Chapter 51 : Fungal Ligninolytic Enzymes and Their Applications

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Fungal Ligninolytic Enzymes and Their Applications, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819583/9781555819576_Chap52-1.gif /docserver/preview/fulltext/10.1128/9781555819583/9781555819576_Chap52-2.gif


Lignin is an aromatic polymer with a heterogeneous structure. Varied, nonhydrolyzable linkages between subunits present a significant constraint to efficient exploitation of plant lignin. The different types of biomass and pretreatment used in biomass conversion processes result in a large variety in the molecular weight, structures, modifications, amount, and aqueous solubility of the lignin in the remaining product side streams. While polysaccharides are deconstructed biologically mostly by glycoside hydrolase and esterase hydrolysis, the ether and carbon-carbon bonds of lignin are attacked by fungal oxidative enzymes and small-molecule oxidative species, adding heterogeneity to the products.

Citation: Mäkelä M, Bredeweg E, Magnuson J, Baker S, de Vries R, Hildén K. 2017. Fungal Ligninolytic Enzymes and Their Applications, p 1049-1061. In Heitman J, Howlett B, Crous P, Stukenbrock E, James T, Gow N (ed), The Fungal Kingdom. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.FUNK-0017-2016
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Sjöström E . 1993. Wood Chemistry: Fundamentals and Applications, 2nd ed. Academic Press, San Diego, CA.[PubMed]
2. Buranov AU,, Mazza G . 2008. Lignin in straw of herbaceous crops. Ind Crops Prod 28 : 237 259.[CrossRef] [PubMed]
3. Rubin EM . 2008. Genomics of cellulosic biofuels. Nature 454 : 841 845.[CrossRef]
4. Moura JC,, Bonine CA,, de Oliveira Fernandes Viana J,, Dornelas MC,, Mazzafera P . 2010. Abiotic and biotic stresses and changes in the lignin content and composition in plants. J Integr Plant Biol 52 : 360 376.[CrossRef]
5. Argyropoulos DS,, Menachem SB . 1997. Lignin. Adv Biochem Eng Biotechnol 57 : 127 158.[CrossRef]
6. Kuhad RC,, Singh A,, Eriksson KEL . 1997. Microorganisms and enzymes involved in the degradation of plant fiber cell walls. Adv Biochem Eng Biotechnol 57 : 45 125.[CrossRef] [PubMed]
7. Brunow G,, Lundquist K, . 2010. Functional groups and bonding patterns in lignin (including the lignin-carbohydrate-complexes), p 267 299. In Heitner C,, Dimmel D,, Schmidt J (ed), Lignin and Lignans: Advances in Chemistry. CRC Press, Boca Raton, FL.[CrossRef]
8. MacDonald J,, Goacher RE,, Abou-Zaid M,, Master ER . 2016. Comparative analysis of lignin peroxidase and manganese peroxidase activity on coniferous and deciduous wood using ToF-SIMS. Appl Microbiol Biotechnol 100 : 8013 8020.[CrossRef]
9. Hudson CM,, Kirton E,, Hutchinson MI,, Redfern JL,, Simmons B,, Ackerman E,, Singh S,, Williams KP,, Natvig DO,, Powell AJ . 2015. Lignin-modifying processes in the rhizosphere of arid land grasses. Environ Microbiol 17 : 4965 4978.[CrossRef] [PubMed]
10. Thanh Mai Pham L,, Kim YH . 2016. Discovery and characterization of new O-methyltransferase from the genome of the lignin-degrading fungus Phanerochaete chrysosporium for enhanced lignin degradation. Enzyme Microb Technol 82 : 66 73.[CrossRef]
11. Min B,, Park H,, Jang Y,, Kim J-J,, Kim KH,, Pangilinan J,, Lipzen A,, Riley R,, Grigoriev IV,, Spatafora JW,, Choi IG . 2015. Genome sequence of a white rot fungus Schizopora paradoxa KUC8140 for wood decay and mycoremediation. J Biotechnol 211 : 42 43.[CrossRef] [PubMed]
12. Scully ED,, Geib SM,, Hoover K,, Tien M,, Tringe SG,, Barry KW,, Glavina del Rio T,, Chovatia M,, Herr JR,, Carlson JE . 2013. Metagenomic profiling reveals lignocellulose degrading system in a microbial community associated with a wood-feeding beetle. PLoS One 8 : e73827.[CrossRef]
13. Loqué D,, Scheller HV,, Pauly M . 2015. Engineering of plant cell walls for enhanced biofuel production. Curr Opin Plant Biol 25 : 151 161.[CrossRef] [PubMed]
14. Wang P,, Dudareva N,, Morgan JA,, Chapple C . 2015. Genetic manipulation of lignocellulosic biomass for bioenergy. Curr Opin Chem Biol 29 : 32 39.[CrossRef] [PubMed]
15. Wang Y,, Fan C,, Hu H,, Li Y,, Sun D,, Wang Y,, Peng L . 2016. Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops. Biotechnol Adv 34 : 997 1017.[CrossRef] [PubMed]
16. Cheng YS,, Zheng Y,, Yu CW,, Dooley TM,, Jenkins BM,, VanderGheynst JS . 2010. Evaluation of high solids alkaline pretreatment of rice straw. Appl Biochem Biotechnol 162 : 1768 1784.[CrossRef] [PubMed]
17. McIntosh S,, Vancov T . 2010. Enhanced enzyme saccharification of Sorghum bicolor straw using dilute alkali pretreatment. Bioresour Technol 101 : 6718 6727.[CrossRef]
18. Narron RH,, Kim H,, Chang HM,, Jameel H,, Park S . 2016. Biomass pretreatments capable of enabling lignin valorization in a biorefinery process. Curr Opin Biotechnol 38 : 39 46.[CrossRef]
