Chapter 9 : Sex and the Imperfect Fungi

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Sex and the Imperfect Fungi, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819583/9781555819576_Chap09-1.gif /docserver/preview/fulltext/10.1128/9781555819583/9781555819576_Chap09-2.gif


Sexual reproduction is a ubiquitous feature of the eukaryotic kingdom with the many benefits of sex in generating genetic diversity as substrates for evolutionary selection being well known. When two different partners come together, there is the generation of genetic variation in the offspring, through the processes of crossover and recombination during meiosis, enabling response of future generations to environmental selection pressures ( ). Sexual reproduction also allows the repair of random epigenetic or conventional genetic damage by recombination with homologous chromosomes and can mask lethal mutations ( ). In addition, sexual recombination alleviates clonal interference and prevents deleterious mutations hitchhiking to fixation ( ). Indeed, there are so many benefits to sexual reproduction that exceptions that are purely asexual have been termed “evolutionary scandals” ( ). As a result, supposed ancient asexual species such as the bdelloid rotifers (an exclusively female class of over 460 rotifer species thought to date back several million years) and darwinulid ostracods (a family of around 30 crustacean species thought to have been exclusively female and asexual for over 200 million years, but for which very rare living males have recently been described) have gained notoriety ( ). It therefore comes as a great surprise that, until recently, approximately 20% of all fungal species were considered to reproduce only by asexual means, with no recognized sexual cycle, based on knowledge of described fungal species ( ). Indeed, in some phylogenetic groupings such as the Ascomycotina, up to 40% of taxa surveyed were deemed to be asexual ( ). This is despite the fact that sexual reproduction in fungi can have additional benefits such as the production of fruit bodies and sexual spores that are resistant to adverse environmental conditions, thereby promoting survival of sexual offspring; it can provide a transient diploid arena for selection of genes; and sex can favorably impact genome evolution ( ). Asexual species are also proposed to be short-lived evolutionary “dead ends” subject to rapid extinction ( ). Fungal species lacking a known sexual cycle have been referred to as “imperfect” or “mitosporic” fungi and have been grouped into the “Fungi Imperfecti” or “Deuteromycota,” although phylogenetic analysis has shown that these are artificial groupings not based on taxonomic relationship ( ). The terms “asexual” and “imperfect” are used synonymously in this review.

Citation: Dyer P, Kück U. 2017. Sex and the Imperfect Fungi, p 193-214. In Heitman J, Howlett B, Crous P, Stukenbrock E, James T, Gow N (ed), The Fungal Kingdom. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.FUNK-0043-2017
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Comparison of loci from homo- and heterothallic members of the Eurotiales. Blue arrows indicate a α-domain gene, red arrows indicate a high-mobility group gene, black bars indicate intronic sequences, gray bars homologous sequences ( ). For , the gene designation is as previously published by Paoletti et al. ( ). Note that, whereas isolates of heterothallic species contain only one idiomorph (either or ), isolates of homothallic species contain both types of gene in the same genome (i.e., both and ).

Citation: Dyer P, Kück U. 2017. Sex and the Imperfect Fungi, p 193-214. In Heitman J, Howlett B, Crous P, Stukenbrock E, James T, Gow N (ed), The Fungal Kingdom. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.FUNK-0043-2017
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Occurrence of both idiomorphs in wild-type isolates from . Blue and red dots represent strains with the or locus, respectively (C. M. O’Gorman and U. Kück, unpublished data).

Citation: Dyer P, Kück U. 2017. Sex and the Imperfect Fungi, p 193-214. In Heitman J, Howlett B, Crous P, Stukenbrock E, James T, Gow N (ed), The Fungal Kingdom. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.FUNK-0043-2017
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Target genes of the locus encoded transcription factors from , deduced from functional genomics experiments ( ). In particular, ChIP-seq analysis has shown that MAT1-1-1 regulates gene expression far beyond their described function as regulator of sexual development (modified from reference ).

Citation: Dyer P, Kück U. 2017. Sex and the Imperfect Fungi, p 193-214. In Heitman J, Howlett B, Crous P, Stukenbrock E, James T, Gow N (ed), The Fungal Kingdom. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.FUNK-0043-2017
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Summary of the regulatory functions of locus encoded transcription factors MAT1-1-1 and MAT1-2-1 in (modified according to reference ).

Citation: Dyer P, Kück U. 2017. Sex and the Imperfect Fungi, p 193-214. In Heitman J, Howlett B, Crous P, Stukenbrock E, James T, Gow N (ed), The Fungal Kingdom. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.FUNK-0043-2017
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Sclerotia formation (arrowed large gray-brown spheres) in , an indication of the potential for sex in this biotechnologically important species? Scale bar indicates 500 μm. Note that this species is predominantly of the genotype (H. Darbyshir, G. Ashton, and P. S. Dyer, unpublished data).

