Chapter 16 : Phage Therapy Approaches to Reducing Pathogen Persistence and Transmission in Animal Production Environments: Opportunities and Challenges

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Phage Therapy Approaches to Reducing Pathogen Persistence and Transmission in Animal Production Environments: Opportunities and Challenges, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819644/9781555817077_Chap16-1.gif /docserver/preview/fulltext/10.1128/9781555819644/9781555817077_Chap16-2.gif


One of the major challenges to current global food production and food security is the presence of antibiotic-resistant bacteria in animals (ruminants, poultry, swine) from which foods of animal origin are produced. Foodborne diseases significantly impact public health globally, with the World Health Organization (WHO) estimating that 1 in 10 people, or approximately 600 million people worldwide, are sickened and 420,000 die annually from foodborne illnesses ( ). There is concern that many foodborne bacterial pathogens are either resistant or increasing their resistance to antimicrobials commonly used for medical treatment. For example, the Centers for Disease Control and Prevention reported that in 2013, the percentage of human isolates with macrolide resistance increased from 1.8% in 2012 to 2.2% in 2013, and from 9.0% in 2012 to 17.6% among isolates ( ). In addition, the percentage of human ser. I 4,[5],12:i:- isolates with resistance to ampicillin, streptomycin, sulfonamide, and tetracycline continued to increase, from 17% in 2010 to 45.5% in 2013 ( ). spp. (845,024 cases per year) and nontyphoidal spp. (1,027,561 cases per year) are the two most prevalent causes of foodborne illness in the United States, accounting for 51% of annual foodborne illnesses due to known bacterial agents ( ) and highlighting the fact that an increasing number of foodborne illnesses are becoming more difficult to treat with antibiotics.

Citation: Colavecchio A, Goodridge L. 2018. Phage Therapy Approaches to Reducing Pathogen Persistence and Transmission in Animal Production Environments: Opportunities and Challenges, p 291-308. In Thakur S, Kniel K (ed), Preharvest Food Safety. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PFS-0017-2017
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Intrinsic and extrinsic characteristics that may contribute to the success or failure of bacteriophage therapy.

Citation: Colavecchio A, Goodridge L. 2018. Phage Therapy Approaches to Reducing Pathogen Persistence and Transmission in Animal Production Environments: Opportunities and Challenges, p 291-308. In Thakur S, Kniel K (ed), Preharvest Food Safety. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PFS-0017-2017
Permissions and Reprints Request Permissions
Download as Powerpoint


