Chapter 29 : Fungal Genomes and Insights into the Evolution of the Kingdom

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Fungal Genomes and Insights into the Evolution of the Kingdom, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819583/9781555819576_Chap29-1.gif /docserver/preview/fulltext/10.1128/9781555819583/9781555819576_Chap29-2.gif


Studies of fungal evolution require an understanding of the phylogenetic relationships and relative evolutionary divergence of organisms. The first approaches to organizing fungi into related groups relied on morphological characteristics ( ). These approaches provided a broad framework to organize fungal organisms for taxonomic classification based on recognizable morphological characteristics such as spore shape, asexual and sexual structures, and in mushroom-forming fungi, the shape and presence/absence of gills, veil attachments, and spore color. In zoosporic chytrid fungi the characteristics seen by scanning electron microscopy of zoospores reveal that the ultrastructure of the kinetosomes and flagellum are all diagnostic for the classification of many lineages ( ). However, the microscopic nature of many fungi and especially of yeast-forming fungi with limited visible differences, and the prevalence of convergent evolution to homoplasies or similar characteristics across a tree, has made taxonomic classification of groups of fungi difficult or easily misled. The invention and application of DNA sequencing ( ) and PCR ( ) and the development of primers to amplify fungal rRNA enabled a new era of molecular phylogenetic studies in fungi ( ). These approaches provided invaluable information that was used to resolve the major fungal lineages ( ) and the delineation of species ( ). Using DNA approaches to study the entire fungal tree of life provided new insight into the order of branching of major groups and the timing of morphological changes such as the loss of the flagellum found in zoosporic fungi ( ).

Citation: Stajich J. 2017. Fungal Genomes and Insights into the Evolution of the Kingdom, p 619-633. In Heitman J, Howlett B, Crous P, Stukenbrock E, James T, Gow N (ed), The Fungal Kingdom. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.FUNK-0055-2016
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Phylogenetic relationships of the fungal phyla and subphyla. A phylogenetic tree from 434 conserved protein-coding genes resolves the relationships of most of the known lineages of fungi. This tree is a simplified version of that presented by Spatafora et al. ( ). Phyla are presented in bold and subphyla in regular type. The Chytridiomycetes and Monoblepharidomycetes represent lineages for which a subphylum is not yet named.

Citation: Stajich J. 2017. Fungal Genomes and Insights into the Evolution of the Kingdom, p 619-633. In Heitman J, Howlett B, Crous P, Stukenbrock E, James T, Gow N (ed), The Fungal Kingdom. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.FUNK-0055-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Scatter plot showing the relationship between genome size and gene count. Genome size varies among subphyla of fungi, with some of the smallest genomes in the Microsporidia and the largest currently sequenced genomes in the Agaricomycotina and Pezizomycotina. Primary data are gathered from genome information available at the National Center for Biotechnology Information (https://www.ncbi.nlm.nih.gov/) and Joint Genome Institute Mycocosm (https://jgi.doe.gov/fungi) and archived in the 1KFG genome_stats github project (https://github.com/1KFG/genome_stats).

Citation: Stajich J. 2017. Fungal Genomes and Insights into the Evolution of the Kingdom, p 619-633. In Heitman J, Howlett B, Crous P, Stukenbrock E, James T, Gow N (ed), The Fungal Kingdom. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.FUNK-0055-2016
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Stajich JE,, Berbee ML,, Blackwell M,, Hibbett DS,, James TY,, Spatafora JW,, Taylor JW . 2009. The fungi. Curr Biol 19 : R840 R845.[CrossRef] [PubMed]
2. James TY,, Letcher PM,, Longcore JE,, Mozley-Standridge SE,, Porter D,, Powell MJ,, Griffith GW,, Vilgalys R . 2006. A molecular phylogeny of the flagellated fungi (Chytridiomycota) and description of a new phylum (Blastocladiomycota). Mycologia 98 : 860 871.[CrossRef]
3. Sanger F,, Nicklen S,, Coulson AR . 1977. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74 : 5463 5467.[CrossRef] [PubMed]
4. Saiki RK,, Gelfand DH,, Stoffel S,, Scharf SJ,, Higuchi R,, Horn GT,, Mullis KB,, Erlich HA . 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239 : 487 491.[CrossRef]
5. White TJ,, Bruns TD,, Lee S,, Taylor J, . 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, p 315 322. In Innis MA,, Gelfand DH,, Sninsky JJ,, White TJ (ed), PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, CA.
6. Bruns TD,, Vilgalys R,, Barns SM,, Gonzalez D,, Hibbett DS,, Lane DJ,, Simon L,, Stickel S,, Szaro TM,, Weisburg WG,, Sogin ML . 1992. Evolutionary relationships within the fungi: analyses of nuclear small subunit rRNA sequences. Mol Phylogenet Evol 1 : 231 241.[CrossRef]
7. Kurtzman CP . 1994. Molecular taxonomy of the yeasts. Yeast 10 : 1727 1740.[CrossRef]
8. Spatafora JW,, Mitchell TG,, Vilgalys R . 1995. Analysis of genes coding for small-subunit rRNA sequences in studying phylogenetics of dematiaceous fungal pathogens. J Clin Microbiol 33 : 1322 1326.[PubMed]
9. Moncalvo JM,, Lutzoni FM,, Rehner SA,, Johnson J,, Vilgalys R . 2000. Phylogenetic relationships of agaric fungi based on nuclear large subunit ribosomal DNA sequences. Syst Biol 49 : 278 305.[CrossRef]
10. Moncalvo JM,, Vilgalys R,, Redhead SA,, Johnson JE,, James TY,, Catherine Aime M,, Hofstetter V,, Verduin SJ,, Larsson E,, Baroni TJ,, Greg Thorn R,, Jacobsson S,, Clémençon H,, Miller OK Jr . 2002. One hundred and seventeen clades of euagarics. Mol Phylogenet Evol 23 : 357 400.[CrossRef]
11. O’Donnell K,, Lutzoni FM,, Ward TJ,, Benny GL . 2001. Evolutionary relationships among mucoralean fungi (Zygomycota): evidence for family polyphyly on a large scale. Mycologia 93 : 286 297.[CrossRef]