Citation: Dyer P, Kück U. 2017. Sex and the Imperfect Fungi, p 193-214. In Heitman J, Howlett B, Crous P, Stukenbrock E, James T, Gow N (ed), The Fungal Kingdom. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.FUNK-0043-2017
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Barton NH,, Charlesworth B . 1998. Why sex and recombination? Science 281 : 1986 1990.[CrossRef] [PubMed]
2. Rieseberg LH,, Archer MA,, Wayne RK . 1999. Transgressive segregation, adaptation and speciation. Hered Edinb 83 : 363 372.[CrossRef]
3. Otto SP,, Lenormand T . 2002. Resolving the paradox of sex and recombination. Nat Rev Genet 3 : 252 261.[CrossRef]
4. Normark BB,, Judson OP,, Moran NA . 2003. Genomic signatures of ancient asexual lineages. Biol J Linn Soc Lond 79 : 69 84.[CrossRef]
5. Gorelick R,, Carpinone J . 2009. Origin and maintenance of sex: the evolutionary joys of self sex. Biol J Linn Soc Lond 98 : 707 728.[CrossRef]
6. McDonald MJ,, Rice DP,, Desai MM . 2016. Sex speeds adaptation by altering the dynamics of molecular evolution. Nature 531 : 233 236.[CrossRef] [PubMed]
7. Judson OP,, Normark BB . 1996. Ancient asexual scandals. Trends Ecol Evol 11 : 41 46.[CrossRef]
8. Smith RJ,, Kamiya T,, Horne DJ . 2006. Living males of the “ancient asexual” Darwinulidae (Ostracoda: crustacea). Proc Biol Sci 273 : 1569 1578.[CrossRef]
9. Hayden EC . 2008. Evolution: scandal! Sex-starved and still surviving. Nature 452 : 678 680.[CrossRef]
10. Flot JF,, Hespeels B,, Li X,, Noel B,, Arkhipova I,, Danchin EGJ,, Hejnol A,, Henrissat B,, Koszul R,, Aury JM,, Barbe V,, Barthélémy RM,, Bast J,, Bazykin GA,, Chabrol O,, Couloux A,, Da Rocha M,, Da Silva C,, Gladyshev E,, Gouret P,, Hallatschek O,, Hecox-Lea B,, Labadie K,, Lejeune B,, Piskurek O,, Poulain J,, Rodriguez F,, Ryan JF,, Vakhrusheva OA,, Wajnberg E,, Wirth B,, Yushenova I,, Kellis M,, Kondrashov AS,, Mark Welch DB,, Pontarotti P,, Weissenbach J,, Wincker P,, Jaillon O,, Van Doninck K . 2013. Genomic evidence for ameiotic evolution in the bdelloid rotifer Adineta vaga . Nature 500 : 453 457.[CrossRef]
11. Hawksworth DL,, Kirk PM,, Sutton BC,, Pegler DN . 1995. Ainsworth & Bisby’s Dictionary of the Fungi, 8th ed. CABI, Wallingford, United Kingdom.
12. Taylor J,, Jacobson D,, Fisher M . 1999. The evolution of asexual fungi: reproduction, speciation and classification. Annu Rev Phytopathol 37 : 197 246.[CrossRef]
13. Reynolds DR, . 1993. The fungal holomorph: an overview, p 15 25. In Reynolds DR,, Taylor JW (ed), The Fungal Holomorph: Mitotic, Meiotic and Pleomorphic Speciation in Fungal Systematics. CABI, Wallingford, United Kingdom.[PubMed]
14. Dyer PS,, Ingram DS,, Johnstone K . 1992. The control of sexual morphogenesis in the Ascomycotina. Biol Rev Camb Philos Soc 67 : 421 458.[CrossRef]
15. Aanen DK,, Hoekstra RF, . 2007. Why sex is good: on fungi and beyond, p 527 534. In Heitman J,, Kronstad JW,, Taylor JW,, Casselton LA (ed), Sex in Fungi: Molecular Determination and Evolutionary Implications. ASM Press, Washington, DC.[CrossRef]
16. Dijksterhuis J, . 2007. Heat-resistant ascospores, p 101 117. In Dijksterhuis J,, Samson R (ed), Food Mycology: A multifaceted Approach to Fungi and Food. CRC Press, Boca Raton, Florida.[CrossRef]
17. Whittle CA,, Nygren K,, Johannesson H . 2011. Consequences of reproductive mode on genome evolution in fungi. Fungal Genet Biol 48 : 661 667.[CrossRef]
18. LoBuglio KF,, Taylor JW . 2002. Recombination and genetic differentiation in the mycorrhizal fungus Cenococcum geophilum Fr. Mycologia 94 : 772 780.[CrossRef] [PubMed]
19. Schoch CL , , et al . 2009. The Ascomycota Tree of Life: a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Syst Biol 58 : 224 239.[CrossRef]
20. Kück U,, Pöggeler S . 2009. Cryptic sex in fungi. Fungal Biol Rev 23 : 86 90.[CrossRef]
21. Dyer PS,, Inderbitzin P,, Debuchy R, . 2016. Mating-type structure, function, regulation and evolution in the Pezizomycotina, p 351 385. In Wendland J (ed), Growth, Differentiation and Sexuality, The Mycota I, 3rd ed. Springer International Publishing, Switzerland.[CrossRef]
22. Gow NAR . 2005. Fungal genomics: forensic evidence of sexual activity. Curr Biol 15 : R509 R511.[CrossRef]
23. Heitman J . 2010. Evolution of eukaryotic microbial pathogens via covert sexual reproduction. Cell Host Microbe 8 : 86 99.[CrossRef] [PubMed]
24. Hull CM,, Raisner RM,, Johnson AD . 2000. Evidence for mating of the “asexual” yeast Candida albicans in a mammalian host. Science 289 : 307 310.[CrossRef] [PubMed]
25. Magee BB,, Magee PT . 2000. Induction of mating in Candida albicans by construction of MTLa and MTLalpha strains. Science 289 : 310 313.[CrossRef]
26. Horn BW,, Moore GG,, Carbone I . 2009. Sexual reproduction in Aspergillus flavus . Mycologia 101 : 423 429.[CrossRef]
27. Horn BW,, Ramirez-Prado JH,, Carbone I . 2009. Sexual reproduction and recombination in the aflatoxin-producing fungus Aspergillus parasiticus . Fungal Genet Biol 46 : 169 175.[CrossRef]
28. O’Gorman CM,, Fuller H,, Dyer PS . 2009. Discovery of a sexual cycle in the opportunistic fungal pathogen Aspergillus fumigatus . Nature 457 : 471 474.[CrossRef]
29. Seidl V,, Seibel C,, Kubicek CP,, Schmoll M . 2009. Sexual development in the industrial workhorse Trichoderma reesei . Proc Natl Acad Sci USA 106 : 13909 13914.[CrossRef]
30. Böhm J,, Hoff B,, O’Gorman CM,, Wolfers S,, Klix V,, Binger D,, Zadra I,, Kürnsteiner H,, Pöggeler S,, Dyer PS,, Kück U . 2013. Sexual reproduction and mating-type-mediated strain development in the penicillin-producing fungus Penicillium chrysogenum . Proc Natl Acad Sci USA 110 : 1476 1481.[CrossRef]
31. Swilaiman SS . 2013. Sexual potential and population biology of fungal Aspergillus and Penicillium species. Ph.D. thesis. University of Nottingham, Nottingham, United Kingdom.