1. World Health Organization . 2015. WHO estimates of the global burden of foodborne diseases. Foodborne diseases burden epidemiology reference group 2007–2015. http://www.who.int/foodsafety/publications/foodborne_disease/fergreport/en/.
2. Centers for Disease Control and Prevention . 2013. National Antimicrobial Resistance Monitoring System: Enteric Bacteria 2013. Human Isolates Final Report. https://www.cdc.gov/narms/pdf/2013-annual-report-narms-508c.pdf.
3. Scallan E,, Hoekstra RM,, Angulo FJ,, Tauxe RV,, Widdowson M-A,, Roy SL,, Jones JL,, Griffin PM . 2011. Foodborne illness acquired in the United States—major pathogens. Emerg Infect Dis 17 : 7 15.[PubMed]
4. Lederberg J,, Harrison PF . 1998. Antimicrobial Resistance: Issues and Options. National Academies Press, Washington, DC.
5. Food and Agriculture Organization of the UN . 2016. FAO calls for international action on antimicrobial resistance. http://www.fao.org/news/story/en/item/382636/icode/.
6. Levy S . 2014. Reduced antibiotic use in livestock: how Denmark tackled resistance. Environ Health Perspect 122 : A160 A165.[PubMed]
7. d’Herelle F . 1917. Sur un microbe invisible antagoniste des bacilles dysentériques. CR Acad Sci Paris 165 : 373 375.
8. Aminov RI . 2010. A brief history of the antibiotic era: lessons learned and challenges for the future. Front Microbiol 1 : 134.[CrossRef]
9. Hughes P,, Heritage J . 2004. Antibiotic growth-promoters in food animals. FAO Anim Prod Health Pap 129 152. http://www.fao.org/docrep/007/y5159e/y5159e08.htm.
10. Cadieux B,, Colavecchio A,, Goodridge L . 2016. Control of bacterial foodborne pathogens on fresh produce: a Trojan horse tale, abst. T7-O7. Annu. Meet. Int. Assoc. Food Protection, St. Louis, MO.
11. Zhang X,, McDaniel AD,, Wolf LE,, Keusch GT,, Waldor MK,, Acheson DW . 2000. Quinolone antibiotics induce Shiga toxin-encoding bacteriophages, toxin production, and death in mice. J Infect Dis 181 : 664 670.[PubMed]
12. Pricer WE Jr,, Weissbach A . 1964. The effect of lysogenic induction with Mitomycin C on the deoxyribonucleic acid polymerase of Escherichia coli K12λ. J Biol Chem 239 : 2607 2612.[PubMed]
13. Loś JM,, Loś M,, Węgrzyn A,, Węgrzyn G . 2010. Hydrogen peroxide-mediated induction of the Shiga toxin-converting lambdoid prophage ST2-8624 in Escherichia coli O157:H7. FEMS Immunol Med Microbiol 58 : 322 329.[PubMed]
14. Colomer-Lluch M,, Jofre J,, Muniesa M . 2014. Quinolone resistance genes (qnrA and qnrS) in bacteriophage particles from wastewater samples and the effect of inducing agents on packaged antibiotic resistance genes. J Antimicrob Chemother 69 : 1265 1274.[PubMed]
15. Nilsson AS . 2014. Phage therapy: constraints and possibilities. Ups J Med Sci 119 : 192 198.[PubMed]
16. Canchaya C,, Proux C,, Fournous G,, Bruttin A,, Brüssow H . 2003. Prophage genomics. Microbiol Mol Biol Rev 67 : 238 276.[PubMed]
17. Kang HS . 2016. Comprehensive analysis of curated prophage genomes from PhiSpy for assessment of phage genome mosaicism and tRNA dependencies. M.S. thesis. San Diego State University, San Diego, CA.
18. Arthur TM,, Brichta-Harhay DM,, Bosilevac JM,, Guerini MN,, Kalchayanand N,, Wells JE,, Shackelford SD,, Wheeler TL,, Koohmaraie M . 2008. Prevalence and characterization of Salmonella in bovine lymph nodes potentially destined for use in ground beef. J Food Prot 71 : 1685 1688.[PubMed]
19. Enault F,, Briet A,, Bouteille L,, Roux S,, Sullivan MB,, Petit M-A . 2017. Phages rarely encode antibiotic resistance genes: a cautionary tale for virome analyses. ISME J 11 : 237 247.[PubMed]
20. Allen HK,, Looft T,, Bayles DO,, Humphrey S,, Levine UY,, Alt D,, Stanton TB . 2011. Antibiotics in feed induce prophages in swine fecal microbiomes. MBio 2 : e00260-11.[CrossRef][PubMed]
21. Labrie SJ,, Samson JE,, Moineau S . 2010. Bacteriophage resistance mechanisms. Nat Rev Microbiol 8 : 317 327.[PubMed]
22. Irbe RM,, Morin LM,, Oishi M . 1981. Prophage (phi 80) induction in Escherichia coli K-12 by specific deoxyoligonucleotides. Proc Natl Acad Sci USA 78 : 138 142.[PubMed]
23. Norris JS,, Westwater C,, Schofield D . 2000. Prokaryotic gene therapy to combat multidrug resistant bacterial infection. Gene Ther 7 : 723 725.[PubMed]