19. Li C,, Knierim B,, Manisseri C,, Arora R,, Scheller HV,, Auer M,, Vogel KP,, Simmons BA,, Singh S . 2010. Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresour Technol 101 : 4900 4906.[CrossRef]
20. Shuai L,, Yang Q,, Zhu JY,, Lu FC,, Weimer PJ,, Ralph J,, Pan XJ . 2010. Comparative study of SPORL and dilute-acid pretreatments of spruce for cellulosic ethanol production. Bioresour Technol 101 : 3106 3114.[CrossRef] [PubMed]
21. Zhang YH,, Ding SY,, Mielenz JR,, Cui JB,, Elander RT,, Laser M,, Himmel ME,, McMillan JR,, Lynd LR . 2007. Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol Bioeng 97 : 214 223.[CrossRef] [PubMed]
22. Mitchell VD,, Taylor CM,, Bauer S . 2014. Comprehensive analysis of monomeric phenolicsin dilute acid plant hydrolysates. Bioenerg Res 7 : 654 669.[CrossRef]
23. Ko JK,, Kim Y,, Ximenes E,, Ladisch MR . 2015. Effect of liquid hot water pretreatment severity on properties of hardwood lignin and enzymatic hydrolysis of cellulose. Biotechnol Bioeng 112 : 252 262.[CrossRef] [PubMed]
24. Saha BC,, Iten LB,, Cotta MA,, Wu YV . 2005. Dilute acid pretreatment, enzymatic saccharification, and fermentation of rice hulls to ethanol. Biotechnol Prog 21 : 816 822.[CrossRef]
25. Zavrel M,, Bross D,, Funke M,, Büchs J,, Spiess AC . 2009. High-throughput screening for ionic liquids dissolving (ligno-)cellulose. Bioresour Technol 100 : 2580 2587.[CrossRef]
26. Li Q,, He YC,, Xian M,, Jun G,, Xu X,, Yang JM,, Li LZ . 2009. Improving enzymatic hydrolysis of wheat straw using ionic liquid 1-ethyl-3-methyl imidazolium diethyl phosphate pretreatment. Bioresour Technol 100 : 3570 3575.[CrossRef]
27. Samayam IP,, Schall CA . 2010. Saccharification of ionic liquid pretreated biomass with commercial enzyme mixtures. Bioresour Technol 101 : 3561 3566.[CrossRef] [PubMed]
28. Ballesteros I,, Negro MJ,, Oliva JM,, Cabañas A,, Manzanares P,, Ballesteros M . 2006. Ethanol production from steam-explosion pretreated wheat straw. Appl Biochem Biotechnol 130 : 496 508.[CrossRef]
29. Vignon MR,, Garcia-Jaldon C,, Dupeyre D . 1995. Steam explosion of woody hemp chènevotte. Int J Biol Macromol 17 : 395 404.[CrossRef] [PubMed]
30. Tanshashi M . 1990. Characterization and degradation mechanisms of wood components by steam explosion and utilization of exploded wood. Wood Res 77 : 49 117.
31. Yu G,, Yano S,, Inoue H,, Inoue S,, Endo T,, Sawayama S . 2010. Pretreatment of rice straw by a hot-compressed water process for enzymatic hydrolysis. Appl Biochem Biotechnol 160 : 539 551.[CrossRef] [PubMed]
32. Yu Q,, Zhuang X,, Yuan Z,, Wang Q,, Qi W,, Wang W,, Zhang Y,, Xu J,, Xu H . 2010. Two-step liquid hot water pretreatment of Eucalyptus grandis to enhance sugar recovery and enzymatic digestibility of cellulose. Bioresour Technol 101 : 4895 4899.[CrossRef]
33. Alizadeh H,, Teymouri F,, Gilbert TI,, Dale BE . 2005. Pretreatment of switchgrass by ammonia fiber explosion (AFEX). Appl Biochem Biotechnol 124 : 1133 1141.[CrossRef] [PubMed]
34. Chundawat SP,, Venkatesh B,, Dale BE . 2007. Effect of particle size based separation of milled corn stover on AFEX pretreatment and enzymatic digestibility. Biotechnol Bioeng 96 : 219 231.[CrossRef] [PubMed]
35. Teymouri F,, Laureano-Pérez L,, Alizadeh H,, Dale BE . 2004. Ammonia fiber explosion treatment of corn stover. Appl Biochem Biotechnol 115 : 951 963.[CrossRef]
36. Agbor VB,, Cicek N,, Sparling R,, Berlin A,, Levin DB . 2011. Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29 : 675 685.[CrossRef]
37. Kim TH,, Lee YY,, Sunwoo C,, Kim JS . 2006. Pretreatment of corn stover by low-liquid ammonia recycle percolation process. Appl Biochem Biotechnol 133 : 41 57.[CrossRef] [PubMed]
38. Kim TH,, Lee YY . 2005. Pretreatment and fractionation of corn stover by ammonia recycle percolation process. Bioresour Technol 96 : 2007 2013.[CrossRef] [PubMed]
39. Zhao X,, Cheng K,, Liu D . 2009. Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82 : 815 827.[CrossRef]
40. Zhang K,, Pei Z,, Wang D . 2016. Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: a review. Bioresour Technol 199 : 21 33.[CrossRef] [PubMed]
41. Travaini R,, Martín-Juárez J,, Lorenzo-Hernando A,, Bolado-Rodríguez S . 2016. Ozonolysis: an advantageous pretreatment for lignocellulosic biomass revisited. Bioresour Technol 199 : 2 12.[CrossRef]
42. Travaini R,, Barrado E,, Bolado-Rodríguez S . 2016. Effect of ozonolysis pretreatment parameters on the sugar release, ozone consumption and ethanol production from sugarcane bagasse. Bioresour Technol 214 : 150 158.[CrossRef]
43. Kim KH,, Hong J . 2001. Supercritical CO 2 pretreatment of lignocellulose enhances enzymatic cellulose hydrolysis. Bioresour Technol 77 : 139 144.[CrossRef] [PubMed]
44. Hatakka A,, Hammel KE, . 2010. Fungal biodegradation of lignocelluloses, p 319 340. In Esser K,, Hofrichter M (ed), The Mycota: A Comprehensive Treatise on Fungi as Experimental Systems for Basic and Applied Research Industrial Applications, 2nd ed, vol X. Springer, Berlin, Germany.