32. Ropars J,, López-Villavicencio M,, Dupont J,, Snirc A,, Gillot G,, Coton M,, Jany JL,, Coton E,, Giraud T . 2014. Induction of sexual reproduction and genetic diversity in the cheese fungus Penicillium roqueforti . Evol Appl 7 : 433 441.[CrossRef]
33. Dyer PS,, O’Gorman CM . 2011. A fungal sexual revolution: Aspergillus and Penicillium show the way. Curr Opin Microbiol 14 : 649 654.[CrossRef] [PubMed]
34. Burt A,, Carter DA,, Koenig GL,, White TJ,, Taylor JW . 1996. Molecular markers reveal cryptic sex in the human pathogen Coccidioides immitis . Proc Natl Acad Sci USA 93 : 770 773.[CrossRef]
35. Bihon W,, Slippers B,, Burgess T,, Wingfield MJ,, Wingfield BD . 2012. Diverse sources of infection and cryptic recombination revealed in South African Diplodia pinea populations. Fungal Biol 116 : 112 120.[CrossRef] [PubMed]
36. Henk DA,, Fisher MC . 2011. Genetic diversity, recombination, and divergence in animal associated Penicillium dipodomyis . PLoS One 6 : e22883.[CrossRef]
37. Dyer PS,, O’Gorman CM . 2012. Sexual development and cryptic sexuality in fungi: insights from Aspergillus species. FEMS Microbiol Rev 36 : 165 192.[CrossRef]
38. Henk DA,, Eagle CE,, Brown K,, Van Den Berg MA,, Dyer PS,, Peterson SW,, Fisher MC . 2011. Speciation despite globally overlapping distributions in Penicillium chrysogenum: the population genetics of Alexander Fleming’s lucky fungus. Mol Ecol 20 : 4288 4301.[CrossRef] [PubMed]
39. Ni M,, Feretzaki M,, Sun S,, Wang X,, Heitman J . 2011. Sex in fungi. Annu Rev Genet 45 : 405 430.[PubMed] [CrossRef]
40. Heitman J . 2015. Evolution of sexual reproduction: a view from the Fungal Kingdom supports an evolutionary epoch with sex before sexes. Fungal Biol Rev 29 : 108 117.[CrossRef]
41. Astell CR,, Ahlstrom-Jonasson L,, Smith M,, Tatchell K,, Nasmyth KA,, Hall BD . 1981. The sequence of the DNAs coding for the mating-type loci of Saccharomyces cerevisiae . Cell 27 : 15 23.[CrossRef]
42. Metzenberg RL,, Glass NL . 1990. Mating type and mating strategies in Neurospora . BioEssays 12 : 53 59.[CrossRef]
43. Coppin E,, Debuchy R,, Arnaise S,, Picard M . 1997. Mating types and sexual development in filamentous ascomycetes. Microbiol Mol Biol Rev 61 : 411 428.[PubMed]
44. Pöggeler S . 2001. Mating-type genes for classical strain improvements of ascomycetes. Appl Microbiol Biotechnol 56 : 589 601.[CrossRef] [PubMed]
45. Turgeon BG,, Yoder OC . 2000. Proposed nomenclature for mating type genes of filamentous ascomycetes. Fungal Genet Biol 31 : 1 5.[CrossRef] [PubMed]
46. Kück U,, Böhm J . 2013. Mating type genes and cryptic sexuality as tools for genetically manipulating industrial molds. Appl Microbiol Biotechnol 97 : 9609 9620.[CrossRef]
47. Lee SC,, Ni M,, Li W,, Shertz C,, Heitman J . 2010. The evolution of sex: a perspective from the fungal kingdom. Microbiol Mol Biol Rev 74 : 298 340.[CrossRef]
48. Paoletti M,, Rydholm C,, Schwier EU,, Anderson MJ,, Szakacs G,, Lutzoni F,, Debeaupuis JP,, Latgé JP,, Denning DW,, Dyer PS . 2005. Evidence for sexuality in the opportunistic fungal pathogen Aspergillus fumigatus . Curr Biol 15 : 1242 1248.[CrossRef] [PubMed]
49. Paoletti M,, Seymour FA,, Alcocer MJC,, Kaur N,, Calvo AM,, Archer DB,, Dyer PS . 2007. Mating type and the genetic basis of self-fertility in the model fungus Aspergillus nidulans . Curr Biol 17 : 1384 1389.[CrossRef] [PubMed]
50. Grosse V,, Krappmann S . 2008. The asexual pathogen Aspergillus fumigatus expresses functional determinants of Aspergillus nidulans sexual development. Eukaryot Cell 7 : 1724 1732.[CrossRef] [PubMed]
51. Hoff B,, Pöggeler S,, Kück U . 2008. Eighty years after its discovery, Fleming’s Penicillium strain discloses the secret of its sex. Eukaryot Cell 7 : 465 470.[CrossRef]
52. Nixon CE,, Wilcox AJ,, Laney JD . 2010. Degradation of the Saccharomyces cerevisiae mating-type regulator alpha1: genetic dissection of cis-determinants and trans-acting pathways. Genetics 185 : 497 511.[CrossRef]
53. Martin T,, Lu SW,, van Tilbeurgh H,, Ripoll DR,, Dixelius C,, Turgeon BG,, Debuchy R . 2010. Tracing the origin of the fungal α1 domain places its ancestor in the HMG-box superfamily: implication for fungal mating-type evolution. PLoS One 5 : e15199.[CrossRef]
54. King KM,, West JS,, Fitt BDL,, Dyer PS . 2015. Differences in MAT gene distribution and expression between Rhynchosporium species on grasses. Plant Pathol 64 : 344 354.[CrossRef]
55. Brännström IO,, Ament SL,, Spribille T,, Scofield DG,, Johannesson H . 2015. Constraints on sex by a single mating-type: a case study from lichenized fungi. Fungal Genet Rep 60( Suppl) : 40.
56. Houbraken J,, Dyer PS, . 2015. Induction of the sexual cycle in filamentous ascomycetes, p 23 46. In Van den Berg M,, Maruthachalam K (ed), Genetic Transformation Systems in Fungi, vol 2. Fungal Biology. Springer International Publishing, Cham, Switzerland.