24. Westwater C,, Kasman LM,, Schofield DA,, Werner PA,, Dolan JW,, Schmidt MG,, Norris JS . 2003. Use of genetically engineered phage to deliver antimicrobial agents to bacteria: an alternative therapy for treatment of bacterial infections. Antimicrob Agents Chemother 47 : 1301 1307.[PubMed]
25. Wu K,, Wood TK . 1994. Evaluation of the hok/sok killer locus for enhanced plasmid stability. Biotechnol Bioeng 44 : 912 921.[PubMed]
26. Jensen RB,, Gerdes K . 1995. Programmed cell death in bacteria: proteic plasmid stabilization systems. Mol Microbiol 17 : 205 210.
27. Gerdes K,, Gultyaev AP,, Franch T,, Pedersen K,, Mikkelsen ND . 1997. Antisense RNA-regulated programmed cell death. Annu Rev Genet 31 : 1 31.[PubMed]
28. Couturier M,, Bahassi el-M,, Van Melderen L . 1998. Bacterial death by DNA gyrase poisoning. Trends Microbiol 6 : 269 275.[PubMed]
29. Engelberg-Kulka H,, Glaser G . 1999. Addiction modules and programmed cell death and antideath in bacterial cultures. Annu Rev Microbiol 53 : 43 70.[PubMed]
30. Lu TK,, Collins JJ . 2007. Dispersing biofilms with engineered enzymatic bacteriophage. Proc Natl Acad Sci USA 104 : 11197 11202.[PubMed]
31. Bikard D,, Euler CW,, Jiang W,, Nussenzweig PM,, Goldberg GW,, Duportet X,, Fischetti VA,, Marraffini LA . 2014. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat Biotechnol 32 : 1146 1150.[PubMed]
32. Citorik RJ,, Mimee M,, Lu TK . 2014. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat Biotechnol 32 : 1141 1145.[PubMed]
33. Yosef I,, Manor M,, Kiro R,, Qimron U . 2015. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. Proc Natl Acad Sci USA 112 : 7267 7272.[PubMed]
34. Pajtasz-Piasecka E,, Rossowska J,, Duś D,, Weber-Dąbrowska B,, Zabłocka A,, Górski A . 2008. Bacteriophages support anti-tumor response initiated by DC-based vaccine against murine transplantable colon carcinoma. Immunol Lett 116 : 24 32.[PubMed]
35. Górski A,, Kniotek M,, Perkowska-Ptasińska A,, Mróz A,, Przerwa A,, Gorczyca W,, Dąbrowska K,, Weber-Dąbrowska B,, Nowaczyk M . Bacteriophages and transplantation tolerance. Transport Proc 38 : 331 333.
36. Miernikiewicz P,, Kłopot A,, Soluch R,, Szkuta P,, Kęska W,, Hodyra-Stefaniak K,, Konopka A,, Nowak M,, Lecion D,, Kaźmierczak Z,, Majewska J,, Harhala M,, Górski A,, Dąbrowska K . 2016. T4 phage tail adhesin Gp12 counteracts LPS-induced inflammation in vivo. Front Microbiol 7 : 1112.[CrossRef]
37. Nishikawa M,, Hashida M,, Takakura Y . 2009. Catalase delivery for inhibiting ROS-mediated tissue injury and tumor metastasis. Adv Drug Deliv Rev 61 : 319 326.[PubMed]
38. Kim K,, Ingale S,, Kim J,, Lee S,, Lee J,, Kwon I,, Chae B . 2014. Bacteriophage and probiotics both enhance the performance of growing pigs but bacteriophage are more effective. Anim Feed Sci Technol 196 : 88 95.
39. Weber-Dabrowska B,, Mulczyk M,, Górski A . 2003. Bacteriophages as an efficient therapy for antibiotic-resistant septicemia in man. Transplant Proc 35 : 1385 1386.
40. Hoshino K,, Takeuchi O,, Kawai T,, Sanjo H,, Ogawa T,, Takeda Y,, Takeda K,, Akira S . 1999. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 162 : 3749 3752.[PubMed]
41. Yu F,, Mizushima S . 1982. Roles of lipopolysaccharide and outer membrane protein OmpC of Escherichia coli K-12 in the receptor function for bacteriophage T4. J Bacteriol 151 : 718 722.[PubMed]
42. Górski A,, Weber-Dabrowska B . 2005. The potential role of endogenous bacteriophages in controlling invading pathogens. Cell Mol Life Sci 62 : 511 519.[PubMed]
43. Górski A,, Ważna E,, Dąbrowska B-W,, Dąbrowska K,, Switała-Jeleń K,, Międzybrodzki R . 2006. Bacteriophage translocation. FEMS Immunol Med Microbiol 46 : 313 319.[PubMed]
44. Kaur T,, Nafissi N,, Wasfi O,, Sheldon K,, Wettig S,, Slavcev R . 2012. Immunocompatibility of bacteriophages as nanomedicines. J Nanotechnol 2012 : 247427.[CrossRef]
45. Hendrix RW . 2002. Bacteriophages: evolution of the majority. Theor Popul Biol 61 : 471 480.[PubMed]
46. Woolston J,, Sulakvelidze A . 2015. Bacteriophages and food safety. eLS.[CrossRef]
47. EFSA . 2009. The use and mode of action of bacteriophages in food production. EFSA J 1076 : 126.
48. Sulakvelidze A . 2011. The challenges of bacteriophage therapy. Eur Ind Pharm 10 : 14 18.
49. U.S. FDA . 2015. How U.S. FDA’s GRAS notification program works. https://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/ucm083022.htm.
