gutiérrez G,, Miralles-Durán A,, Sanz C,, Eslava AP,, Pokorny R,, Corrochano LM,, Batschauer A . 2015. Fungal cryptochrome with DNA repair activity reveals an early stage in cryptochrome evolution. Proc Natl Acad Sci USA 112 : 15130 15135.[CrossRef]
114. Sharma AK,, Spudich JL,, Doolittle WF . 2006. Microbial rhodopsins: functional versatility and genetic mobility. Trends Microbiol 14 : 463 469.[CrossRef]
115. Ernst OP,, Lodowski DT,, Elstner M,, Hegemann P,, Brown LS,, Kandori H . 2014. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem Rev 114 : 126 163.[CrossRef]
116. Spudich JL . 2006. The multitalented microbial sensory rhodopsins. Trends Microbiol 14 : 480 487.[CrossRef]
117. Brown LS,, Dioumaev AK,, Lanyi JK,, Spudich EN,, Spudich JL . 2001. Photochemical reaction cycle and proton transfers in Neurospora rhodopsin . J Biol Chem 276 : 32495 32505.[CrossRef]
118. Bergo V,, Spudich EN,, Spudich JL,, Rothschild KJ . 2002. A Fourier transform infrared study of Neurospora rhodopsin: similarities with archaeal rhodopsins. Photochem Photobiol 76 : 341 349.[CrossRef]
119. Furutani Y,, Bezerra AGJ Jr,, Waschuk S,, Sumii M,, Brown LS,, Kandori H . 2004. FTIR spectroscopy of the K photointermediate of Neurospora rhodopsin: structural changes of the retinal, protein, and water molecules after photoisomerization. Biochemistry 43 : 9636 9646.[CrossRef]
120. Bieszke JA,, Braun EL,, Bean LE,, Kang S,, Natvig DO,, Borkovich KA . 1999. The nop-1 gene of Neurospora crassa encodes a seven transmembrane helix retinal-binding protein homologous to archaeal rhodopsins. Proc Natl Acad Sci USA 96 : 8034 8039.[CrossRef]
121. Bieszke JA,, Spudich EN,, Scott KL,, Borkovich KA,, Spudich JL . 1999. A eukaryotic protein, NOP-1, binds retinal to form an archaeal rhodopsin-like photochemically reactive pigment. Biochemistry 38 : 14138 14145.[CrossRef]
122. Bieszke JA,, Li L,, Borkovich KA . 2007. The fungal opsin gene nop-1 is negatively-regulated by a component of the blue light sensing pathway and influences conidiation-specific gene expression in Neurospora crassa . Curr Genet 52 : 149 157.[CrossRef]
123. Idnurm A,, Howlett BJ . 2001. Characterization of an opsin gene from the ascomycete Leptosphaeria maculans . Genome 44 : 167 171.[CrossRef]
124. Waschuk SA,, Bezerra AGJ Jr,, Shi L,, Brown LS . 2005. Leptosphaeria rhodopsin: bacteriorhodopsin-like proton pump from a eukaryote. Proc Natl Acad Sci USA 102 : 6879 6883.[CrossRef]
125. Prado MM,, Prado-Cabrero A,, Fernández-Martín R,, Avalos J . 2004. A gene of the opsin family in the carotenoid gene cluster of Fusarium fujikuroi . Curr Genet 46 : 47 58.[CrossRef]
126. García-Martínez J,, Brunk M,, Avalos J,, Terpitz U . 2015. The CarO rhodopsin of the fungus Fusarium fujikuroi is a light-driven proton pump that retards spore germination. Sci Rep 5 : 7798.[CrossRef]
127. Estrada AF,, Avalos J . 2009. Regulation and targeted mutation of opsA, coding for the NOP-1 opsin orthologue in Fusarium fujikuroi . J Mol Biol 387 : 59 73.[CrossRef]
128. Linden H,, Macino G . 1997. White collar 2, a partner in blue-light signal transduction, controlling expression of light-regulated genes in Neurospora crassa . EMBO J 16 : 98 109.[CrossRef]
129. Lewis ZA,, Correa A,, Schwerdtfeger C,, Link KL,, Xie X,, Gomer RH,, Thomas T,, Ebbole DJ,, Bell-Pedersen D . 2002. Overexpression of White Collar-1 (WC-1) activates circadian clock-associated genes, but is not sufficient to induce most light-regulated gene expression in Neurospora crassa . Mol Microbiol 45 : 917 931.[CrossRef]
130. He Q,, Liu Y . 2005. Molecular mechanism of light responses in Neurospora: from light-induced transcription to photoadaptation. Genes Dev 19 : 2888 2899.[CrossRef]