57. Wada R,, Maruyama J,, Yamaguchi H,, Yamamoto N,, Wagu Y,, Paoletti M,, Archer DB,, Dyer PS,, Kitamoto K . 2012. Presence and functionality of mating type genes in the supposedly asexual filamentous fungus Aspergillus oryzae . Appl Environ Microbiol 78 : 2819 2829.[CrossRef] [PubMed]
58. Becker K,, Beer C,, Freitag M,, Kück U . 2015. Genome-wide identification of target genes of a mating-type α-domain transcription factor reveals functions beyond sexual development. Mol Microbiol 96 : 1002 1022.[CrossRef]
59. Ammerer G,, Sprague GF Jr,, Bender A . 1985. Control of yeast α-specific genes: evidence for two blocks to expression in MATa/MATα diploids. Proc Natl Acad Sci USA 82 : 5855 5859.[CrossRef] [PubMed]
60. Galgoczy DJ,, Cassidy-Stone A,, Llinás M,, O’Rourke SM,, Herskowitz I,, DeRisi JL,, Johnson AD . 2004. Genomic dissection of the cell-type-specification circuit in Saccharomyces cerevisiae . Proc Natl Acad Sci USA 101 : 18069 18074.[CrossRef]
61. Böhm J,, Dahlmann TA,, Gümüşer H,, Kück U . 2015. A MAT1-2 wild-type strain from Penicillium chrysogenum: functional mating-type locus characterization, genome sequencing and mating with an industrial penicillin-producing strain. Mol Microbiol 95 : 859 874.[CrossRef] [PubMed]
62. Klix V,, Nowrousian M,, Ringelberg C,, Loros JJ,, Dunlap JC,, Pöggeler S . 2010. Functional characterization of MAT1-1-specific mating-type genes in the homothallic ascomycete Sordaria macrospora provides new insights into essential and nonessential sexual regulators. Eukaryot Cell 9 : 894 905.[CrossRef]
63. Kim HK,, Jo SM,, Kim GY,, Kim DW,, Kim YK,, Yun SH . 2015. A large-scale functional analysis of putative target genes of mating-type loci provides insight into the regulation of sexual development of the cereal pathogen Fusarium graminearum . PLoS Genet 11 : e1005486.[CrossRef]
64. Ádám AL,, García-Martínez J,, Szücs EP,, Avalos J,, Hornok L . 2011. The MAT1-2-1 mating-type gene upregulates photo-inducible carotenoid biosynthesis in Fusarium verticillioides . FEMS Microbiol Lett 318 : 76 83.[CrossRef]
65. Zheng Q,, Hou R,, Juanyu,, Zhang,, Ma J,, Wu Z,, Wang G,, Wang C,, Xu JR . 2013. The MAT locus genes play different roles in sexual reproduction and pathogenesis in Fusarium graminearum . PLoS One 8 : e66980.[CrossRef]
66. Mead ME,, Stanton BC,, Kruzel EK,, Hull CM . 2015. Targets of the Sex Inducer homeodomain proteins are required for fungal development and virulence in Cryptococcus neoformans . Mol Microbiol 95 : 804 818.[CrossRef]
67. Geiser DM,, Timberlake WE,, Arnold ML . 1996. Loss of meiosis in Aspergillus . Mol Biol Evol 13 : 809 817.[CrossRef]
68. Dyer PS . 2008. Evolutionary biology: genomic clues to original sex in fungi. Curr Biol 18 : R207 R209.[CrossRef]
69. Galagan JE,, Calvo SE,, Cuomo C,, Ma LJ,, Wortman JR,, Batzoglou S,, Lee SI,, Baştürkmen M,, Spevak CC,, Clutterbuck J,, Kapitonov V,, Jurka J,, Scazzocchio C,, Farman M,, Butler J,, Purcell S,, Harris S,, Braus GH,, Draht O,, Busch S,, D’Enfert C,, Bouchier C,, Goldman GH,, Bell-Pedersen D,, Griffiths-Jones S,, Doonan JH,, Yu J,, Vienken K,, Pain A,, Freitag M,, Selker EU,, Archer DB,, Peñalva MA,, Oakley BR,, Momany M,, Tanaka T,, Kumagai T,, Asai K,, Machida M,, Nierman WC,, Denning DW,, Caddick M,, Hynes M,, Paoletti M,, Fischer R,, Miller B,, Dyer P,, Sachs MS,, Osmani SA,, Birren BW . 2005. Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae . Nature 438 : 1105 1115.[CrossRef]
70. Pel HJ , , et al . 2007. Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechnol 25 : 221 231.[CrossRef]
71. Xu J,, Saunders CW,, Hu P,, Grant RA,, Boekhout T,, Kuramae EE,, Kronstad JW,, Deangelis YM,, Reeder NL,, Johnstone KR,, Leland M,, Fieno AM,, Begley WM,, Sun Y,, Lacey MP,, Chaudhary T,, Keough T,, Chu L,, Sears R,, Yuan B,, Dawson TL Jr . 2007. Dandruff-associated Malassezia genomes reveal convergent and divergent virulence traits shared with plant and human fungal pathogens. Proc Natl Acad Sci USA 104 : 18730 18735.[CrossRef]
72. Braumann I,, van den Berg M,, Kempken F . 2008. Repeat induced point mutation in two asexual fungi, Aspergillus niger and Penicillium chrysogenum . Curr Genet 53 : 287 297.[CrossRef]
73. Butler G , , et al . 2009. Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459 : 657 662.[CrossRef] [PubMed]
74. Yokoyama E,, Yamagishi K,, Hara A . 2003. Structures of the mating-type loci of Cordyceps takaomontana . Appl Environ Microbiol 69 : 5019 5022.[CrossRef]
75. Pöggeler S,, Risch S,, Kück U,, Osiewacz HD . 1997. Mating-type genes from the homothallic fungus Sordaria macrospora are functionally expressed in a heterothallic ascomycete. Genetics 147 : 567 580.[PubMed]
76. Pyrzak W,, Miller KY,, Miller BL . 2008. Mating type protein Mat1-2 from asexual Aspergillus fumigatus drives sexual reproduction in fertile Aspergillus nidulans . Eukaryot Cell 7 : 1029 1040.[CrossRef] [PubMed]
77. Pöggeler S,, Hoff B,, Kück U . 2008. Asexual cephalosporin C producer Acremonium chrysogenum carries a functional mating type locus. Appl Environ Microbiol 74 : 6006 6016.[CrossRef]
78. Cross F,, Hartwell LH,, Jackson C,, Konopka JB . 1988. Conjugation in Saccharomyces cerevisiae . Annu Rev Cell Biol 4 : 429 457.[CrossRef] [PubMed]
79. Borneman AR,, Hynes MJ,, Andrianopoulos A . 2001. An STE12 homolog from the asexual, dimorphic fungus Penicillium marneffei complements the defect in sexual development of an Aspergillus nidulans steA mutant. Genetics 157 : 1003 1014.[PubMed]
80. Ramirez-Prado JH,, Moore GG,, Horn BW,, Carbone I . 2008. Characterization and population analysis of the mating-type genes in Aspergillus flavus and Aspergillus parasiticus . Fungal Genet Biol 45 : 1292 1299.[CrossRef]
81. Turrà D,, El Ghalid M,, Rossi F,, Di Pietro A . 2015. Fungal pathogen uses sex pheromone receptor for chemotropic sensing of host plant signals. Nature 527 : 521 524.[CrossRef]