12. Redecker D,, Raab P . 2006. Phylogeny of the glomeromycota (arbuscular mycorrhizal fungi): recent developments and new gene markers. Mycologia 98 : 885 895.[CrossRef]
13. Spatafora JW,, Sung G-H,, Johnson D,, Hesse C,, O’Rourke B,, Serdani M,, Spotts R,, Lutzoni F,, Hofstetter V,, Miadlikowska J,, Reeb V,, Gueidan C,, Fraker E,, Lumbsch T,, Lücking R,, Schmitt I,, Hosaka K,, Aptroot A,, Roux C,, Miller AN,, Geiser DM,, Hafellner J,, Hestmark G,, Arnold AE,, Büdel B,, Rauhut A,, Hewitt D,, Untereiner WA,, Cole MS,, Scheidegger C,, Schultz M,, Sipman H,, Schoch CL . 2006. A five-gene phylogeny of Pezizomycotina. Mycologia 98 : 1018 1028.[CrossRef]
14. James TY , , et al . 2006. Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443 : 818 822.[CrossRef] [PubMed]
15. Suh S-O,, Blackwell M,, Kurtzman CP,, Lachance M-A . 2006. Phylogenetics of Saccharomycetales, the ascomycete yeasts. Mycologia 98 : 1006 1017.[CrossRef] [PubMed]
16. White MM,, James TY,, O’Donnell K,, Cafaro MJ,, Tanabe Y,, Sugiyama J . 2006. Phylogeny of the Zygomycota based on nuclear ribosomal sequence data. Mycologia 98 : 872 884.[CrossRef] [PubMed]
17. McLaughlin DJ,, Hibbett DS,, Lutzoni F,, Spatafora JW,, Vilgalys R . 2009. The search for the fungal tree of life. Trends Microbiol 17 : 488 497.[CrossRef]
18. Schoch CL , , et al . 2009. The Ascomycota tree of life: a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Syst Biol 58 : 224 239.[CrossRef] [PubMed]
19. Wang Y,, Tretter ED,, Johnson EM,, Kandel P,, Lichtwardt RW,, Novak SJ,, Smith JF,, White MM . 2014. Using a five-gene phylogeny to test morphology-based hypotheses of Smittium and allies, endosymbiotic gut fungi (Harpellales) associated with arthropods. Mol Phylogenet Evol 79 : 23 41.[CrossRef]
20. Porter TM,, Martin W,, James TY,, Longcore JE,, Gleason FH,, Adler PH,, Letcher PM,, Vilgalys R . 2011. Molecular phylogeny of the Blastocladiomycota (Fungi) based on nuclear ribosomal DNA. Fungal Biol 115 : 381 392.[CrossRef]
21. Taylor JW,, Jacobson DJ,, Kroken S,, Kasuga T,, Geiser DM,, Hibbett DS,, Fisher MC . 2000. Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol 31 : 21 32.[CrossRef]
22. Taylor JW,, Turner E,, Townsend JP,, Dettman JR,, Jacobson D . 2006. Eukaryotic microbes, species recognition and the geographic limits of species: examples from the kingdom Fungi. Philos Trans R Soc Lond B Biol Sci 361 : 1947 1963.[CrossRef]
23. Dettman JR,, Jacobson DJ,, Taylor JW . 2006. Multilocus sequence data reveal extensive phylogenetic species diversity within the Neurospora discreta complex. Mycologia 98 : 436 446.[CrossRef]
24. Vialle A,, Feau N,, Frey P,, Bernier L,, Hamelin RC . 2013. Phylogenetic species recognition reveals host-specific lineages among poplar rust fungi. Mol Phylogenet Evol 66 : 628 644.[PubMed]
25. Hibbett DS , , et al . 2007. A higher-level phylogenetic classification of the Fungi. Mycol Res 111 : 509 547.[CrossRef]
26. O’Malley MA,, Wideman JG,, Ruiz-Trillo I . 2016. Losing complexity: the role of simplification in macroevolution. Trends Ecol Evol 31 : 608 621.[CrossRef] [PubMed]
27. Celio GJ,, Padamsee M,, Dentinger BTM,, Bauer R,, McLaughlin DJ . 2006. Assembling the fungal tree of life: constructing the structural and biochemical database. Mycologia 98 : 850 859.[CrossRef]
28. Kumar TKA,, Crow JA,, Wennblom TJ,, Abril M,, Letcher PM,, Blackwell M,, Roberson RW,, McLaughlin DJ . 2011. An ontology of fungal subcellular traits. Am J Bot 98 : 1504 1510.[CrossRef]
29. Hibbett DS,, Stajich JE,, Spatafora JW . 2013. Toward genome-enabled mycology. Mycologia 105 : 1339 1349.[CrossRef] [PubMed]
30. Hall C,, Dietrich FS . 2007. The reacquisition of biotin prototrophy in Saccharomyces cerevisiae involved horizontal gene transfer, gene duplication and gene clustering. Genetics 177 : 2293 2307.[CrossRef]
31. Gojković Z,, Knecht W,, Zameitat E,, Warneboldt J,, Coutelis JB,, Pynyaha Y,, Neuveglise C,, Møller K,, Löffler M,, Piskur J . 2004. Horizontal gene transfer promoted evolution of the ability to propagate under anaerobic conditions in yeasts. Mol Genet Genomics 271 : 387 393.[CrossRef]
32. Piskur J,, Rozpedowska E,, Polakova S,, Merico A,, Compagno C . 2006. How did Saccharomyces evolve to become a good brewer? Trends Genet 22 : 183 186.[CrossRef]
33. Sharpton TJ,, Stajich JE,, Rounsley SD,, Gardner MJ,, Wortman JR,, Jordar VS,, Maiti R,, Kodira CD,, Neafsey DE,, Zeng Q,, Hung C-Y,, McMahan C,, Muszewska A,, Grynberg M,, Mandel MA,, Kellner EM,, Barker BM,, Galgiani JN,, Orbach MJ,, Kirkland TN,, Cole GT,, Henn MR,, Birren BW,, Taylor JW . 2009. Comparative genomic analyses of the human fungal pathogens Coccidioides and their relatives. Genome Res 19 : 1722 1731.[CrossRef]
34. Whiston E,, Taylor JW . 2016. Comparative phylogenomics of pathogenic and nonpathogenic species. G3 (Bethesda) 6 : 235 244.[CrossRef]
35. Muszewska A,, Taylor JW,, Szczesny P,, Grynberg M . 2011. Independent subtilases expansions in fungi associated with animals. Mol Biol Evol 28 : 3395 3404.[CrossRef]
36. Nagy LG,, Ohm RA,, Kovács GM,, Floudas D,, Riley R,, Gácser A,, Sipiczki M,, Davis JM,, Doty SL,, de Hoog GS,, Lang BF,, Spatafora JW,, Martin FM,, Grigoriev IV,, Hibbett DS . 2014. Latent homology and convergent regulatory evolution underlies the repeated emergence of yeasts. Nat Commun 5 : 4471.[CrossRef]
37. Nguyen TA,, Cissé OH,, Yun Wong J,, Zheng P,, Hewitt D,, Nowrousian M,, Stajich JE,, Jedd G . 2017. Innovation and constraint leading to complex multicellularity in the Ascomycota. Nat Commun 8 : 14444.[CrossRef]
38. Carvalho-Santos Z,, Machado P,, Branco P,, Tavares-Cadete F,, Rodrigues-Martins A,, Pereira-Leal JB,, Bettencourt-Dias M . 2010. Stepwise evolution of the centriole-assembly pathway. J Cell Sci 123 : 1414 1426.[CrossRef]
39. Wapinski I,, Pfeffer A,, Friedman N,, Regev A . 2007. Natural history and evolutionary principles of gene duplication in fungi. Nature 449 : 54 61.[CrossRef]