50. U.S. FDA . 2015. From an idea to the marketplace: the journey of an animal drug through the approval process. https://www.fda.gov/AnimalVeterinary/ResourcesforYou/AnimalHealthLiteracy/ucm219207.htm.
51. Chan BK,, Abedon ST,, Loc-Carrillo C . 2013. Phage cocktails and the future of phage therapy. Future Microbiol 8 : 769 783.[PubMed]
52. Majewska J,, Beta W,, Lecion D,, Hodyra-Stefaniak K,, Kłopot A,, Kaźmierczak Z,, Miernikiewicz P,, Piotrowicz A,, Ciekot J,, Owczarek B,, Kopciuch A,, Wojtyna K,, Harhala M,, Mąkosa M,, Dąbrowska K . 2015. Oral application of T4 phage induces weak antibody production in the gut and in the blood. Viruses 7 : 4783 4799.[PubMed]
53. Sulakvelidze A,, Kutter E, . 2004. Bacteriophage therapy in humans, p. 381. In Kutter E,, Sulakvelidze S (ed), Bacteriophages: Biology and Applications. CRC Press, Boca Raton, FL.
54. Merril CR,, Biswas B,, Carlton R,, Jensen NC,, Creed GJ,, Zullo S,, Adhya S . 1996. Long-circulating bacteriophage as antibacterial agents. Proc Natl Acad Sci USA 93 : 3188 3192.[PubMed]
55. Capparelli R,, Ventimiglia I,, Roperto S,, Fenizia D,, Iannelli D . 2006. Selection of an Escherichia coli O157:H7 bacteriophage for persistence in the circulatory system of mice infected experimentally. Clin Microbiol Infect 12 : 248 253.[PubMed]
56. Kim KP,, Cha JD,, Jang EH,, Klumpp J,, Hagens S,, Hardt WD,, Lee KY,, Loessner MJ . 2008. PEGylation of bacteriophages increases blood circulation time and reduces T-helper type 1 immune response. Microb Biotechnol 1 : 247 257.[PubMed]
57. Smith HW,, Huggins MB,, Shaw KM . 1987. Factors influencing the survival and multiplication of bacteriophages in calves and in their environment. J Gen Microbiol 133 : 1127 1135.[PubMed]
58. Colom J,, Cano-Sarabia M,, Otero J,, Cortés P,, Maspoch D,, Llagostera M . 2015. Liposome-encapsulated bacteriophages for enhanced oral phage therapy against Salmonella spp. Appl Environ Microbiol 81 : 4841 4849.[PubMed]
59. Ma Y,, Pacan JC,, Wang Q,, Xu Y,, Huang X,, Korenevsky A,, Sabour PM . 2008. Microencapsulation of bacteriophage felix O1 into chitosan-alginate microspheres for oral delivery. Appl Environ Microbiol 74 : 4799 4805.[PubMed]
60. Luria SE,, Delbrück M . 1943. Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28 : 491 511.[PubMed]
61. Lindberg AA . 1973. Bacteriophage receptors. Annu Rev Microbiol 27 : 205 241.[PubMed]
62. Goodridge LD, . 2010. Design of phage cocktails for therapy from a host range point of view. In Villa TG,, Veiga-Crespo P (ed), Enzybiotics: Antibiotic Enzymes as Drugs and Therapeutics. John Wiley, Hoboken, NJ.
63. Tanji Y,, Shimada T,, Yoichi M,, Miyanaga K,, Hori K,, Unno H . 2004. Toward rational control of Escherichia coli O157:H7 by a phage cocktail. Appl Microbiol Biotechnol 64 : 270 274.[PubMed]
64. Chase J,, Kalchayanand N,, Goodridge LD . 2005. Use of bacteriophage therapy to reduce Escherichia coli O157:H7 concentrations in an anaerobic digestor that stimulates the bovine gastrointestinal tract. Institute of Food Technologists Annual Meeting and Food Expo, New Orleans, Louisiana.
65. Hagens S,, Bläsi U . 2003. Genetically modified filamentous phage as bactericidal agents: a pilot study. Lett Appl Microbiol 37 : 318 323.[PubMed]
66. Hagens S,, Habel A,, von Ahsen U,, von Gabain A,, Bläsi U . 2004. Therapy of experimental Pseudomonas infections with a nonreplicating genetically modified phage. Antimicrob Agents Chemother 48 : 3817 3822.[PubMed]
67. World Health Organization . 2014. WHO’s first global report on antibiotic resistance reveals serious, worldwide threat to public health. http://www.who.int/mediacentre/news/releases/2014/amr-report/en/.


Generic image for table

Currently approved and commercially available bacteriophage-based products to reduce the presence of foodborne pathogen and spoilage bacteria in foods and food animals

Citation: Colavecchio A, Goodridge L. 2018. Phage Therapy Approaches to Reducing Pathogen Persistence and Transmission in Animal Production Environments: Opportunities and Challenges, p 291-308. In Thakur S, Kniel K (ed), Preharvest Food Safety. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PFS-0017-2017

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error