45. Akhtar M,, Blanchette RA,, Kirk TK, . 1997. Fungal delignification and biomechanical pulping of wood, p 159 196. In Eriksson K-EL (ed), Advances in Biochemical Engineering/Biotechnology. Vol 57. Biotechnology in the Pulp and Paper Industry. Springer Verlag, Berlin, Germany.
46. Hammel K, . 1997. Fungal degradation of lignin, p 33 45. In Cadisch G,, Giller KE (ed), Driven by Nature: Plant Litter Quality and Decomposition. CAB International, Wallingford, United Kingdom.
47. Riley R,, Salamov AA,, Brown DW,, Nagy LG,, Floudas D,, Held BW,, Levasseur A,, Lombard V,, Morin E,, Otillar R,, Lindquist EA,, Sun H,, LaButti KM,, Schmutz J,, Jabbour D,, Luo H,, Baker SE,, Pisabarro AG,, Walton JD,, Blanchette RA,, Henrissat B,, Martin F,, Cullen D,, Hibbett DS,, Grigoriev IV . 2014. Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proc Natl Acad Sci USA 111 : 9923 9928. [Erratum, doi:10.1073/pnas.1418116111.][CrossRef]
48. Nagy LG,, Riley R,, Tritt A,, Adam C,, Daum C,, Floudas D,, Sun H,, Yadav JS,, Pangilinan J,, Larsson K-H,, Matsuura K,, Barry K,, Labutti K,, Kuo R,, Ohm RA,, Bhattacharya SS,, Shirouzu T,, Yoshinaga Y,, Martin FM,, Grigoriev IV,, Hibbett DS . 2016. 2015. Comparative genomics of early-diverging mushroom-forming fungi provides insights into the origins of lignocellulose decay capabilities. Mol Biol Evol 33 : 959 970.[CrossRef] [PubMed]
49. Liers C,, Ullrich R,, Steffen KT,, Hatakka A,, Hofrichter M . 2006. Mineralization of 14C-labelled synthetic lignin and extracellular enzyme activities of the wood-colonizing ascomycetes Xylaria hypoxylon and Xylaria polymorpha . Appl Microbiol Biotechnol 69 : 573 579.[CrossRef] [PubMed]
50. Floudas D,, Held BW,, Riley R,, Nagy LG,, Koehler G,, Ransdell AS,, Younus H,, Chow J,, Chiniquy J,, Lipzen A,, Tritt A,, Sun H,, Haridas S,, LaButti K,, Ohm RA,, Kües U,, Blanchette RA,, Grigoriev IV,, Minto RE,, Hibbett DS . 2015. Evolution of novel wood decay mechanisms in Agaricales revealed by the genome sequences of Fistulina hepatica and Cylindrobasidium torrendii . Fungal Genet Biol 76 : 78 92.[CrossRef] [PubMed]
51. Zhu Y,, Zhuang L,, Goodell B,, Cao J,, Mahaney J . 2016. Iron sequestration in brown-rot fungi by oxalate and the production of reactive oxygen species (ROS). Int Biodeterior Biodegradation 109 : 185 190.[CrossRef]
52. Arantes V,, Milagres AM,, Filley TR,, Goodell B . 2011. Lignocellulosic polysaccharides and lignin degradation by wood decay fungi: the relevance of nonenzymatic Fenton-based reactions. J Ind Microbiol Biotechnol 38 : 541 555.[CrossRef]
53. Blanchette RA,, Krueger EW,, Haight JE,, Akhtar M,, Akin DE . 1997. Cell wall alterations in loblolly pine wood decayed by the white-rot fungus, Ceriporiopsis subvermispora . J Biotechnol 53 : 203 213.[CrossRef]
54. Pollegioni L,, Tonin F,, Rosini E . 2015. Lignin-degrading enzymes. FEBS J 282 : 1190 1213.[CrossRef] [PubMed]
55. Eastwood DC, . 2014. Evolution of fungal wood decay, p 93 112. In Schultz TP,, Goodell B,, Nicholas DD (ed), Deterioration and Protection of Sustainable Biomaterials. ACS Symposium Series, Vol. 1158. American Chemical Society, Washington, DC.
56. Jung YH,, Kim HK,, Park HM,, Park Y-C,, Park K,, Seo J-H,, Kim KH . 2015. Mimicking the Fenton reaction-induced wood decay by fungi for pretreatment of lignocellulose. Bioresour Technol 179 : 467 472.[CrossRef] [PubMed]
57. Ogunmolu FE,, Kaur I,, Gupta M,, Bashir Z,, Pasari N,, Yazdani SS . 2015. Proteomics insights into the biomass hydrolysis potentials of a hypercellulolytic fungus Penicillium funiculosum . J Proteome Res 14 : 4342 4358.[CrossRef]
58. Rytioja J,, Hildén K,, Mäkinen S,, Vehmaanperä J,, Hatakka A,, Mäkelä MR . 2015. Saccharification of lignocelluloses by carbohydrate active enzymes of the white rot fungus Dichomitus squalens . PLoS One 10 : e0145166.[CrossRef] [PubMed]
59. Sun FF,, Hong J,, Hu J,, Saddler JN,, Fang X,, Zhang Z,, Shen S . 2015. Accessory enzymes influence cellulase hydrolysis of the model substrate and the realistic lignocellulosic biomass. Enzyme Microb Technol 79–80 : 42 48.[CrossRef]
60. Liers C,, Arnstadt T,, Ullrich R,, Hofrichter M . 2011. Patterns of lignin degradation and oxidative enzyme secretion by different wood- and litter-colonizing basidiomycetes and ascomycetes grown on beech-wood. FEMS Microbiol Ecol 78 : 91 102.[CrossRef] [PubMed]
61. Lombard V,, Golaconda Ramulu H,, Drula E,, Coutinho PM,, Henrissat B . 2014. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42( D1) : D490 D495.[PubMed] [CrossRef]
62. Floudas D , , et al . 2012. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336 : 1715 1719.[CrossRef] [PubMed]
63. Ruiz-Dueñas FJ,, Lundell T,, Floudas D,, Nagy LG,, Barrasa JM,, Hibbett DS,, Martínez AT . 2013. Lignin-degrading peroxidases in Polyporales: an evolutionary survey based on 10 sequenced genomes. Mycologia 105 : 1428 1444.[CrossRef]
64. Martínez AT . 2002. Molecular biology and structure-function of lignin-degrading heme peroxidases. Enzyme Microb Technol 30 : 425 444.[CrossRef]
65. Glenn JK,, Morgan MA,, Mayfield MB,, Kuwahara M,, Gold MH . 1983. An extracellular H 2O 2-requiring enzyme preparation involved in lignin biodegradation by the white rot basidiomycete Phanerochaete chrysosporium . Biochem Biophys Res Commun 114 : 1077 1083.[CrossRef]
66. Tien M,, Kirk TK . 1983. Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosporium Burds. Science 221 : 661 663.[CrossRef]
67. Mäkelä MR,, Hildén KS,, de Vries RP, . 2014. Degradation and modification of plant biomass by fungi, p 175 208. In Nowrousian M (ed), Mycota. Vol XIII. Fungal Genomics, 2nd ed. Springer-Verlag, Berlin, Germany.