40. Fitzpatrick DA,, Logue ME,, Stajich JE,, Butler G . 2006. A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis. BMC Evol Biol 6 : 99.[CrossRef] [PubMed]
41. Gibbons JG,, Janson EM,, Hittinger CT,, Johnston M,, Abbot P,, Rokas A . 2009. Benchmarking next-generation transcriptome sequencing for functional and evolutionary genomics. Mol Biol Evol 26 : 2731 2744.[CrossRef]
42. Floudas D , , et al . 2012. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336 : 1715 1719.[CrossRef]
43. Spatafora JW,, Chang Y,, Benny GL,, Lazarus K,, Smith ME,, Berbee ML,, Bonito G,, Corradi N,, Grigoriev I,, Gryganskyi A,, James TY,, O’Donnell K,, Roberson RW,, Taylor TN,, Uehling J,, Vilgalys R,, White MM,, Stajich JE . 2016. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108 : 1028 1046.[CrossRef]
44. Reeb V,, Lutzoni F,, Roux C . 2004. Contribution of RPB2 to multilocus phylogenetic studies of the euascomycetes (Pezizomycotina, Fungi) with special emphasis on the lichen-forming Acarosporaceae and evolution of polyspory. Mol Phylogenet Evol 32 : 1036 1060.[PubMed]
45. Moncalvo J-M,, Nilsson RH,, Koster B,, Dunham SM,, Bernauer T,, Matheny PB,, Porter TM,, Margaritescu S,, Weiss M,, Garnica S,, Danell E,, Langer G,, Langer E,, Larsson E,, Larsson K-H,, Vilgalys R . 2006. The cantharelloid clade: dealing with incongruent gene trees and phylogenetic reconstruction methods. Mycologia 98 : 937 948.[CrossRef]
46. Strandberg R,, Nygren K,, Menkis A,, James TY,, Wik L,, Stajich JE,, Johannesson H . 2010. Conflict between reproductive gene trees and species phylogeny among heterothallic and pseudohomothallic members of the filamentous ascomycete genus Neurospora . Fungal Genet Biol 47 : 869 878.[CrossRef]
47. Salichos L,, Rokas A . 2013. Inferring ancient divergences requires genes with strong phylogenetic signals. Nature 497 : 327 331.[CrossRef]
48. Salichos L,, Stamatakis A,, Rokas A . 2014. Novel information theory-based measures for quantifying incongruence among phylogenetic trees. Mol Biol Evol 31 : 1261 1271.[CrossRef]
49. Bradley DJ,, Kjellbom P,, Lamb CJ . 1992. Elicitor- and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defense response. Cell 70 : 21 30.[CrossRef]
50. Lamb CJ,, Lawton MA,, Dron M,, Dixon RA . 1989. Signals and transduction mechanisms for activation of plant defenses against microbial attack. Cell 56 : 215 224.[CrossRef]
51. Kohler A , , et al, Mycorrhizal Genomics Initiative Consortium . 2015. Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat Genet 47 : 410 415.[CrossRef]
52. Martin F , , et al . 2008. The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452 : 88 92.[CrossRef]
53. Plett JM,, Kemppainen M,, Kale SD,, Kohler A,, Legué V,, Brun A,, Tyler BM,, Pardo AG,, Martin F . 2011. A secreted effector protein of Laccaria bicolor is required for symbiosis development. Curr Biol 21 : 1197 1203.[CrossRef]
54. Kloppholz S,, Kuhn H,, Requena N . 2011. A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy. Curr Biol 21 : 1204 1209.[CrossRef]
55. Sędzielewska Toro K,, Brachmann A . 2016. The effector candidate repertoire of the arbuscular mycorrhizal fungus Rhizophagus clarus . BMC Genomics 17 : 101.[CrossRef]
56. Dashtban M,, Schraft H,, Syed TA,, Qin W . 2010. Fungal biodegradation and enzymatic modification of lignin. Int J Biochem Mol Biol 1 : 36 50.[PubMed]
57. Eastwood DC,, Floudas D,, Binder M,, Majcherczyk A,, Schneider P,, Aerts A,, Asiegbu FO,, Baker SE,, Barry K,, Bendiksby M,, Blumentritt M,, Coutinho PM,, Cullen D,, de Vries RP,, Gathman A,, Goodell B,, Henrissat B,, Ihrmark K,, Kauserud H,, Kohler A,, LaButti K,, Lapidus A,, Lavin JL,, Lee YH,, Lindquist E,, Lilly W,, Lucas S,, Morin E,, Murat C,, Oguiza JA,, Park J,, Pisabarro AG,, Riley R,, Rosling A,, Salamov A,, Schmidt O,, Schmutz J,, Skrede I,, Stenlid J,, Wiebenga A,, Xie X,, Kües U,, Hibbett DS,, Hoffmeister D,, Högberg N,, Martin F,, Grigoriev IV,, Watkinson SC . 2011. The plant cell wall-decomposing machinery underlies the functional diversity of forest fungi. Science 333 : 762 765.[CrossRef]
58. Ohm RA,, Riley R,, Salamov A,, Min B,, Choi I-G,, Grigoriev IV . 2014. Genomics of wood-degrading fungi. Fungal Genet Biol 72 : 82 90.[CrossRef]
59. Nagy LG,, Riley R,, Tritt A,, Adam C,, Daum C,, Floudas D,, Sun H,, Yadav JS,, Pangilinan J,, Larsson K-H,, Matsuura K,, Barry K,, Labutti K,, Kuo R,, Ohm RA,, Bhattacharya SS,, Shirouzu T,, Yoshinaga Y,, Martin FM,, Grigoriev IV,, Hibbett DS . 2016. Comparative genomics of early-diverging mushroom-forming fungi provides insights into the origins of lignocellulose decay capabilities. Mol Biol Evol 33 : 959 970.[CrossRef]
60. Floudas D,, Held BW,, Riley R,, Nagy LG,, Koehler G,, Ransdell AS,, Younus H,, Chow J,, Chiniquy J,, Lipzen A,, Tritt A,, Sun H,, Haridas S,, LaButti K,, Ohm RA,, Kües U,, Blanchette RA,, Grigoriev IV,, Minto RE,, Hibbett DS . 2015. Evolution of novel wood decay mechanisms in Agaricales revealed by the genome sequences of Fistulina hepatica and Cylindrobasidium torrendii . Fungal Genet Biol 76 : 78 92.[CrossRef]
61. Riley R,, Salamov AA,, Brown DW,, Nagy LG,, Floudas D,, Held BW,, Levasseur A,, Lombard V,, Morin E,, Otillar R,, Lindquist EA,, Sun H,, LaButti KM,, Schmutz J,, Jabbour D,, Luo H,, Baker SE,, Pisabarro AG,, Walton JD,, Blanchette RA,, Henrissat B,, Martin F,, Cullen D,, Hibbett DS,, Grigoriev IV . 2014. Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proc Natl Acad Sci USA 111 : 9923 9928. (Erratum, 111:14959. doi:10.1073/pnas.1400592111.)[CrossRef]
62. Fernandez-Fueyo E , , et al . 2012. Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis. Proc Natl Acad Sci USA 109 : 5458 5463.[CrossRef]
63. Orpin CG,, Joblin KN, . 1997. The rumen anaerobic fungi, p 140 195. In Hobson PN,, Stewart CS (ed), The Rumen Microbial Ecosystem. Springer Netherlands, Dordrecht, The Netherlands.[CrossRef]
64. Orpin CG, . 1994. Anaerobic fungi: taxonomy, biology and distribution in nature, p 1 46. In Mountfort DO,, Orpin CG (ed), Anaerobic Fungi: Biology, Ecology, and Function. Marcel Dekker, New York, NY.