82. Raper KB,, Fennell DI . 1965. The Genus Aspergillus. The Williams & Wilkins Company, Baltimore, MD.
83. Pitt JI . 1979. The Genus Penicillium and Its Teleomorphic States Eupenicillium and Talaromyces. Academic Press, London, United Kingdom.
84. Frisvad JC,, Petersen LM,, Lyhne EK,, Larsen TO . 2014. Formation of sclerotia and production of indoloterpenes by Aspergillus niger and other species in section Nigri . PLoS One 9 : e94857.[CrossRef]
85. Buschbom J,, Mueller GM . 2006. Testing “species pair” hypotheses: evolutionary processes in the lichen-forming species complex Porpidia flavocoerulescens and Porpidia melinodes . Mol Biol Evol 23 : 574 586.[CrossRef]
86. Seymour FA,, Crittenden PD,, Wirtz N,, Øvstedal DO,, Dyer PS,, Lumbsch HT . 2007. Phylogenetic and morphological analysis of Antarctic lichen-forming Usnea species in the group Neuropogon . Antarct Sci 19 : 71 82.[CrossRef]
87. Crespo A,, Pérez-Ortega S . 2009. Cryptic species and species pairs in lichens: a discussion on the relationship between molecular phylogenies and morphological characters. An Jard Bot Madr 66S1 : 71 81.
88. Greenaway T . 2014. Fertile Normandina pulchella . Br Lichen Soc Bull 115 : 71.
89. Hull CM,, Johnson AD . 1999. Identification of a mating type-like locus in the asexual pathogenic yeast Candida albicans . Science 285 : 1271 1275.[CrossRef]
90. Miller MG,, Johnson AD . 2002. White-opaque switching in Candida albicans is controlled by mating-type locus homeodomain proteins and allows efficient mating. Cell 110 : 293 302.[CrossRef]
91. Lockhart SR,, Daniels KJ,, Zhao R,, Wessels D,, Soll DR . 2003. Cell biology of mating in Candida albicans . Eukaryot Cell 2 : 49 61.[CrossRef] [PubMed]
92. Heitman J,, Carter DA,, Dyer PS,, Soll DR . 2014. Sexual reproduction of human fungal pathogens. Cold Spring Harb Perspect Med 4 : a019281.[CrossRef]
93. Forche A,, Alby K,, Schaefer D,, Johnson AD,, Berman J,, Bennett RJ . 2008. The parasexual cycle in Candida albicans provides an alternative pathway to meiosis for the formation of recombinant strains. PLoS Biol 6 : e110.[CrossRef]
94. Berman J,, Hadany L . 2012. Does stress induce (para)sex? Implications for Candida albicans evolution. Trends Genet 28 : 197 203.[CrossRef] [PubMed]
95. Hickman MA,, Zeng G,, Forche A,, Hirakawa MP,, Abbey D,, Harrison BD,, Wang YM,, Su CH,, Bennett RJ,, Wang Y,, Berman J . 2013. The “obligate diploid” Candida albicans forms mating-competent haploids. Nature 494 : 55 59.[CrossRef]
96. Alby K,, Schaefer D,, Bennett RJ . 2009. Homothallic and heterothallic mating in the opportunistic pathogen Candida albicans . Nature 460 : 890 893.[CrossRef]
97. Houbraken J,, Samson RA,, Yilmaz N, . 2016. Taxonomy of Aspergillus, Penicillium and Talaromyces and its significance for biotechnology, p 1 15. In de Vries RP,, Gelber IB,, Andersen MR (ed), Aspergillus and Penicillium in the Post-Genomic Era . Caister Academic Press, Norfolk, United Kingdom.
98. Geiser DM,, Pitt JI,, Taylor JW . 1998. Cryptic speciation and recombination in the aflatoxin-producing fungus Aspergillus flavus . Proc Natl Acad Sci USA 95 : 388 393.[CrossRef]
99. Carbone I,, Jakobek JL,, Ramirez-Prado JH,, Horn BW . 2007. Recombination, balancing selection and adaptive evolution in the aflatoxin gene cluster of Aspergillus parasiticus . Mol Ecol 16 : 4401 4417.[CrossRef] [PubMed]
100. Varga J,, Tóth B . 2003. Genetic variability and reproductive mode of Aspergillus fumigatus . Infect Genet Evol 3 : 3 17.[CrossRef]
101. Bain JM,, Tavanti A,, Davidson AD,, Jacobsen MD,, Shaw D,, Gow NAR,, Odds FC . 2007. Multilocus sequence typing of the pathogenic fungus Aspergillus fumigatus . J Clin Microbiol 45 : 1469 1477.[CrossRef] [PubMed]
102. Pöggeler S . 2002. Genomic evidence for mating abilities in the asexual pathogen Aspergillus fumigatus . Curr Genet 42 : 153 160.[CrossRef]
103. Dyer PS,, Paoletti M,, Archer DB . 2003. Genomics reveals sexual secrets of Aspergillus . Microbiology 149 : 2301 2303.[CrossRef] [PubMed]
104. Horn BW,, Moore GG,, Carbone I . 2011. Sexual reproduction in aflatoxin-producing Aspergillus nomius . Mycologia 103 : 174 183.[CrossRef]
105. Swilaiman SS,, O’Gorman CM,, Balajee SA,, Dyer PS . 2013. Discovery of a sexual cycle in Aspergillus lentulus, a close relative of A. fumigatus . Eukaryot Cell 12 : 962 969.[CrossRef]
106. Arabatzis M,, Velegraki A . 2013. Sexual reproduction in the opportunistic human pathogen Aspergillus terreus . Mycologia 105 : 71 79.[CrossRef]
107. Horn BW,, Olarte RA,, Peterson SW,, Carbone I . 2013. Sexual reproduction in Aspergillus tubingensis from section Nigri . Mycologia 105 : 1153 1163.[CrossRef] [PubMed]
108. Darbyshir HL,, van de Vondervoort PJI,, Dyer PS . 2013. Discovery of sexual reproduction in the black aspergilli. Fungal Genet Rep 60( Suppl) : 687.