131. Schafmeier T,, Káldi K,, Diernfellner A,, Mohr C,, Brunner M . 2006. Phosphorylation-dependent maturation of Neurospora circadian clock protein from a nuclear repressor toward a cytoplasmic activator. Genes Dev 20 : 297 306.[CrossRef]
132. Talora C,, Franchi L,, Linden H,, Ballario P,, Macino G . 1999. Role of a white collar-1-white collar-2 complex in blue-light signal transduction. EMBO J 18 : 4961 4968.[CrossRef]
133. Froehlich AC,, Loros JJ,, Dunlap JC . 2003. Rhythmic binding of a WHITE COLLAR-containing complex to the frequency promoter is inhibited by FREQUENCY. Proc Natl Acad Sci USA 100 : 5914 5919.[CrossRef]
134. Brenna A,, Grimaldi B,, Filetici P,, Ballario P . 2012. Physical association of the WC-1 photoreceptor and the histone acetyltransferase NGF-1 is required for blue light signal transduction in Neurospora crassa . Mol Biol Cell 23 : 3863 3872.[CrossRef]
135. Grimaldi B,, Coiro P,, Filetici P,, Berge E,, Dobosy JR,, Freitag M,, Selker EU,, Ballario P . 2006. The Neurospora crassa White Collar-1 dependent blue light response requires acetylation of histone H3 lysine 14 by NGF-1. Mol Biol Cell 17 : 4576 4583.[CrossRef]
136. Ruesch CE,, Ramakrishnan M,, Park J,, Li N,, Chong HS,, Zaman R,, Joska TM,, Belden WJ . 2014. The histone H3 lysine 9 methyltransferase DIM-5 modifies chromatin at frequency and represses light-activated gene expression. G3 (Bethesda) 5 : 93 101.
137. Chen CH,, Ringelberg CS,, Gross RH,, Dunlap JC,, Loros JJ . 2009. Genome-wide analysis of light-inducible responses reveals hierarchical light signalling in Neurospora . EMBO J 28 : 1029 1042.[CrossRef]
138. Castellanos F,, Schmoll M,, Martínez P,, Tisch D,, Kubicek CP,, Herrera-Estrella A,, Esquivel-Naranjo EU . 2010. Crucial factors of the light perception machinery and their impact on growth and cellulase gene transcription in Trichoderma reesei . Fungal Genet Biol 47 : 468 476.[CrossRef]
139. Schwerdtfeger C,, Linden H . 2001. Blue light adaptation and desensitization of light signal transduction in Neurospora crassa . Mol Microbiol 39 : 1080 1087.[CrossRef]
140. Chen CH,, DeMay BS,, Gladfelter AS,, Dunlap JC,, Loros JJ . 2010. Physical interaction between VIVID and white collar complex regulates photoadaptation in Neurospora . Proc Natl Acad Sci USA 107 : 16715 16720.[CrossRef]
141. Hunt SM,, Thompson S,, Elvin M,, Heintzen C . 2010. VIVID interacts with the WHITE COLLAR complex and FREQUENCY-interacting RNA helicase to alter light and clock responses in Neurospora . Proc Natl Acad Sci USA 107 : 16709 16714.[CrossRef]
142. Gin E,, Diernfellner AC,, Brunner M,, Höfer T . 2013. The Neurospora photoreceptor VIVID exerts negative and positive control on light sensing to achieve adaptation. Mol Syst Biol 9 : 667.[CrossRef]
143. Sancar G,, Sancar C,, Brügger B,, Ha N,, Sachsenheimer T,, Gin E,, Wdowik S,, Lohmann I,, Wieland F,, Höfer T,, Diernfellner A,, Brunner M . 2011. A global circadian repressor controls antiphasic expression of metabolic genes in Neurospora . Mol Cell 44 : 687 697.[CrossRef]
144. Ruger-Herreros C,, Gil-Sánchez MM,, Sancar G,, Brunner M,, Corrochano LM . 2014. Alteration of light-dependent gene regulation by the absence of the RCO-1/RCM-1 repressor complex in the fungus Neurospora crassa . PLoS One 9 : e95069.[CrossRef]
145. Rodríguez-Romero J,, Corrochano LM . 2006. Regulation by blue light and heat shock of gene transcription in the fungus Phycomyces: proteins required for photoinduction and mechanism for adaptation to light. Mol Microbiol 61 : 1049 1059.[CrossRef]
146. Berrocal-Tito GM,, Rosales-Saavedra T,, Herrera-Estrella A,, Horwitz BA . 2000. Characterization of blue-light and developmental regulation of the photolyase gene phr1 in Trichoderma harzianum . Photochem Photobiol 71 : 662 668.[CrossRef]
147. Casas-Flores S,, Rios-Momberg M,, Rosales-Saavedra T,, Martínez-Hernández P,, Olmedo-Monfil V,, Herrera-Estrella A . 2006. Cross talk between a fungal blue-light perception system and the cyclic AMP signaling pathway. Eukaryot Cell 5 : 499 506.[CrossRef]