65. Conley CA,, Ishkhanova G,, McKay CP,, Cullings K . 2006. A preliminary survey of non-lichenized fungi cultured from the hyperarid Atacama Desert of Chile. Astrobiology 6 : 521 526.[CrossRef]
66. Gonçalves VN,, Cantrell CL,, Wedge DE,, Ferreira MC,, Soares MA,, Jacob MR,, Oliveira FS,, Galante D,, Rodrigues F,, Alves TMA,, Zani CL,, Junior PAS,, Murta S,, Romanha AJ,, Barbosa EC,, Kroon EG,, Oliveira JG,, Gomez-Silva B,, Galetovic A,, Rosa CA,, Rosa LH . 2016. Fungi associated with rocks of the Atacama Desert: taxonomy, distribution, diversity, ecology and bioprospection for bioactive compounds. Environ Microbiol 18 : 232 245.[CrossRef]
67. Kogej T,, Ramos J,, Plemenitaš A,, Gunde-Cimerman N . 2005. The halophilic fungus Hortaea werneckii and the halotolerant fungus Aureobasidium pullulans maintain low intracellular cation concentrations in hypersaline environments. Appl Environ Microbiol 71 : 6600 6605.[CrossRef]
68. Selbmann L,, de Hoog GS,, Mazzaglia A,, Friedmann EI,, Onofri S . 2005. Fungi at the edge of life: cryptendolithic black fungi from Antarctic desert. Stud Mycol 51 : 1 32.
69. Zucconi L,, Onofri S,, Cecchini C,, Isola D,, Ripa C,, Fenice M,, Madonna S,, Reboleiro-Rivas P,, Selbmann L . 2016. Mapping the lithic colonization at the boundaries of life in Northern Victoria Land, Antarctica. Polar Biol 39 : 91 102.[CrossRef]
70. Powell AJ,, Parchert KJ,, Bustamante JM,, Ricken JB,, Hutchinson MI,, Natvig DO . 2012. Thermophilic fungi in an aridland ecosystem. Mycologia 104 : 813 825.[CrossRef]
71. Morgenstern I,, Powlowski J,, Ishmael N,, Darmond C,, Marqueteau S,, Moisan M-C,, Quenneville G,, Tsang A . 2012. A molecular phylogeny of thermophilic fungi. Fungal Biol 116 : 489 502.[CrossRef]
72. Romanelli RA,, Houston CW,, Barnett SM . 1975. Studies on thermophilic cellulolytic fungi. Appl Microbiol 30 : 276 281.[PubMed]
73. Berka RM,, Grigoriev IV,, Otillar R,, Salamov A,, Grimwood J,, Reid I,, Ishmael N,, John T,, Darmond C,, Moisan M-C,, Henrissat B,, Coutinho PM,, Lombard V,, Natvig DO,, Lindquist E,, Schmutz J,, Lucas S,, Harris P,, Powlowski J,, Bellemare A,, Taylor D,, Butler G,, de Vries RP,, Allijn IE,, van den Brink J,, Ushinsky S,, Storms R,, Powell AJ,, Paulsen IT,, Elbourne LDH,, Baker SE,, Magnuson J,, Laboissiere S,, Clutterbuck AJ,, Martinez D,, Wogulis M,, de Leon AL,, Rey MW,, Tsang A . 2011. Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris . Nat Biotechnol 29 : 922 927.[CrossRef]
74. Amlacher S,, Sarges P,, Flemming D,, van Noort V,, Kunze R,, Devos DP,, Arumugam M,, Bork P,, Hurt E . 2011. Insight into structure and assembly of the nuclear pore complex by utilizing the genome of a eukaryotic thermophile. Cell 146 : 277 289.[CrossRef] [PubMed]
75. Keeling PJ,, Slamovits CH . 2004. Simplicity and complexity of microsporidian genomes. Eukaryot Cell 3 : 1363 1369.[CrossRef]
76. Akiyoshi DE,, Morrison HG,, Lei S,, Feng X,, Zhang Q,, Corradi N,, Mayanja H,, Tumwine JK,, Keeling PJ,, Weiss LM,, Tzipori S . 2009. Genomic survey of the non-cultivatable opportunistic human pathogen, Enterocytozoon bieneusi . PLoS Pathog 5 : e1000261.[CrossRef]
77. Corradi N,, Haag KL,, Pombert J-F,, Ebert D,, Keeling PJ . 2009. Draft genome sequence of the Daphnia pathogen Octosporea bayeri: insights into the gene content of a large microsporidian genome and a model for host-parasite interactions. Genome Biol 10 : R106.[CrossRef]
78. Pombert J-F,, Xu J,, Smith DR,, Heiman D,, Young S,, Cuomo CA,, Weiss LM,, Keeling PJ . 2013. Complete genome sequences from three genetically distinct strains reveal high intraspecies genetic diversity in the microsporidian Encephalitozoon cuniculi . Eukaryot Cell 12 : 503 511.[CrossRef]
79. Goffeau A,, Barrell BG,, Bussey H,, Davis RW,, Dujon B,, Feldmann H,, Galibert F,, Hoheisel JD,, Jacq C,, Johnston M,, Louis EJ,, Mewes HW,, Murakami Y,, Philippsen P,, Tettelin H,, Oliver SG . 1996. Life with 6000 genes. Science 274 : 546 567, 563–567.[CrossRef]
80. Wood V , , et al . 2002. The genome sequence of Schizosaccharomyces pombe . Nature 415 : 871 880.[CrossRef]
81. James TY,, Pelin A,, Bonen L,, Ahrendt S,, Sain D,, Corradi N,, Stajich JE . 2013. Shared signatures of parasitism and phylogenomics unite Cryptomycota and microsporidia. Curr Biol 23 : 1548 1553.[CrossRef]
82. Toome M,, Ohm RA,, Riley RW,, James TY,, Lazarus KL,, Henrissat B,, Albu S,, Boyd A,, Chow J,, Clum A,, Heller G,, Lipzen A,, Nolan M,, Sandor L,, Zvenigorodsky N,, Grigoriev IV,, Spatafora JW,, Aime MC . 2014. Genome sequencing provides insight into the reproductive biology, nutritional mode and ploidy of the fern pathogen Mixia osmundae . New Phytol 202 : 554 564.[CrossRef]
83. Janbon G , , et al . 2014. Analysis of the genome and transcriptome of Cryptococcus neoformans var. grubii reveals complex RNA expression and microevolution leading to virulence attenuation. PLoS Genet 10 : e1004261.[CrossRef]