68. Choinowski T,, Blodig W,, Winterhalter KH,, Piontek K . 1999. The crystal structure of lignin peroxidase at 1.70 Å resolution reveals a hydroxy group on the c β of tryptophan 171: a novel radical site formed during the redox cycle. J Mol Biol 286 : 809 827.[CrossRef]
69. Blodig W,, Smith AT,, Doyle WA,, Piontek K . 2001. Crystal structures of pristine and oxidatively processed lignin peroxidase expressed in Escherichia coli and of the W171F variant that eliminates the redox active tryptophan 171. Implications for the reaction mechanism. J Mol Biol 305 : 851 861.[CrossRef]
70. Doyle WA,, Blodig W,, Veitch NC,, Piontek K,, Smith AT . 1998. Two substrate interaction sites in lignin peroxidase revealed by site-directed mutagenesis. Biochemistry 37 : 15097 15105.[CrossRef]
71. Ruiz-Dueñas FJ,, Morales M,, García E,, Miki Y,, Martínez MJ,, Martínez AT . 2009. Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases. J Exp Bot 60 : 441 452.[CrossRef] [PubMed]
72. Hofrichter M,, Ullrich R,, Pecyna MJ,, Liers C,, Lundell T . 2010. New and classic families of secreted fungal heme peroxidases. Appl Microbiol Biotechnol 87 : 871 897.[CrossRef]
73. Hammel KE,, Cullen D . 2008. Role of fungal peroxidases in biological ligninolysis. Curr Opin Plant Biol 11 : 349 355.[CrossRef] [PubMed]
74. Kirk TK,, Cullen D, . 1998. Enzymology and molecular genetics of wood degradation by white-rot fungi, p 273 307. In Young RA,, Akhtar M (ed), Environmentally Friendly Technologies for the Pulp and Paper Industry. Wiley, New York, NY.
75. Kirk TK,, Farrell RL . 1987. Enzymatic “combustion”: the microbial degradation of lignin. Annu Rev Microbiol 41 : 465 501.[CrossRef] [PubMed]
76. Schoemaker HE,, Harvey PJ,, Bowen RM,, Palmer JM . 1985. On the mechanism of enzymatic lignin breakdown. FEBS Lett 183 : 7 12.[CrossRef]
77. Schoemaker HE,, Lundell TK,, Floris R,, Glumoff T,, Winterhalter KH,, Piontek K . 1994. Do carbohydrates play a role in the lignin peroxidase cycle? Redox catalysis in the endergonic region of the driving force. Bioorg Med Chem 2 : 509 519.[CrossRef]
78. Tien M,, Kirk TK,, Bull C,, Fee JA . 1986. Steady-state and transient-state kinetic studies on the oxidation of 3,4-dimethoxybenzyl alcohol catalyzed by the ligninase of Phanerocheate chrysosporium Burds. J Biol Chem 261 : 1687 1693.[PubMed]
79. Pérez-Boada M,, Ruiz-Dueñas FJ,, Pogni R,, Basosi R,, Choinowski T,, Martínez MJ,, Piontek K,, Martínez AT . 2005. Versatile peroxidase oxidation of high redox potential aromatic compounds: site-directed mutagenesis, spectroscopic and crystallographic investigation of three long-range electron transfer pathways. J Mol Biol 354 : 385 402.[CrossRef] [PubMed]
80. Ruiz-Dueñas FJ,, Morales M,, Mate MJ,, Romero A,, Martínez MJ,, Smith AT,, Martínez AT . 2008. Site-directed mutagenesis of the catalytic tryptophan environment in Pleurotus eryngii versatile peroxidase. Biochemistry 47 : 1685 1695.[CrossRef]
81. Pogni R,, Baratto MC,, Giansanti S,, Teutloff C,, Verdin J,, Valderrama B,, Lendzian F,, Lubitz W,, Vazquez-Duhalt R,, Basosi R . 2005. Tryptophan-based radical in the catalytic mechanism of versatile peroxidase from Bjerkandera adusta . Biochemistry 44 : 4267 4274.[CrossRef] [PubMed]
82. Fernández-Fueyo E,, Ruiz-Dueñas FJ,, Miki Y,, Martínez MJ,, Hammel KE,, Martínez AT . 2012. Lignin-degrading peroxidases from genome of selective ligninolytic fungus Ceriporiopsis subvermispora . J Biol Chem 287 : 16903 16916.[CrossRef]
83. Kojiro K,, Miki T,, Sugimoto H,, Nakajima M,, Kanayama K . 2010. Microspores and mesospores in the cell wall of dry wood. J Wood Sci 56 : 107 111.[CrossRef]
84. Bao W,, Fukushima Y,, Jensen KA Jr,, Moen MA,, Hammel KE . 1994. Oxidative degradation of non-phenolic lignin during lipid peroxidation by fungal manganese peroxidase. FEBS Lett 354 : 297 300.[CrossRef]
85. Jensen KA,, Bao W,, Kawai S,, Srebotnik E,, Hammel KE . 1996. Manganese-dependent cleavage of nonphenolic lignin structures by Ceriporiopsis subvermispora in the absence of lignin peroxidase. Appl Environ Microbiol 62 : 3679 3686.[PubMed]
86. Kapich AN,, Jensen KA,, Hammel KE . 1999. Peroxyl radicals are potential agents of lignin biodegradation. FEBS Lett 461 : 115 119.[CrossRef] [PubMed]