148. Berrocal-Tito GM,, Esquivel-Naranjo EU,, Horwitz BA,, Herrera-Estrella A . 2007. Trichoderma atroviride PHR1, a fungal photolyase responsible for DNA repair, autoregulates its own photoinduction. Eukaryot Cell 6 : 1682 1692.[CrossRef]
149. Bluhm BH,, Dunkle LD . 2008. PHL1 of Cercospora zeae-maydis encodes a member of the photolyase/cryptochrome family involved in UV protection and fungal development. Fungal Genet Biol 45 : 1364 1372.[CrossRef]
150. Hedtke M,, Rauscher S,, Röhrig J,, Rodríguez-Romero J,, Yu Z,, Fischer R . 2015. Light-dependent gene activation in Aspergillus nidulans is strictly dependent on phytochrome and involves the interplay of phytochrome and white collar-regulated histone H3 acetylation. Mol Microbiol 97 : 733 745.[CrossRef]
151. Bayram O,, Braus GH . 2012. Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins. FEMS Microbiol Rev 36 : 1 24.[CrossRef]
152. Bayram O,, Krappmann S,, Ni M,, Bok JW,, Helmstaedt K,, Valerius O,, Braus-Stromeyer S,, Kwon NJ,, Keller NP,, Yu JH,, Braus GH . 2008. VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320 : 1504 1506.[CrossRef]
153. Bayram O,, Krappmann S,, Seiler S,, Vogt N,, Braus GH . 2008. Neurospora crassa ve-1 affects asexual conidiation. Fungal Genet Biol 45 : 127 138.[CrossRef]
154. Ahmed YL,, Gerke J,, Park HS,, Bayram Ö,, Neumann P,, Ni M,, Dickmanns A,, Kim SC,, Yu JH,, Braus GH,, Ficner R . 2013. The velvet family of fungal regulators contains a DNA-binding domain structurally similar to NF-κB. PLoS Biol 11 : e1001750. [Erratum, 12:e1001849.][CrossRef]
155. Purschwitz J,, Müller S,, Fischer R . 2009. Mapping the interaction sites of Aspergillus nidulans phytochrome FphA with the global regulator VeA and the White Collar protein LreB. Mol Genet Genomics 281 : 35 42.[CrossRef]
156. Rauscher S,, Pacher S,, Hedtke M,, Kniemeyer O,, Fischer R . 2016. A phosphorylation code of the Aspergillus nidulans global regulator VelvetA (VeA) determines specific functions. Mol Microbiol 99 : 909 924.[CrossRef]
157. Lara-Rojas F,, Sánchez O,, Kawasaki L,, Aguirre J . 2011. Aspergillus nidulans transcription factor AtfA interacts with the MAPK SakA to regulate general stress responses, development and spore functions. Mol Microbiol 80 : 436 454.[CrossRef]
158. Qiu L,, Wang JJ,, Chu ZJ,, Ying SH,, Feng MG . 2014. Phytochrome controls conidiation in response to red/far-red light and daylight length and regulates multistress tolerance in Beauveria bassiana . Environ Microbiol 16 : 2316 2328.[CrossRef]
159. Rockwell NC,, Su Y-S,, Lagarias JC . 2006. Phytochrome structure and signaling mechanisms. Annu Rev Plant Biol 57 : 837 858.[CrossRef]
160. Tan KK . 1975. Interaction of near-ultraviolet, blue, red, and far-red light in sporulation of Botrytis cinerea . Trans Br Mycol Soc 64 : 215 222.[CrossRef]
161. Casas-Flores S,, Rios-Momberg M,, Rosales-Saavedra T,, Martínez-Hernández P,, Olmedo-Monfil V,, Herrera-Estrella A . 2006. Cross talk between a fungal blue-light perception system and the cyclic AMP signaling pathway. Eukaryot Cell 5 : 499 506.[CrossRef]
162. Olmedo M,, Ruger-Herreros C,, Luque EM,, Corrochano LM . 2010. A complex photoreceptor system mediates the regulation by light of the conidiation genes con-10 and con-6 in Neurospora crassa . Fungal Genet Biol 47 : 352 363.[CrossRef]
163. Posas F,, Takekawa M,, Saito H . 1998. Signal transduction by MAP kinase cascades in budding yeast. Curr Opin Microbiol 1 : 175 182.[CrossRef]
164. Vitalini MW,, de Paula RM,, Goldsmith CS,, Jones CA,, Borkovich KA,, Bell-Pedersen D . 2007. Circadian rhythmicity mediated by temporal regulation of the activity of p38 MAPK. Proc Natl Acad Sci USA 104 : 18223 18228.[CrossRef]