84. Loftus BJ , , et al . 2005. The genome of the basidiomycetous yeast and human pathogen Cryptococcus neoformans . Science 307 : 1321 1324.[CrossRef]
85. D’Souza CA,, Kronstad JW,, Taylor G,, Warren R,, Yuen M,, Hu G,, Jung WH,, Sham A,, Kidd SE,, Tangen K,, Lee N,, Zeilmaker T,, Sawkins J,, McVicker G,, Shah S,, Gnerre S,, Griggs A,, Zeng Q,, Bartlett K,, Li W,, Wang X,, Heitman J,, Stajich JE,, Fraser JA,, Meyer W,, Carter D,, Schein J,, Krzywinski M,, Kwon-Chung KJ,, Varma A,, Wang J,, Brunham R,, Fyfe M,, Ouellette BFF,, Siddiqui A,, Marra M,, Jones S,, Holt R,, Birren BW,, Galagan JE,, Cuomo CA . 2011. Genome variation in Cryptococcus gattii, an emerging pathogen of immunocompetent hosts. MBio 2 : e00342-10.[CrossRef]
86. Dujon B , , et al . 2004. Genome evolution in yeasts. Nature 430 : 35 44.[CrossRef]
87. Peter M,, Kohler A,, Ohm RA,, Kuo A,, Krützmann J,, Morin E,, Arend M,, Barry KW,, Binder M,, Choi C,, Clum A,, Copeland A,, Grisel N,, Haridas S,, Kipfer T,, LaButti K,, Lindquist E,, Lipzen A,, Maire R,, Meier B,, Mihaltcheva S,, Molinier V,, Murat C,, Pöggeler S,, Quandt CA,, Sperisen C,, Tritt A,, Tisserant E,, Crous PW,, Henrissat B,, Nehls U,, Egli S,, Spatafora JW,, Grigoriev IV,, Martin FM . 2016. Ectomycorrhizal ecology is imprinted in the genome of the dominant symbiotic fungus Cenococcum geophilum . Nat Commun 7 : 12662.[CrossRef]
88. Martin F , , et al . 2010. Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature 464 : 1033 1038.[CrossRef]
89. Spanu PD , , et al . 2010. Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism. Science 330 : 1543 1546.[CrossRef]
90. Murrin F,, Holtby J,, Noland RA,, Davidson WS . 1986. The genome of Entomophaga aulicae (Entomophthorales, Zygomycetes): base composition and size. Exp Mycol 10 : 67 75.[CrossRef]
91. De Fine Licht HH,, Jensen AB,, Eilenberg J . 2017. Comparative transcriptomics reveal host-specific nucleotide variation in entomophthoralean fungi. Mol Ecol 26 : 2092 2110.[CrossRef]
92. Małagocka J,, Grell MN,, Lange L,, Eilenberg J,, Jensen AB . 2015. Transcriptome of an entomophthoralean fungus ( Pandora formicae) shows molecular machinery adjusted for successful host exploitation and transmission. J Invertebr Pathol 128 : 47 56.[CrossRef]
93. Tavares S,, Ramos AP,, Pires AS,, Azinheira HG,, Caldeirinha P,, Link T,, Abranches R,, Silva MC,, Voegele RT,, Loureiro J,, Talhinhas P . 2014. Genome size analyses of Pucciniales reveal the largest fungal genomes. Front Plant Sci 5 : 422.[CrossRef]
94. Williams BAP,, Lee RCH,, Becnel JJ,, Weiss LM,, Fast NM,, Keeling PJ . 2008. Genome sequence surveys of Brachiola algerae and Edhazardia aedis reveal microsporidia with low gene densities. BMC Genomics 9 : 200.[CrossRef]
95. Katinka MD,, Duprat S,, Cornillot E,, Méténier G,, Thomarat F,, Prensier G,, Barbe V,, Peyretaillade E,, Brottier P,, Wincker P,, Delbac F,, El Alaoui H,, Peyret P,, Saurin W,, Gouy M,, Weissenbach J,, Vivarès CP . 2001. Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi . Nature 414 : 450 453.[CrossRef]
96. Cuomo CA,, Desjardins CA,, Bakowski MA,, Goldberg J,, Ma AT,, Becnel JJ,, Didier ES,, Fan L,, Heiman DI,, Levin JZ,, Young S,, Zeng Q,, Troemel ER . 2012. Microsporidian genome analysis reveals evolutionary strategies for obligate intracellular growth. Genome Res 22 : 2478 2488.[CrossRef]
97. Troemel ER,, Becnel JJ . 2015. Genome analysis and polar tube firing dynamics of mosquito-infecting microsporidia. Fungal Genet Biol 83 : 41 44.[CrossRef]
98. Corradi N,, Akiyoshi DE,, Morrison HG,, Feng X,, Weiss LM,, Tzipori S,, Keeling PJ . 2007. Patterns of genome evolution among the microsporidian parasites Encephalitozoon cuniculi, Antonospora locustae and Enterocytozoon bieneusi . PLoS One 2 : e1277.[CrossRef]
99. Corradi N,, Gangaeva A,, Keeling PJ . 2008. Comparative profiling of overlapping transcription in the compacted genomes of microsporidia Antonospora locustae and Encephalitozoon cuniculi . Genomics 91 : 388 393.[CrossRef]
100. Hauser PM,, Burdet FX,, Cissé OH,, Keller L,, Taffé P,, Sanglard D,, Pagni M . 2010. Comparative genomics suggests that the fungal pathogen pneumocystis is an obligate parasite scavenging amino acids from its host’s lungs. PLoS One 5 : e15152.[PubMed]
101. Cissé OH,, Pagni M,, Hauser PM . 2012. De novo assembly of the Pneumocystis jirovecii genome from a single bronchoalveolar lavage fluid specimen from a patient. MBio 4 : e00428-12.[CrossRef]
102. Almeida JMGCF,, Cissé OH,, Fonseca Á,, Pagni M,, Hauser PM . 2015. Comparative genomics suggests primary homothallism of Pneumocystis species. MBio 6 : e02250-14.[CrossRef]
103. Dietrich FS,, Voegeli S,, Brachat S,, Lerch A,, Gates K,, Steiner S,, Mohr C,, Pöhlmann R,, Luedi P,, Choi S,, Wing RA,, Flavier A,, Gaffney TD,, Philippsen P . 2004. The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome. Science 304 : 304 307.[CrossRef]
104. Raffaele S,, Kamoun S . 2012. Genome evolution in filamentous plant pathogens: why bigger can be better. Nat Rev Microbiol 10 : 417 430.