109. Raper K,, Thom C . 1949. A Manual of the Penicillia. The Williams & Wilkins Company, Baltimore, MD.
110. Le Dréan G,, Mounier J,, Vasseur V,, Arzur D,, Habrylo O,, Barbier G . 2010. Quantification of Penicillium camemberti and P. roqueforti mycelium by real-time PCR to assess their growth dynamics during ripening cheese. Int J Food Microbiol 138 : 100 107.[CrossRef]
111. Torres M,, Canela R,, Riba M,, Sanchis V . 1987. Production of patulin and griseofulvin by a strain of Penicillium griseofulvum in three different media. Mycopathologia 99 : 85 89.[CrossRef]
112. Chakravarti R,, Sahai V . 2004. Compactin-a review. Appl Microbiol Biotechnol 64 : 618 624.[CrossRef]
113. Regueira TB,, Kildegaard KR,, Hansen BG,, Mortensen UH,, Hertweck C,, Nielsen J . 2011. Molecular basis for mycophenolic acid biosynthesis in Penicillium brevicompactum . Appl Environ Microbiol 77 : 3035 3043.[CrossRef]
114. Houbraken J,, Frisvad JC,, Samson RA . 2011. Fleming’s penicillin producing strain is not Penicillium chrysogenum but P. rubens . IMA Fungus 2 : 87 95.[CrossRef]
115. van den Berg MA,, Albang R,, Albermann K,, Badger JH,, Daran JM,, Driessen AJ,, Garcia-Estrada C,, Fedorova ND,, Harris DM,, Heijne WH,, Joardar V,, Kiel JA,, Kovalchuk A,, Martín JF,, Nierman WC,, Nijland JG,, Pronk JT,, Roubos JA,, van der Klei IJ,, van Peij NN,, Veenhuis M,, von Döhren H,, Wagner C,, Wortman J,, Bovenberg RA . 2008. Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum . Nat Biotechnol 26 : 1161 1168.[CrossRef]
116. Fleming A . 1929. On the antibacterial action of cultures of a penicillium with special reference to their use in the isolation of B. influenza . Br J Exp Pathol 10 : 226 236.
117. Ropars J,, Dupont J,, Fontanillas E,, Rodríguez de la Vega RC,, Malagnac F,, Coton M,, Giraud T,, López-Villavicencio M . 2012. Sex in cheese: evidence for sexuality in the fungus Penicillium roqueforti . PLoS One 7 : e49665.[CrossRef]
118. Schuster A,, Schmoll M . 2010. Biology and biotechnology of Trichoderma . Appl Microbiol Biotechnol 87 : 787 799.[CrossRef] [PubMed]
119. Seibel C,, Tisch D,, Kubicek CP,, Schmoll M . 2012. ENVOY is a major determinant in regulation of sexual development in Hypocrea jecorina ( Trichoderma reesei). Eukaryot Cell 11 : 885 895.[CrossRef] [PubMed]
120. Chuang YC,, Li WC,, Chen CL,, Hsu PW,, Tung SY,, Kuo HC,, Schmoll M,, Wang TF . 2015. Trichoderma reesei meiosis generates segmentally aneuploid progeny with higher xylanase-producing capability. Biotechnol Biofuels 8 : 30.[CrossRef]
121. Dahlmann TA,, Kück U . 2015. Dicer-dependent biogenesis of small RNAs and evidence for microRNA-like RNAs in the penicillin producing fungus Penicillium chrysogenum . PLoS One 10 : e0125989.[CrossRef]
122. Short DPG,, O’Donnell K,, Thrane U,, Nielsen KF,, Zhang N,, Juba JH,, Geiser DM . 2013. Phylogenetic relationships among members of the Fusarium solani species complex in human infections and the descriptions of F. keratoplasticum sp. nov. and F. petroliphilum stat. nov. Fungal Genet Biol 53 : 59 70.[CrossRef]
123. Anzawa K,, Kawasaki M,, Mochizuki T,, Ishizaki H . 2010. Successful mating of Trichophyton rubrum with Arthroderma simii . Med Mycol 48 : 629 634.[CrossRef]
124. Ashton G,, Dyer PS, . 2016. Sexual development in fungi and its uses in gene expression systems, p 335 350. In Schmoll M,, Dattenböck C (ed), Gene Expression Systems of Fungi: Applications and Advancements. Springer International Publishing, Cham, Switzerland.[CrossRef]
125. Linke R,, Thallinger GG,, Haarmann T,, Eidner J,, Schreiter M,, Lorenz P,, Seiboth B,, Kubicek CP . 2015. Restoration of female fertility in Trichoderma reesei QM6a provides the basis for inbreeding in this industrial cellulase producing fungus. Biotechnol Biofuels 8 : 155.[CrossRef]
126. Jacobson DJ . 1995. Sexual dysfunction associated with outcrossing in Neurospora tetrasperma, a pseudohomothallic ascomycete. Mycologia 87 : 604 617.[CrossRef]
127. Pöggeler S,, Masloff S,, Jacobsen S,, Kück U . 2000. Karyotype polymorphism correlates with intraspecific infertility in the homothallic ascomycete Sordaria macrospora . J Evol Biol 13 : 281 289.[CrossRef]
128. Ropars J,, Lo YC,, Dumas E,, Snirc A,, Begerow D,, Rollnik T,, Lacoste S,, Dupont J,, Giraud T,, López-Villavicencio M . 2016. Fertility depression among cheese-making Penicillium roqueforti strains suggests degeneration during domestication. Evolution 70 : 2099 2109.[CrossRef]
129. McDonald BA,, Linde C . 2002. Pathogen population genetics, evolutionary potential, and durable resistance. Annu Rev Phytopathol 40 : 349 379.[CrossRef]
130. Dyer PS,, Bateman GL,, Wood HM . 2001. Development of apothecia of the eyespot pathogen Tapesia on cereal crop stubble residue in England. Plant Pathol 50 : 356 362.[CrossRef]
131. Radewald KC,, Ferrin DM,, Stanghellini ME . 2004. Sanitation practices that inhibit reproduction of Monosporascus cannoballus in melon roots left in the field after crop termination. Plant Pathol 53 : 660 668.[CrossRef]
132. Dyer PS,, Munro C,, Bradshaw RE, . Fungal genetics. In Kibbler C,, Barton R,, Gow N,, Howell S,, Maccallum D,, Manuel R (ed), Oxford Textbook of Medical Mycology. Oxford University Press, Oxford, United Kingdom, in press.