87. Borges da Silva EA,, Zabkova M,, Araújo JD,, Cateto CA,, Barreiro MF,, Belgacem MN,, Rodrigues AE . 2009. An integrated process to produce vanillin and lignin-based polyurethanes from Kraft lignin. Chem Eng Res Des 87 : 1276 1292.[CrossRef]
88. Colpa DI,, Fraaije MW,, van Bloois E . 2014. DyP-type peroxidases: a promising and versatile class of enzymes. J Ind Microbiol Biotechnol 41 : 1 7.[CrossRef] [PubMed]
89. Linde D,, Ruiz-Dueñas FJ,, Fernández-Fueyo E,, Guallar V,, Hammel KE,, Pogni R,, Martínez AT . 2015. Basidiomycete DyPs: genomic diversity, structural-functional aspects, reaction mechanism and environmental significance. Arch Biochem Biophys 574 : 66 74.[CrossRef]
90. Liers C,, Aranda E,, Strittmatter E,, Piontek K,, Plattner DA,, Zorn H,, Ullrich R,, Hofrichter M . 2014. Phenol oxidation by DyP-type peroxidases in comparison to fungal and plant peroxidases. J Mol Catal B Enzym 103 : 41 46.[CrossRef]
91. Sugano Y,, Nakano R,, Sasaki K,, Shoda M . 2000. Efficient heterologous expression in Aspergillus oryzae of a unique dye-decolorizing peroxidase, DyP, of Geotrichum candidum Dec 1. Appl Environ Microbiol 66 : 1754 1758.[CrossRef]
92. Liers C,, Bobeth C,, Pecyna M,, Ullrich R,, Hofrichter M . 2010. DyP-like peroxidases of the jelly fungus Auricularia auricula-judae oxidize nonphenolic lignin model compounds and high-redox potential dyes. Appl Microbiol Biotechnol 85 : 1869 1879.[CrossRef]
93. Liers C,, Pecyna MJ,, Kellner H,, Worrich A,, Zorn H,, Steffen KT,, Hofrichter M,, Ullrich R . 2013. Substrate oxidation by dye-decolorizing peroxidases (DyPs) from wood- and litter-degrading agaricomycetes compared to other fungal and plant heme-peroxidases. Appl Microbiol Biotechnol 97 : 5839 5849.[CrossRef]
94. Fernández-Fueyo E,, Linde D,, Almendral D,, López-Lucendo MF,, Ruiz-Dueñas FJ,, Martínez AT . 2015. Description of the first fungal dye-decolorizing peroxidase oxidizing manganese(II). Appl Microbiol Biotechnol 99 : 8927 8942.[CrossRef] [PubMed]
95. Gutiérrez A,, Babot ED,, Ullrich R,, Hofrichter M,, Martínez AT,, del Río JC . 2011. Regioselective oxygenation of fatty acids, fatty alcohols and other aliphatic compounds by a basidiomycete heme-thiolate peroxidase. Arch Biochem Biophys 514 : 33 43.[CrossRef]
96. Ullrich R,, Hofrichter M . 2005. The haloperoxidase of the agaric fungus Agrocybe aegerita hydroxylates toluene and naphthalene. FEBS Lett 579 : 6247 6250.[CrossRef] [PubMed]
97. Kinne M,, Poraj-Kobielska M,, Ullrich R,, Nousiainen P,, Sipilä J,, Scheibner K,, Hammel KE,, Hofrichter M . 2011. Oxidative cleavage of non-phenolic β-O-4 lignin model dimers by an extracellular aromatic peroxygenase. Holzforschung 65 : 673 679.[CrossRef]
98. Hofrichter M,, Kellner H,, Pecyna MJ,, Ullrich R . 2015. Fungal unspecific peroxygenases: heme-thiolate proteins that combine peroxidase and cytochrome p450 properties. Adv Exp Med Biol 851 : 341 368.[CrossRef] [PubMed]
99. Hoegger PJ,, Kilaru S,, James TY,, Thacker JR,, Kües U . 2006. Phylogenetic comparison and classification of laccase and related multicopper oxidase protein sequences. FEBS J 273 : 2308 2326.[CrossRef] [PubMed]
100. Thurston CF . 1994. The structure and function of fungal laccases. Microbiology 140 : 19 26.[CrossRef]
101. Giardina P,, Faraco V,, Pezzella C,, Piscitelli A,, Vanhulle S,, Sannia G . 2010. Laccases: a never-ending story. Cell Mol Life Sci 67 : 369 385.[CrossRef] [PubMed]
102. Kües U,, Rühl M . 2011. Multiple multi-copper oxidase gene families in basidiomycetes: what for? Curr Genomics 12 : 72 94.[CrossRef] [PubMed]
103. Baldrian P . 2006. Fungal laccases: occurrence and properties. FEMS Microbiol Rev 30 : 215 242.[CrossRef] [PubMed]
104. Arantes V,, Jellison J,, Goodell B . 2012. Peculiarities of brown-rot fungi and biochemical Fenton reaction with regard to their potential as a model for bioprocessing biomass. Appl Microbiol Biotechnol 94 : 323 338.[CrossRef]
105. Welinder K, . 1992. Plant peroxidases: structure-function relationships, p 1 24. In Penel C,, Gaspar T,, Greppin H (ed), Plant Peroxidases, Topics and Detailed Literature on Molecular, Biochemical and Physiological Aspects. Université de Genève, Genève, Switzerland.