105. Dong S,, Raffaele S,, Kamoun S . 2015. The two-speed genomes of filamentous pathogens: waltz with plants. Curr Opin Genet Dev 35 : 57 65. (Erratum, www.ncbi.nlm.nih.gov/pubmed/26451981?dopt=Abstract#comments.)[CrossRef]
106. Rouxel T,, Grandaubert J,, Hane JK,, Hoede C,, van de Wouw AP,, Couloux A,, Dominguez V,, Anthouard V,, Bally P,, Bourras S,, Cozijnsen AJ,, Ciuffetti LM,, Degrave A,, Dilmaghani A,, Duret L,, Fudal I,, Goodwin SB,, Gout L,, Glaser N,, Linglin J,, Kema GH,, Lapalu N,, Lawrence CB,, May K,, Meyer M,, Ollivier B,, Poulain J,, Schoch CL,, Simon A,, Spatafora JW,, Stachowiak A,, Turgeon BG,, Tyler BM,, Vincent D,, Weissenbach J,, Amselem J,, Quesneville H,, Oliver RP,, Wincker P,, Balesdent MH,, Howlett BJ . 2011. Effector diversification within compartments of the Leptosphaeria maculans genome affected by repeat-induced point mutations. Nat Commun 2 : 202.[CrossRef]
107. Raffaele S,, Farrer RA,, Cano LM,, Studholme DJ,, MacLean D,, Thines M,, Jiang RHY,, Zody MC,, Kunjeti SG,, Donofrio NM,, Meyers BC,, Nusbaum C,, Kamoun S . 2010. Genome evolution following host jumps in the Irish potato famine pathogen lineage. Science 330 : 1540 1543.[CrossRef]
108. Sperschneider J,, Gardiner DM,, Thatcher LF,, Lyons R,, Singh KB,, Manners JM,, Taylor JM . 2015. Genome-wide analysis in three Fusarium pathogens identifies rapidly evolving chromosomes and genes associated with pathogenicity. Genome Biol Evol 7 : 1613 1627.[CrossRef]
109. Croll D,, McDonald BA . 2012. The accessory genome as a cradle for adaptive evolution in pathogens. PLoS Pathog 8 : e1002608.[CrossRef]
110. Grandaubert J,, Lowe RG,, Soyer JL,, Schoch CL,, Van de Wouw AP,, Fudal I,, Robbertse B,, Lapalu N,, Links MG,, Ollivier B,, Linglin J,, Barbe V,, Mangenot S,, Cruaud C,, Borhan H,, Howlett BJ,, Balesdent M-H,, Rouxel T . 2014. Transposable element-assisted evolution and adaptation to host plant within the Leptosphaeria maculans- Leptosphaeria biglobosa species complex of fungal pathogens. BMC Genomics 15 : 891.[CrossRef]
111. Faino L,, Seidl MF,, Shi-Kunne X,, Pauper M,, van den Berg GCM,, Wittenberg AHJ,, Thomma BPHJ . 2016. Transposons passively and actively contribute to evolution of the two-speed genome of a fungal pathogen. Genome Res 26 : 1091 1100.[CrossRef]
112. Burke DT,, Carle GF,, Olson MV . 1987. Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science 236 : 806 812.[CrossRef]
113. Galitski T,, Saldanha AJ,, Styles CA,, Lander ES,, Fink GR . 1999. Ploidy regulation of gene expression. Science 285 : 251 254.[CrossRef]
114. Mable BK,, Otto SP . 2001. Masking and purging mutations following EMS treatment in haploid, diploid and tetraploid yeast ( Saccharomyces cerevisiae). Genet Res 77 : 9 26.[CrossRef]
115. Torres EM,, Sokolsky T,, Tucker CM,, Chan LY,, Boselli M,, Dunham MJ,, Amon A . 2007. Effects of aneuploidy on cellular physiology and cell division in haploid yeast. Science 317 : 916 924.[CrossRef]
116. Lynch M,, Conery JS . 2003. The origins of genome complexity. Science 302 : 1401 1404.[CrossRef]
117. Lynch M . 2007. The Origins of Genome Architecture. Sinauer Associates, Sunderland, MA.
118. Huerta-Cepas J,, Capella-Gutiérrez S,, Pryszcz LP,, Marcet-Houben M,, Gabaldón T . 2014. PhylomeDB v4: zooming into the plurality of evolutionary histories of a genome. Nucleic Acids Res 42( D1) : D897 D902.[CrossRef]
119. Kersey PJ,, Allen JE,, Christensen M,, Davis P,, Falin LJ,, Grabmueller C,, Hughes DST,, Humphrey J,, Kerhornou A,, Khobova J,, Langridge N,, McDowall MD,, Maheswari U,, Maslen G,, Nuhn M,, Ong CK,, Paulini M,, Pedro H,, Toneva I,, Tuli MA,, Walts B,, Williams G,, Wilson D,, Youens-Clark K,, Monaco MK,, Stein J,, Wei X,, Ware D,, Bolser DM,, Howe KL,, Kulesha E,, Lawson D,, Staines DM . 2014. Ensembl Genomes 2013: scaling up access to genome-wide data. Nucleic Acids Res 42( D1) : D546 D552.[CrossRef]
120. Akcapinar GB,, Kappel L,, Sezerman OU,, Seidl-Seiboth V . 2015. Molecular diversity of LysM carbohydrate-binding motifs in fungi. Curr Genet 61 : 103 113.[CrossRef]
121. Kombrink A,, Thomma BPHJ . 2013. LysM effectors: secreted proteins supporting fungal life. PLoS Pathog 9 : e1003769.[CrossRef]
122. Teixeira MM,, de Almeida LGP,, Kubitschek-Barreira P,, Alves FL,, Kioshima ES,, Abadio AKR,, Fernandes L,, Derengowski LS,, Ferreira KS,, Souza RC,, Ruiz JC,, de Andrade NC,, Paes HC,, Nicola AM,, Albuquerque P,, Gerber AL,, Martins VP,, Peconick LDF,, Neto AV,, Chaucanez CB,, Silva PA,, Cunha OL,, de Oliveira FFM,, dos Santos TC,, Barros ALN,, Soares MA,, de Oliveira LM,, Marini MM,, Villalobos-Duno H,, Cunha MML,, de Hoog S,, da Silveira JF,, Henrissat B,, Niño-Vega GA,, Cisalpino PS,, Mora-Montes HM,, Almeida SR,, Stajich JE,, Lopes-Bezerra LM,, Vasconcelos ATR,, Felipe MSS . 2014. Comparative genomics of the major fungal agents of human and animal sporotrichosis: Sporothrix schenckii and Sporothrix brasiliensis . BMC Genomics 15 : 943.[CrossRef]
123. Martinez DA,, Oliver BG,, Gräser Y,, Goldberg JM,, Li W,, Martinez-Rossi NM,, Monod M,, Shelest E,, Barton RC,, Birch E,, Brakhage AA,, Chen Z,, Gurr SJ,, Heiman D,, Heitman J,, Kosti I,, Rossi A,, Saif S,, Samalova M,, Saunders CW,, Shea T,, Summerbell RC,, Xu J,, Young S,, Zeng Q,, Birren BW,, Cuomo CA,, White TC . 2012. Comparative genome analysis of Trichophyton rubrum and related dermatophytes reveals candidate genes involved in infection. MBio 3 : e00259-12.[CrossRef]
124. Buist G,, Steen A,, Kok J,, Kuipers OP . 2008. LysM, a widely distributed protein motif for binding to (peptido)glycans. Mol Microbiol 68 : 838 847.[CrossRef]
125. de Jonge R,, van Esse HP,, Kombrink A,, Shinya T,, Desaki Y,, Bours R,, van der Krol S,, Shibuya N,, Joosten MH,, Thomma BP . 2010. Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants. Science 329 : 953 955.[CrossRef]
126. Xue C,, Liu T,, Chen L,, Li W,, Liu I,, Kronstad JW,, Seyfang A,, Heitman J . 2010. Role of an expanded inositol transporter repertoire in Cryptococcus neoformans sexual reproduction and virulence. MBio 1 : e00084-10.[CrossRef]
127. Zaragoza O,, Rodrigues ML,, De Jesus M,, Frases S,, Dadachova E,, Casadevall A . 2009. The capsule of the fungal pathogen Cryptococcus neoformans . Adv Appl Microbiol 68 : 133 216.