165. Vargas-Pérez I,, Sánchez O,, Kawasaki L,, Georgellis D,, Aguirre J . 2007. Response regulators SrrA and SskA are central components of a phosphorelay system involved in stress signal transduction and asexual sporulation in Aspergillus nidulans . Eukaryot Cell 6 : 1570 1583.[CrossRef]
166. Banno S,, Noguchi R,, Yamashita K,, Fukumori F,, Kimura M,, Yamaguchi I,, Fujimura M . 2007. Roles of putative His-to-Asp signaling modules HPT-1 and RRG-2, on viability and sensitivity to osmotic and oxidative stresses in Neurospora crassa . Curr Genet 51 : 197 208.[CrossRef]
167. Yamashita K,, Shiozawa A,, Watanabe S,, Fukumori F,, Kimura M,, Fujimura M . 2008. ATF-1 transcription factor regulates the expression of ccg-1 and cat-1 genes in response to fludioxonil under OS-2 MAP kinase in Neurospora crassa . Fungal Genet Biol 45 : 1562 1569.[CrossRef]
168. Lamb TM,, Finch KE,, Bell-Pedersen D . 2012. The Neurospora crassa OS MAPK pathway-activated transcription factor ASL-1 contributes to circadian rhythms in pathway responsive clock-controlled genes. Fungal Genet Biol 49 : 180 188.[CrossRef]
169. Shiozaki K,, Russell P . 1995. Cell-cycle control linked to extracellular environment by MAP kinase pathway in fission yeast. Nature 378 : 739 743.[CrossRef]
170. Kawasaki L,, Sánchez O,, Shiozaki K,, Aguirre J . 2002. SakA MAP kinase is involved in stress signal transduction, sexual development and spore viability in Aspergillus nidulans . Mol Microbiol 45 : 1153 1163.[CrossRef]
171. Nguyen AN,, Shiozaki K . 1999. Heat-shock-induced activation of stress MAP kinase is regulated by threonine- and tyrosine-specific phosphatases. Genes Dev 13 : 1653 1663.[CrossRef]
172. Hartmuth S,, Petersen J . 2009. Fission yeast Tor1 functions as part of TORC1 to control mitotic entry through the stress MAPK pathway following nutrient stress. J Cell Sci 122 : 1737 1746.[CrossRef]
173. Han KH,, Prade RA . 2002. Osmotic stress-coupled maintenance of polar growth in Aspergillus nidulans . Mol Microbiol 43 : 1065 1078.[CrossRef]
174. Furukawa K,, Hoshi Y,, Maeda T,, Nakajima T,, Abe K . 2005. Aspergillus nidulans HOG pathway is activated only by two-component signalling pathway in response to osmotic stress. Mol Microbiol 56 : 1246 1261.[CrossRef]
175. Hagiwara D,, Asano Y,, Marui J,, Yoshimi A,, Mizuno T,, Abe K . 2009. Transcriptional profiling for Aspergillusnidulans HogA MAPK signaling pathway in response to fludioxonil and osmotic stress. Fungal Genet Biol 46 : 868 878.[CrossRef]
176. Jaimes-Arroyo R,, Lara-Rojas F,, Bayram Ö,, Valerius O,, Braus GH,, Aguirre J . 2015. The SrkA kinase is part of the SakA mitogen-activated protein kinase interactome and regulates stress responses and development in Aspergillus nidulans . Eukaryot Cell 14 : 495 510.[CrossRef]
177. Idnurm A,, Bahn YS . 2016. Fungal physiology: red light plugs into MAPK pathway. Nat Microbiol 1 : 16052.[CrossRef]
178. Belden WJ,, Loros JJ,, Dunlap JC . 2007. Execution of the circadian negative feedback loop in Neurospora requires the ATP-dependent chromatin-remodeling enzyme CLOCKSWITCH. Mol Cell 25 : 587 600.[CrossRef]
179. Stoll DA,, Link S,, Kulling S,, Geisen R,, Schmidt-Heydt M . 2014. Comparative proteome analysis of Penicillium verrucosum grown under light of short wavelength shows an induction of stress-related proteins associated with modified mycotoxin biosynthesis. Int J Food Microbiol 175 : 20 29.[CrossRef]
180. Hirayama J,, Cho S,, Sassone-Corsi P . 2007. Circadian control by the reduction/oxidation pathway: catalase represses light-dependent clock gene expression in the zebrafish. Proc Natl Acad Sci USA 104 : 15747 15752.[CrossRef]
181. Hansberg W,, Aguirre J . 1990. Hyperoxidant states cause microbial cell differentiation by cell isolation from dioxygen. J Theor Biol 142 : 201 221.[CrossRef]

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error