106. Urzúa U,, Kersten PJ,, Vicuña R . 1998. Manganese peroxidase-dependent oxidation of glyoxylic and oxalic acids synthesized by Ceriporiopsis subvermispora produces extracellular hydrogen peroxide. Appl Environ Microbiol 64 : 68 73.[PubMed]
107. Kelley RL,, Reddy CA . 1986. Purification and characterization of glucose oxidase from ligninolytic cultures of Phanerochaete chrysosporium . J Bacteriol 166 : 269 274.[PubMed]
108. Guillon F,, Thibault J-F . 1990. Oxidative cross-linking of chemically and enzymically modified sugar-beet pectin. Carbohydr Polym 12 : 353 374.[CrossRef]
109. Daniel G,, Volc J,, Kubatova E,, Nilsson T . 1992. Ultrastructural and immunocytochemical studies on the H 2O 2-producing enzyme pyranose oxidase in Phanerochaete chrysosporium grown under liquid culture conditions. Appl Environ Microbiol 58 : 3667 3676.[PubMed]
110. Daniel G,, Volc J,, Filonova L,, Plíhal O,, Kubátová E,, Halada P . 2007. Characteristics of Gloeophyllum trabeum alcohol oxidase, an extracellular source of H 2O 2 in brown rot decay of wood. Appl Environ Microbiol 73 : 6241 6253.[CrossRef] [PubMed]
111. Nishida A,, Eriksson K-E . 1987. Formation, purification, and partial characterization of methanol oxidase, a H 2O 2-producing enzyme in Phanerochaete chrysosporium . Biotechnol Appl Biochem 9 : 325 338.
112. Kiess M,, Hecht HJ,, Kalisz HM . 1998. Glucose oxidase from Penicillium amagasakiense. Primary structure and comparison with other glucose-methanol-choline (GMC) oxidoreductases. Eur J Biochem 252 : 90 99.[CrossRef]
113. Wierenga RK,, Terpstra P,, Hol WGJ . 1986. Prediction of the occurrence of the ADP-binding βαβ-fold in proteins, using an amino acid sequence fingerprint. J Mol Biol 187 : 101 107.[CrossRef] [PubMed]
114. Hernández-Ortega A,, Ferreira P,, Martínez AT . 2012. Fungal aryl-alcohol oxidase: a peroxide-producing flavoenzyme involved in lignin degradation. Appl Microbiol Biotechnol 93 : 1395 1410.[CrossRef] [PubMed]
115. Wongnate T,, Surawatanawong P,, Visitsatthawong S,, Sucharitakul J,, Scrutton NS,, Chaiyen P . 2014. Proton-coupled electron transfer and adduct configuration are important for C4a-hydroperoxyflavin formation and stabilization in a flavoenzyme. J Am Chem Soc 136 : 241 253.[CrossRef] [PubMed]
116. Henriksson G,, Johansson G,, Pettersson G . 2000. A critical review of cellobiose dehydrogenases. J Biotechnol 78 : 93 113.[CrossRef] [PubMed]
117. Ludwig R,, Harreither W,, Tasca F,, Gorton L . 2010. Cellobiose dehydrogenase: a versatile catalyst for electrochemical applications. ChemPhysChem 11 : 2674 2697.[CrossRef] [PubMed]
118. Samejima M,, Eriksson KE . 1992. A comparison of the catalytic properties of cellobiose:quinone oxidoreductase and cellobiose oxidase from Phanerochaete chrysosporium . Eur J Biochem 207 : 103 107.[CrossRef] [PubMed]
119. Bourbonnais R,, Paice MG . 1988. Veratryl alcohol oxidases from the lignin-degrading basidiomycete Pleurotus sajor-caju . Biochem J 255 : 445 450.[CrossRef] [PubMed]
120. Sannia G,, Limongi P,, Cocca E,, Buonocore F,, Nitti G,, Giardina P . 1991. Purification and characterization of a veratryl alcohol oxidase enzyme from the lignin degrading basidiomycete Pleurotus ostreatus . Biochim Biophys Acta 1073 : 114 119.[CrossRef]
121. Muheim A,, Waldner R,, Leisola MSA,, Fiechter A . 1990. An extracellular aryl-alcohol oxidase from the white-rot fungus Bjerkandera adusta . Enzyme Microb Technol 12 : 204 209.[CrossRef]
122. de Jong E,, Field JA,, de Bont JAM . 1994. Aryl alcohols in the physiology of ligninolytic fungi. FEMS Microbiol Rev 13 : 153 187.[CrossRef]
123. Guillén F,, Martínez AT,, Martínez MJ,, Evans CS . 1994. Hydrogen peroxide-producing system of Pleurotus erygii involving the extracellular enzyme aryl-alcohol oxidase. Appl Microbiol Biotechnol 41 : 465 470.