128. Perfect JR . 2005. Cryptococcus neoformans: a sugar-coated killer with designer genes. FEMS Immunol Med Microbiol 45 : 395 404.[CrossRef] [PubMed]
129. O’Meara TR,, Alspaugh JA . 2012. The Cryptococcus neoformans capsule: a sword and a shield. Clin Microbiol Rev 25 : 387 408.[CrossRef]
130. Li J,, Zhang K-Q . 2014. Independent expansion of zincin metalloproteinases in Onygenales fungi may be associated with their pathogenicity. PLoS One 9 : e90225.[CrossRef]
131. Whiston E,, Taylor JW . 2014. Genomics in Coccidioides: insights into evolution, ecology, and pathogenesis. Med Mycol 52 : 149 155.[CrossRef] [PubMed]
132. Muñoz JF,, Gauthier GM,, Desjardins CA,, Gallo JE,, Holder J,, Sullivan TD,, Marty AJ,, Carmen JC,, Chen Z,, Ding L,, Gujja S,, Magrini V,, Misas E,, Mitreva M,, Priest M,, Saif S,, Whiston EA,, Young S,, Zeng Q,, Goldman WE,, Mardis ER,, Taylor JW,, McEwen JG,, Clay OK,, Klein BS,, Cuomo CA . 2015. The dynamic genome and transcriptome of the human fungal pathogen Blastomyces and close relative Emmonsia. PLoS Genet 11 : e1005493.[CrossRef]
133. Joneson S,, Stajich JE,, Shiu S-H,, Rosenblum EB . 2011. Genomic transition to pathogenicity in chytrid fungi. PLoS Pathog 7 : e1002338.[CrossRef]
134. Thekkiniath JC,, Zabet-Moghaddam M,, San Francisco SK,, San Francisco MJ . 2013. A novel subtilisin-like serine protease of Batrachochytrium dendrobatidis is induced by thyroid hormone and degrades antimicrobial peptides. Fungal Biol 117 : 451 461.[CrossRef]
135. Abramyan J,, Stajich JE . 2012. Species-specific chitin-binding module 18 expansion in the amphibian pathogen Batrachochytrium dendrobatidis . MBio 3 : e00150-12.[CrossRef]
136. Farrer RA,, Martel A,, Verbrugghe E,, Abouelleil A,, Ducatelle R,, Longcore JE,, James TY,, Pasmans F,, Fisher MC,, Cuomo CA . 2017. Genomic innovations linked to infection strategies across emerging pathogenic chytrid fungi. Nat Commun 8 : 14742.[CrossRef]
137. Liu P,, Stajich JE . 2015. Characterization of the Carbohydrate Binding Module 18 gene family in the amphibian pathogen Batrachochytrium dendrobatidis . Fungal Genet Biol 77 : 31 39.[CrossRef]
138. Pendleton AL,, Smith KE,, Feau N,, Martin FM,, Grigoriev IV,, Hamelin R,, Nelson CD,, Burleigh JG,, Davis JM . 2014. Duplications and losses in gene families of rust pathogens highlight putative effectors. Front Plant Sci 5 : 299.[CrossRef]
139. Goodwin SB , , et al . 2011. Finished genome of the fungal wheat pathogen Mycosphaerella graminicola reveals dispensome structure, chromosome plasticity, and stealth pathogenesis. PLoS Genet 7 : e1002070.[CrossRef]
140. Hu X,, Xiao G,, Zheng P,, Shang Y,, Su Y,, Zhang X,, Liu X,, Zhan S,, St Leger RJ,, Wang C . 2014. Trajectory and genomic determinants of fungal-pathogen speciation and host adaptation. Proc Natl Acad Sci USA 111 : 16796 16801.[CrossRef]
141. Gao Q,, Jin K,, Ying S-H,, Zhang Y,, Xiao G,, Shang Y,, Duan Z,, Hu X,, Xie X-Q,, Zhou G,, Peng G,, Luo Z,, Huang W,, Wang B,, Fang W,, Wang S,, Zhong Y,, Ma L-J,, St Leger RJ,, Zhao G-P,, Pei Y,, Feng M-G,, Xia Y,, Wang C . 2011. Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum . PLoS Genet 7 : e1001264.[CrossRef]
142. Schiøtt M,, De Fine Licht HH,, Lange L,, Boomsma JJ . 2008. Towards a molecular understanding of symbiont function: identification of a fungal gene for the degradation of xylan in the fungus gardens of leaf-cutting ants. BMC Microbiol 8 : 40.[CrossRef]
143. De Fine Licht HH,, Schiøtt M,, Mueller UG,, Boomsma JJ . 2010. Evolutionary transitions in enzyme activity of ant fungus gardens. Evolution 64 : 2055 2069.