133. Stukenbrock EH,, Croll D . 2014. The evolving fungal genome. Fungal Biol Rev 28 : 1 12.[CrossRef]
134. Ropars J,, de la Vega RCR,, López-Villavicencio M,, Gouzy J,, Dupont J,, Swennen D,, Dumas E,, Giraud T,, Branca A, . 2016. Diversity and mechanisms of geomic adaptation in Penicillium , p 27 42. In deVries RP,, Gelber IB,, Andersen MR (ed), Aspergillus and Penicllium in the Post-Genomic Era. Caister Academic Press, Norfolk, United Kingdom.[CrossRef]
135. Collins RA,, Seville BJ . 1990. Independent transfer of mitochondrial chromosomes and plasmids during unstable vegetative fusion in Neurospora . Nature 345 : 177 179.[CrossRef]
136. Kellner M,, Burmester A,, Wöstemeyer A,, Wöstemeyer J . 1993. Transfer of genetic information from the mycoparasite Parasitella parasitica to its host Absidia glauca . Curr Genet 23 : 334 337.[CrossRef] [PubMed]
137. Kempken F . 1995. Horizontal transfer of a mitochondrial plasmid. Mol Gen Genet 248 : 89 94.[CrossRef]
138. Rosendahl S . 2008. Communities, populations and individuals of arbuscular mycorrhizal fungi. New Phytol 178 : 253 266.[CrossRef] [PubMed]
139. den Bakker HC,, Vankuren NW,, Morton JB,, Pawlowska TE . 2010. Clonality and recombination in the life history of an asexual arbuscular mycorrhizal fungus. Mol Biol Evol 27 : 2474 2486.[CrossRef]
140. Halary S,, Malik SB,, Lildhar L,, Slamovits CH,, Hijri M,, Corradi N . 2011. Conserved meiotic machinery in Glomus spp., a putatively ancient asexual fungal lineage. Genome Biol Evol 3 : 950 958.[CrossRef]
141. Sanders IR . 2011. Fungal sex: meiosis machinery in ancient symbiotic fungi. Curr Biol 21 : R896 R897.[CrossRef] [PubMed]
142. Hijri M,, Sanders IR . 2005. Low gene copy number shows that arbuscular mycorrhizal fungi inherit genetically different nuclei. Nature 433 : 160 163.[CrossRef]
143. Croll D,, Sanders IR . 2009. Recombination in Glomus intraradices, a supposed ancient asexual arbuscular mycorrhizal fungus. BMC Evol Biol 9 : 13.[CrossRef]
144. Pawlowska TE,, Taylor JW . 2004. Organization of genetic variation in individuals of arbuscular mycorrhizal fungi. Nature 427 : 733 737.[CrossRef]
145. Ropars J,, Toro KS,, Noel J,, Pelin A,, Charron P,, Farinelli L,, Marton T,, Krüger M,, Fuchs J,, Brachmann A,, Corradi N . 2016. Evidence for the sexual origin of heterokaryosis in arbuscular mycorrhizal fungi. New Microbiol 1 : 16033.[CrossRef] [PubMed]
146. López-Villavicencio M,, Debets AJM,, Slakhorst M,, Giraud T,, Schoustra SE . 2013. Deleterious effects of recombination and possible nonrecombinatorial advantages of sex in a fungal model. J Evol Biol 26 : 1968 1978.[CrossRef]
147. Murtagh GJ,, Dyer PS,, Crittenden PD . 2000. Sex and the single lichen. Nature 404 : 564.[CrossRef]
148. Ross IK . 1979. Biology of the Fungi – Their Development, Regulation and Associations. McGraw-Hill, New York, NY.
149. Dyer PS,, Paoletti M . 2005. Reproduction in Aspergillus fumigatus: sexuality in a supposedly asexual species? Med Mycol 43( Suppl 1) : S7 S14.[CrossRef]
150. Hughes TJ,, O’Donnell K,, Sink S,, Rooney AP,, Scandiani MM,, Luque A,, Bhattacharyya MK,, Huang X . 2014. Genetic architecture and evolution of the mating type locus in fusaria that cause soybean sudden death syndrome and bean root rot. Mycologia 106 : 686 697.[CrossRef] [PubMed]
151. Zaffarano PL,, McDonald BA,, Linde CC . 2008. Rapid speciation following recent host shifts in the plant pathogenic fungus Rhynchosporium . Evolution 62 : 1418 1436.[CrossRef]
152. King KM,, West JS,, Brunner PC,, Dyer PS,, Fitt BDL . 2013. Evolutionary relationships between Rhynchosporium lolii sp. nov. and other Rhynchosporium species on grasses. PLoS One 8 : e72536.[CrossRef]
153. Notteghem GL,, Silué D . 1992. Distribution of the mating type alleles in Magnaporthe grisea populations pathogenic on rice. Phytopathology 82 : 421 424.[CrossRef]
154. Takan JP,, Chipili J,, Muthumeenakshi S,, Talbot NJ,, Manyasa EO,, Bandyopadhyay R,, Sere Y,, Nutsugah SK,, Talhinhas P,, Hossain M,, Brown AE,, Sreenivasaprasad S . 2012. Magnaporthe oryzae populations adapted to finger millet and rice exhibit distinctive patterns of genetic diversity, sexuality and host interaction. Mol Biotechnol 50 : 145 158.[CrossRef] [PubMed]
155. Xu J . 2002. Estimating the spontaneous mutation rate of loss of sex in the human pathogenic fungus Cryptococcus neoformans . Genetics 162 : 1157 1167.[PubMed]
156. Hawksworth DL , , et al . 2011. The Amsterdam declaration on fungal nomenclature. IMA Fungus 2 : 105 112.[CrossRef]
157. Kakkar RK,, Mehrotra BR . 1971. Induced production of cleistothecia in Aspergillus unguis . Experientia 27 : 710 711.[CrossRef]
158. Olarte RA,, Horn BW,, Dorner JW,, Monacell JT,, Singh R,, Stone EA,, Carbone I . 2012. Effect of sexual recombination on population diversity in aflatoxin production by Aspergillus flavus and evidence for cryptic heterokaryosis. Mol Ecol 21 : 1453 1476.[CrossRef]