124. Gutiérrez A,, Caramelo L,, Prieto A,, Martínez MJ,, Martínez AT . 1994. Anisaldehyde production and aryl-alcohol oxidase and dehydrogenase activities in ligninolytic fungi of the genus Pleurotus . Appl Environ Microbiol 60 : 1783 1788.[PubMed]
125. Whittaker MM,, Kersten PJ,, Nakamura N,, Sanders-Loehr J,, Schweizer ES,, Whittaker JW . 1996. Glyoxal oxidase from Phanerochaete chrysosporium is a new radical-copper oxidase. J Biol Chem 271 : 681 687.[CrossRef] [PubMed]
126. Kersten PJ,, Kirk TK . 1987. Involvement of a new enzyme, glyoxal oxidase, in extracellular H2O2 production by Phanerochaete chrysosporium . J Bacteriol 169 : 2195 2201.[PubMed]
127. Mäkelä MR,, Marinović M,, Nousiainen P,, Liwanag AJ,, Benoit I,, Sipilä J,, Hatakka A,, de Vries RP,, Hildén KS . 2015. Aromatic metabolism of filamentous fungi in relation to the presence of aromatic compounds in plant biomass. Adv Appl Microbiol 91 : 63 137.[CrossRef]
128. Kelly DE,, Krasevec N,, Mullins J,, Nelson DR . 2009. The CYPome (cytochrome P450 complement) of Aspergillus nidulans . Fungal Genet Biol 46( Suppl 1) : S53 S61.[CrossRef] [PubMed]
129. Kunamneni A,, Camarero S,, García-Burgos C,, Plou FJ,, Ballesteros A,, Alcalde M . 2008. Engineering and applications of fungal laccases for organic synthesis. Microb Cell Fact 7 : 32.[CrossRef] [PubMed]
130. Ahn MY,, Dec J,, Kim JE,, Bollag JM . 2002. Treatment of 2,4-dichlorophenol polluted soil with free and immobilized laccase. J Environ Qual 31 : 1509 1515.[CrossRef] [PubMed]
131. Gelo-Pujic M,, Kim HH,, Butlin NG,, Palmore GT . 1999. Electrochemical studies of a truncated laccase produced in Pichia pastoris . Appl Environ Microbiol 65 : 5515 5521.[PubMed]
132. Pointing SB . 2001. Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57 : 20 33.[CrossRef] [PubMed]
133. Torres E,, Bustos-Jaimes I,, Le Borgne S . 2003. Potential use of oxidative enzymes for the detoxification of organic pollutants. Appl Catal B 46 : 1 15.[CrossRef]
134. Biermann CJ . 1993. Essentials of Pulp and Papermaking. Academic Press, London, United Kingdom.
135. Bajpai P . 2013. Biorefinery in the Pulp and Paper Industry. Academic Press, London, United Kingdom.
136. Birikh K,, Azhayev A . March 2013. Enzyme variants with improved properties. European patent PCT/FI2012/050884, MetGen Oy.
137. Birikh K,, Azhayev A . September 2014. Method for saving energy in paper production. European patent PCT/EP2013/055866, MetGEn Oy.
138. Birikh K,, Azhayev A . September 2014. Method for improving the fermentable sugar yield from lignocellulosic substrates. European patent PCT/EP2013/055867, MetGen Oy.
139. D’Annibale A,, Stazi SR,, Vinciguerra V,, Giovannozzi Sermanni G . 2000. Oxirane-immobilized Lentinula edodes laccase: stability and phenolics removal efficiency in olive mill wastewater. J Biotechnol 77 : 265 273.[CrossRef]
140. Birikh K,, Michine A,, Heikkilä M,, Suonpää A . March 2013. Method for improving the fermentable sugar yield from lignocellulosic substrates. European patent WO2014146713 A1, MetGen Oy.
141. Birikh K . October 2015. Laccase variants with improved properties. European patent PCT/EP2015/058230, MetGen Oy.
142. Birikh K . October 2015. Laccase variants with improved properties. European patent PCT/EP2015/056211, MetGen Oy.
143. Calvo AM,, Copa-Patino JL,, Alonso O,, Gonzalez AE . 1998. Studies of the production and characterization of laccase activity in the basidiomycete Coriolopsis gallica, an efficient decolorizer of alkaline effluents. Arch Microbiol 171 : 31 36.[CrossRef] [PubMed]
144. Lyons JI,, Newell SY,, Buchan A,, Moran MA . 2003. Diversity of ascomycete laccase gene sequences in a southeastern US salt marsh. Microb Ecol 45 : 270 281.[CrossRef] [PubMed]
145. Verhoef S,, Ruijssenaars HJ,, de Bont JA,, Wery J . 2007. Bioproduction of p-hydroxybenzoate from renewable feedstock by solvent-tolerant Pseudomonas putida S12. J Biotechnol 132 : 49 56.[CrossRef] [PubMed]
146. Bajpai P . 1999. Application of enzymes in the pulp and paper industry. Biotechnol Prog 15 : 147 157.[CrossRef] [PubMed]
147. Floras N,, Xiao J,, Berry A,, Bolivar F,, Valle F . 1996. Pathway engineering for the production of aromatic compounds in Escherichia coli . Nat Biotechnol 14 : 620 623.[CrossRef] [PubMed]
148. Aktaş N,, Tanyolaç A . 2003. Reaction conditions for laccase catalyzed polymerization of catechol. Bioresour Technol 87 : 209 214.[CrossRef] [PubMed]
149. Aktaş N,, Ciçek H,, Unal AT,, Kibarer G,, Kolankaya N,, Tanyolaç A . 2001. Reaction kinetics for laccase-catalyzed polymerization of 1-naphthol. Bioresour Technol 80 : 29 36.[CrossRef] [PubMed]
150. Aktaş N,, Tanyolac A . 2003. Kinetics of laccase-catalyzed oxidative polymerization of catechol. J Mol Catal B Enzym 22 : 61 69.[CrossRef]
151. Ceylan H,, Kubilay S,, Aktas N,, Sahiner N . 2008. An approach for prediction of optimum reaction conditions for laccase-catalyzed bio-transformation of 1-naphthol by response surface methodology (RSM). Bioresour Technol 99 : 2025 2031.[CrossRef]