144. Nygaard S,, Zhang G,, Schiøtt M,, Li C,, Wurm Y,, Hu H,, Zhou J,, Ji L,, Qiu F,, Rasmussen M,, Pan H,, Hauser F,, Krogh A,, Grimmelikhuijzen CJP,, Wang J,, Boomsma JJ . 2011. The genome of the leaf-cutting ant Acromyrmex echinatior suggests key adaptations to advanced social life and fungus farming. Genome Res 21 : 1339 1348.[CrossRef]
145. De Fine Licht HH,, Schiøtt M,, Rogowska-Wrzesinska A,, Nygaard S,, Roepstorff P,, Boomsma JJ . 2013. Laccase detoxification mediates the nutritional alliance between leaf-cutting ants and fungus-garden symbionts. Proc Natl Acad Sci USA 110 : 583 587.[CrossRef]
146. De Fine Licht HH,, Boomsma JJ,, Tunlid A . 2014. Symbiotic adaptations in the fungal cultivar of leaf-cutting ants. Nat Commun 5 : 5675.[CrossRef]
147. Aylward FO,, Khadempour L,, Tremmel DM,, McDonald BR,, Nicora CD,, Wu S,, Moore RJ,, Orton DJ,, Monroe ME,, Piehowski PD,, Purvine SO,, Smith RD,, Lipton MS,, Burnum-Johnson KE,, Currie CR . 2015. Enrichment and broad representation of plant biomass-degrading enzymes in the specialized hyphal swellings of Leucoagaricus gongylophorus, the fungal symbiont of leaf-cutter ants. PLoS One 10 : e0134752.[PubMed]
148. Khadempour L,, Burnum-Johnson KE,, Baker ES,, Nicora CD,, Webb-Robertson BM,, White RA III,, Monroe ME,, Huang EL,, Smith RD,, Currie CR . 2016. The fungal cultivar of leaf-cutter ants produces specific enzymes in response to different plant substrates. Mol Ecol 25 : 5795 5805.[CrossRef]
149. Corrochano LM , , et al . 2016. Expansion of signal transduction pathways in fungi by extensive genome duplication. Curr Biol 26 : 1577 1584.[CrossRef]
150. Ma LJ,, Ibrahim AS,, Skory C,, Grabherr MG,, Burger G,, Butler M,, Elias M,, Idnurm A,, Lang BF,, Sone T,, Abe A,, Calvo SE,, Corrochano LM,, Engels R,, Fu J,, Hansberg W,, Kim JM,, Kodira CD,, Koehrsen MJ,, Liu B,, Miranda-Saavedra D,, O’Leary S,, Ortiz-Castellanos L,, Poulter R,, Rodriguez-Romero J,, Ruiz-Herrera J,, Shen YQ,, Zeng Q,, Galagan J,, Birren BW,, Cuomo CA,, Wickes BL . 2009. Genomic analysis of the basal lineage fungus Rhizopus oryzae reveals a whole-genome duplication. PLoS Genet 5 : e1000549.[CrossRef]
151. Stajich JE,, Wilke SK,, Ahrén D,, Au CH,, Birren BW,, Borodovsky M,, Burns C,, Canbäck B,, Casselton LA,, Cheng CK,, Deng J,, Dietrich FS,, Fargo DC,, Farman ML,, Gathman AC,, Goldberg J,, Guigó R,, Hoegger PJ,, Hooker JB,, Huggins A,, James TY,, Kamada T,, Kilaru S,, Kodira C,, Kües U,, Kupfer D,, Kwan HS,, Lomsadze A,, Li W,, Lilly WW,, Ma L-J,, Mackey AJ,, Manning G,, Martin F,, Muraguchi H,, Natvig DO,, Palmerini H,, Ramesh MA,, Rehmeyer CJ,, Roe BA,, Shenoy N,, Stanke M,, Ter-Hovhannisyan V,, Tunlid A,, Velagapudi R,, Vision TJ,, Zeng Q,, Zolan ME,, Pukkila PJ . 2010. Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea ( Coprinus cinereus). Proc Natl Acad Sci USA 107 : 11889 11894.[CrossRef]
152. Plett JM,, Gibon J,, Kohler A,, Duffy K,, Hoegger PJ,, Velagapudi R,, Han J,, Kües U,, Grigoriev IV,, Martin F . 2012. Phylogenetic, genomic organization and expression analysis of hydrophobin genes in the ectomycorrhizal basidiomycete Laccaria bicolor . Fungal Genet Biol 49 : 199 209.[CrossRef]
153. Rineau F,, Lmalem H,, Ahren D,, Shah F,, Johansson T,, Coninx L,, Ruytinx J,, Nguyen H,, Grigoriev I,, Kuo A,, Kohler A,, Morin E,, Vangronsveld J,, Martin F,, Colpaert JV . 2017. Comparative genomics and expression levels of hydrophobins from eight mycorrhizal genomes. Mycorrhiza 27 : 383 396.[CrossRef]
154. Sammer D,, Krause K,, Gube M,, Wagner K,, Kothe E . 2016. Hydrophobins in the life cycle of the ectomycorrhizal Basidiomycete Tricholoma vaccinum . PLoS One 11 : e0167773.[CrossRef]
155. Martinez D,, Larrondo LF,, Putnam N,, Gelpke MD,, Huang K,, Chapman J,, Helfenbein KG,, Ramaiya P,, Detter JC,, Larimer F,, Coutinho PM,, Henrissat B,, Berka R,, Cullen D,, Rokhsar D . 2004. Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22 : 695 700.[CrossRef]
156. Doddapaneni H,, Chakraborty R,, Yadav JS . 2005. Genome-wide structural and evolutionary analysis of the P450 monooxygenase genes (P450ome) in the white rot fungus Phanerochaete chrysosporium: evidence for gene duplications and extensive gene clustering. BMC Genomics 6 : 92.[CrossRef]
157. Yadav JS,, Doddapaneni H,, Subramanian V . 2006. P450ome of the white rot fungus Phanerochaete chrysosporium: structure, evolution and regulation of expression of genomic P450 clusters. Biochem Soc Trans 34 : 1165 1169.[CrossRef]
158. Syed K,, Yadav JS . 2012. P450 monooxygenases (P450ome) of the model white rot fungus Phanerochaete chrysosporium . Crit Rev Microbiol 38 : 339 363.[CrossRef]
159. Syed K,, Nelson DR,, Riley R,, Yadav JS . 2013. Genomewide annotation and comparative genomics of cytochrome P450 monooxygenases (P450s) in the polypore species Bjerkandera adusta, Ganoderma sp. and Phlebia brevispora . Mycologia 105 : 1445 1455.[CrossRef]
160. Syed K,, Shale K,, Pagadala NS,, Tuszynski J . 2014. Systematic identification and evolutionary analysis of catalytically versatile cytochrome P450 monooxygenase families enriched in model Basidiomycete fungi. PLoS One. 9 : e86683.[PubMed]
161. Chen W,, Lee M-K,, Jefcoate C,, Kim S-C,, Chen F,, Yu J-H . 2014. Fungal cytochrome p450 monooxygenases: their distribution, structure, functions, family expansion, and evolutionary origin. Genome Biol Evol 6 : 1620 1634.[CrossRef]
162. Qhanya LB,, Matowane G,, Chen W,, Sun Y,, Letsimo EM,, Parvez M,, Yu J-H,, Mashele SS,, Syed K . 2015. Genome-wide annotation and comparative analysis of cytochrome P450 monooxygenases in Basidiomycete biotrophic plant pathogens. PLoS One 10 : e0142100.[CrossRef]
163. Baroncelli R,, Amby DB,, Zapparata A,, Sarrocco S,, Vannacci G,, Le Floch G,, Harrison RJ,, Holub E,, Sukno SA,, Sreenivasaprasad S,, Thon MR . 2016. Gene family expansions and contractions are associated with host range in plant pathogens of the genus Colletotrichum . BMC Genomics 17 : 555.[CrossRef]
164. de Man TJB,, Stajich JE,, Kubicek CP,, Teiling C,, Chenthamara K,, Atanasova L,, Druzhinina IS,, Levenkova N,, Birnbaum SSL,, Barribeau SM,, Bozick BA,, Suen G,, Currie CR,, Gerardo NM . 2016. Small genome of the fungus Escovopsis weberi, a specialized disease agent of ant agriculture. Proc Natl Acad Sci USA 113 : 3567 3572.[CrossRef]
165. Selker EU,, Garrett PW . 1988. DNA sequence duplications trigger gene inactivation in Neurospora crassa . Proc Natl Acad Sci USA 85 : 6870 6874.[CrossRef]
166. Selker EU . 1990. Premeiotic instability of repeated sequences in Neurospora crassa . Annu Rev Genet 24 : 579 613.[CrossRef]
167. Galagan JE , , et al . 2003. The genome sequence of the filamentous fungus Neurospora crassa . Nature 422 : 859 868.[CrossRef]