159. Horn BW,, Ramirez-Prado JH,, Carbone I . 2009. The sexual state of Aspergillus parasiticus . Mycologia 101 : 275 280.[CrossRef]
160. Mandel MA,, Barker BM,, Kroken S,, Rounsley SD,, Orbach MJ . 2007. Genomic and population analyses of the mating type loci in Coccidioides species reveal evidence for sexual reproduction and gene acquisition. Eukaryot Cell 6 : 1189 1199.[CrossRef]
161. Fraser JA,, Stajich JE,, Tarcha EJ,, Cole GT,, Inglis DO,, Sil A,, Heitman J . 2007. Evolution of the mating type locus: insights gained from the dimorphic primary fungal pathogens Histoplasma capsulatum, Coccidioides immitis, and Coccidioides posadasii . Eukaryot Cell 6 : 622 629.[CrossRef] [PubMed]
162. Christiansen SK,, Wirse S,, Yun SH,, Yoder OC,, Turgeon BG . 1998. The two Cochliobolus mating type genes are conserved among species but one of them is missing in C. victoria . Mycol Res 102 : 919 929.[CrossRef]
163. Bihon W,, Wingfield MJ,, Slippers B,, Duong TA,, Wingfield BD . 2014. MAT gene idiomorphs suggest a heterothallic sexual cycle in a predominantly asexual and important pine pathogen. Fungal Genet Biol 62 : 55 61.[CrossRef] [PubMed]
164. Kerényi Z,, Moretti A,, Waalwijk C,, Oláh B,, Hornok L . 2004. Mating type sequences in asexually reproducing Fusarium species. Appl Environ Microbiol 70 : 4419 4423.[PubMed]
165. Covert SF,, Aoki T,, O’Donnell K,, Starkey D,, Holliday A,, Geiser DM,, Cheung F,, Town C,, Strom A,, Juba J,, Scandiani M,, Yang XB . 2007. Sexual reproduction in the soybean sudden death syndrome pathogen Fusarium tucumaniae . Fungal Genet Biol 44 : 799 807.[CrossRef]
166. Julca I,, Droby S,, Sela N,, Marcet-Houben M,, Gabaldón T . 2016. Contrasting genomic diversity in two closely related postharvest pathogens: Penicillium digitatum and Penicillium expansum . Genome Biol Evol 8 : 218 227.[CrossRef]
167. López-Villavicencio M,, Aguileta G,, Giraud T,, de Vienne DM,, Lacoste S,, Couloux A,, Dupont J . 2010. Sex in Penicillium: combined phylogenetic and experimental approaches. Fungal Genet Biol 47 : 693 706.[CrossRef]
168. Zaffarano PL,, Queloz V,, Duò A,, Grünig CR . 2011. Sex in the PAC: a hidden affair in dark septate endophytes? BMC Evol Biol 11 : 282.[CrossRef]
169. Woo PC,, Chong KT,, Tse H,, Cai JJ,, Lau CC,, Zhou AC,, Lau SK,, Yuen KY . 2006. Genomic and experimental evidence for a potential sexual cycle in the pathogenic thermal dimorphic fungus Penicillium marneffe i . FEBS Lett 580 : 3409 3416.[CrossRef]
170. Ware SB,, Verstappen ECP,, Breeden J,, Cavaletto JR,, Goodwin SB,, Waalwijk C,, Crous PW,, Kema GHJ . 2007. Discovery of a functional Mycosphaerella teleomorph in the presumed asexual barley pathogen Septoria passerinii . Fungal Genet Biol 44 : 389 397.[CrossRef] [PubMed]
171. Yilmaz N,, Hagen F,, Meis JF,, Houbraken J,, Samson RA . 2016. Discovery of a sexual cycle in Talaromyces amestolkiae . Mycologia 108 : 70 79.[CrossRef]
172. Geng Y,, Li Z,, Xia LY,, Wang Q,, Hu XM,, Zhang XG . 2014. Characterization and phylogenetic analysis of the mating-type loci in the asexual ascomycete genus Ulocladium . Mycologia 106 : 649 665.[CrossRef]
173. Pöggeler S,, O’Gorman CM,, Hoff B,, Kück U . 2011. Molecular organization of the mating-type loci in the homothallic Ascomycete Eupenicillium crustaceum . Fungal Biol 115 : 615 624.[CrossRef] [PubMed]
174. Becker K . 2015. Functional genomics provide new insights into regulation of morphogenesis and secondary metabolism in the industrial penicillin producer Penicillium chrysogenum. Ph.D. thesis. Ruhr-University Bochum, Bochum, Germany.
175. Böhm J . 2014. Mating-type genes and the sexual cycle of the penicillin producer Penicillium chrysogenum. Ph.D. thesis. Ruhr-University Bochum, Bochum, Germany.
176. Daskalov A,, Heller J,, Herzog S,, Fleißner A,, Glass NL . 2017. Molecular mechanisms regulating cell fusion and heterokaryon formation in filamentous fungi. Microbiol Spectrum 5( 1) : FUNK-0015-2016.[CrossRef]
177. Bennett RJ,, Turgeon BG . 2016. Fungal sex: the Ascomycota. Microbiol Spectrum 4( 5) : FUNK-0005-2016.[CrossRef]
178. de Vries RP , , et al . 2017. Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus . Genome Biol 18 : 28.[CrossRef]


Generic image for table
Table 1

Evidence for mating-type loci, their distribution, functional characterization, and induction of a sexual cycle in representative euascomycete species that have been presumed to be asexual

Citation: Dyer P, Kück U. 2017. Sex and the Imperfect Fungi, p 193-214. In Heitman J, Howlett B, Crous P, Stukenbrock E, James T, Gow N (ed), The Fungal Kingdom. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.FUNK-0043-2017

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error