152. Osiadacz J,, Al-Adhami AJH,, Bajraszewska D,, Fischer P,, Peczynska-Czoch W . 1999. On the use of Trametes versicolor laccase for the conversion of 4-methyl-3-hydroxyanthranilic acid to actinocin chromophore. J Biotechnol 72 : 141 149.[CrossRef]
153. Poeckel D,, Niedermeyer TH,, Pham HT,, Mikolasch A,, Mundt S,, Lindequist U,, Lalk M,, Werz O . 2006. Inhibition of human 5-lipoxygenase and anti-neoplastic effects by 2-amino-1,4-benzoquinones. Med Chem 2 : 591 595.[CrossRef] [PubMed]
154. Mathew AE,, Zee-Cheng RK,, Cheng CC . 1986. Amino-substituted p-benzoquinones. J Med Chem 29 : 1792 1795.[CrossRef] [PubMed]
155. Hosny M,, Rosazza JP . 2002. Novel oxidations of (+)-catechin by horseradish peroxidase and laccase. J Agric Food Chem 50 : 5539 5545.[CrossRef] [PubMed]
156. Kurisawa M,, Chung JE,, Uyama H,, Kobayashi S . 2003. Laccase-catalyzed synthesis and antioxidant property of poly(catechin). Macromol Biosci 3 : 758 764.[CrossRef]
157. Honma Y,, Kasukabe T,, Hozumi M,, Shibata K,, Omura S . 1992. Effects of herbimycin A derivatives on growth and differentiation of K562 human leukemic cells. Anticancer Res 12 : 189 192.[PubMed]
158. Nicotra S,, Cramarossa MR,, Mucci A,, Pagnoni UM,, Riva S,, Forti L . 2004. Biotransformation of resveratrol: synthesis of trans-dehydrodimers catalyzed by laccases from Myceliophtora thermophyla and from Trametes pubescens . Tetrahedron 60 : 595 600.[CrossRef]
159. Quan D,, Shin W . 2004. Amperometric detection of catechol and catecholamines by immobilized laccase from DeniLite. Electroanalysis 16 : 1576 1582.[CrossRef]
160. Rodríguez-Delgado MM,, Alemán-Nava GS,, Rodríguez-Delgado JM,, Dieck-Assad G,, Martínez-Chapa SO,, Barceló D,, Parra R . 2015. Laccase-based biosensors for detection of phenolic compounds. Trends Analyt Chem 74 : 21 45.[CrossRef]
161. Kües U . 2015. Fungal enzymes for environmental management. Curr Opin Biotechnol 33 : 268 278.[PubMed] [CrossRef]
162. Bermek H,, Li K,, Eriksson KE . 2002. Studies on mediators of manganese peroxidase for bleaching of wood pulps. Bioresour Technol 85 : 249 252.[CrossRef] [PubMed]
163. Schütmann I,, Bouws H,, Szweda RT,, Suckow M,, Czermak P,, Zorn H . 2014. Induction, characterization, and heterologous expression of a carotenoid degrading versatile peroxidase from Pleurotus sapidus . J Mol Catal B Enzym 103 : 79 84.[CrossRef]
164. Yoshida Y,, Aoyama Y,, Noshiro M,, Gotoh O . 2000. Sterol 14-demethylase P450 (CYP51) provides a breakthrough for the discussion on the evolution of cytochrome P450 gene superfamily. Biochem Biophys Res Commun 273 : 799 804.[CrossRef] [PubMed]
165. Zorn H,, Scheibner M,, Hulsdau B,, Berger RG,, de Boer L,, Meima RB . March 2008. Novel enzymes for use in enzymatic bleaching of food products. European patent EP1902129 A1, DSMIP Assets B.V.
166. Azadi P,, Inderwildi OR,, Farnood R,, King DA . 2013. Liquid fuels, hydrogen and chemicals from lignin: a critical review. Renew Sustain Energy Rev 21 : 506 523.[CrossRef]
167. Burton SG . 2003. Laccases and phenol oxidases in organic synthesis: a review. Curr Org Chem 7 : 1317 1331.[CrossRef]
168. Zhao M,, Jing J,, Zhu Y,, Yang X,, Wang X,, Wang Z . 2016. Preparation and performance of lignin–phenol–formaldehyde adhesives. Int J Adhes Adhes 64 : 163 167.[CrossRef]
169. Çetin NS,, Özmen N . 2002. Use of organosolv lignin in phenol–formaldehyde resins for particleboard production. I. Organosolv lignin modified resins. Int J Adhes Adhes 22 : 477 480.[CrossRef]
170. Bernardini J,, Cinelli P,, Anguillesi I,, Coltelli M-B,, Lazzeri A . 2015. Flexible polyurethane foams green production employing lignin or oxypropylated lignin. Eur Polym J 64 : 147 156.[CrossRef]
171. Chatterjee S,, Saito T . 2015. Lignin-derived advanced carbon materials. ChemSusChem 8 : 3941 3958.[CrossRef]
172. Thakur VK,, Thakur MK . 2015. Recent advances in green hydrogels from lignin: a review. Int J Biol Macromol 72 : 834 847.[CrossRef] [PubMed]
173. Wang C,, Kelley SS,, Venditti RA . 2016. Lignin-based thermoplastic materials. ChemSusChem 9 : 770 783.[PubMed] [CrossRef]
174. Ten E,, Ling C,, Wang Y,, Srivastava A,, Dempere LA,, Vermerris W . 2014. Lignin nanotubes as vehicles for gene delivery into human cells. Biomacromolecules 15 : 327 338.[CrossRef]
175. Kim SK,, Kim YK,, Lee H,, Lee SB,, Park HS . 2014. Superior pseudocapacitive behavior of confined lignin nanocrystals for renewable energy-storage materials. ChemSusChem 7 : 1094 1101.[CrossRef] [PubMed]
176. Bjørsvik H-R,, Minisci F . 1999. Fine chemicals from lignosulfonates. 1. Synthesis of vanillin by oxidation of lignosulfonates. Org Process Res Dev 3 : 330 340.[CrossRef]


Generic image for table
Table 1

Fungal oxidoreductases involved in modification of lignin and lignin-derived compounds

Citation: Mäkelä M, Bredeweg E, Magnuson J, Baker S, de Vries R, Hildén K. 2017. Fungal Ligninolytic Enzymes and Their Applications, p 1049-1061. In Heitman J, Howlett B, Crous P, Stukenbrock E, James T, Gow N (ed), The Fungal Kingdom. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.FUNK-0017-2016

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error