Chapter 5 : Microbial Impact on Host Metabolism: Opportunities for Novel Treatments of Nutritional Disorders?

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Microbial Impact on Host Metabolism: Opportunities for Novel Treatments of Nutritional Disorders?, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819705/9781555819699_Chap05-1.gif /docserver/preview/fulltext/10.1128/9781555819705/9781555819699_Chap05-2.gif


Malnutrition, encompassing both excessive and insufficient nutrient intake, is a major public health concern worldwide. On the one hand, overweight and obesity affect more than one-third and one-tenth of the world’s population, respectively. Excessive body weight and fat mass gain are classically linked with several metabolic disorders and cardiometabolic risk factors, including insulin resistance, type 2 diabetes, hypertension, low-grade inflammation, and liver diseases ( Fig. 1 ). Over the past 20 years, researchers have gathered evidence showing the involvement of chronic inflammation in the onset of the metabolic syndrome. Among the plethora of factors involved in the etiology of metabolic disorders, our lab and others have shown that the interplay between a too-rich diet and another environmental factor, namely the gut microbiota, plays a major role (for reviews, see references to ).

Citation: Plovier H, Cani P. 2018. Microbial Impact on Host Metabolism: Opportunities for Novel Treatments of Nutritional Disorders?, p 131-148. In Britton R, Cani P (ed), Bugs as Drugs. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.BAD-0002-2016
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Dysbiosis during undernutrition and the metabolic syndrome: two sides of the same coin? Gut microbiota composition is modified in people suffering from undernutrition as well as the metabolic syndrome, the two extremes of malnutrition. Changes in the composition are associated with opposite consequences in terms of energy absorption from the diet, but lead to similar defects in terms of ecological fitness and inflammatory potential.

Citation: Plovier H, Cani P. 2018. Microbial Impact on Host Metabolism: Opportunities for Novel Treatments of Nutritional Disorders?, p 131-148. In Britton R, Cani P (ed), Bugs as Drugs. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.BAD-0002-2016
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Nicholson JK,, Holmes E,, Kinross J,, Burcelin R,, Gibson G,, Jia W,, Pettersson S . 2012. Host-gut microbiota metabolic interactions. Science 336 : 1262 1267.[CrossRef] [PubMed]
2. Cani PD,, Delzenne NM . 2009. Interplay between obesity and associated metabolic disorders: new insights into the gut microbiota. Curr Opin Pharmacol 9 : 737 743.[CrossRef]
3. Tremaroli V,, Bäckhed F . 2012. Functional interactions between the gut microbiota and host metabolism. Nature 489 : 242 249.[CrossRef] [PubMed]
4. Cani PD,, Plovier H,, Van Hul M,, Geurts L,, Delzenne NM,, Druart C,, Everard A . 2016. Endocannabinoids—at the crossroads between the gut microbiota and host metabolism. Nat Rev Endocrinol 12 : 133 143.[CrossRef]
5. Cani PD,, Everard A . 2016. Talking microbes: when gut bacteria interact with diet and host organs. Mol Nutr Food Res 60 : 58 66.[CrossRef] [PubMed]
6. Black RE,, Victora CG,, Walker SP,, Bhutta ZA,, Christian P,, de Onis M,, Ezzati M,, Grantham-McGregor S,, Katz J,, Martorell R,, Uauy R , Maternal and Child Nutrition Study Group . 2013. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 382 : 427 451.[CrossRef]
7. Sender R,, Fuchs S,, Milo R . 2016. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 164 : 337 340.[CrossRef]
8. Qin J , , et al, MetaHIT Consortium . 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464 : 59 65.[CrossRef]
9. Li J,, Jia H,, Cai X,, Zhong H,, Feng Q,, Sunagawa S,, Arumugam M,, Kultima JR,, Prifti E,, Nielsen T,, Juncker AS,, Manichanh C,, Chen B,, Zhang W,, Levenez F,, Wang J,, Xu X,, Xiao L,, Liang S,, Zhang D,, Zhang Z,, Chen W,, Zhao H,, Al-Aama JY,, Edris S,, Yang H,, Wang J,, Hansen T,, Nielsen HB,, Brunak S,, Kristiansen K,, Guarner F,, Pedersen O,, Doré J,, Ehrlich SD,, Bork P,, Wang J , MetaHIT Consortium . 2014. An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol 32 : 834 841.[CrossRef]
10. Salazar N,, Arboleya S,, Valdés L,, Stanton C,, Ross P,, Ruiz L,, Gueimonde M,, de Los Reyes-Gavilán CG . 2014. The human intestinal microbiome at extreme ages of life. Dietary intervention as a way to counteract alterations. Front Genet 5 : 406.[CrossRef]
11. Bäckhed F,, Ding H,, Wang T,, Hooper LV,, Koh GY,, Nagy A,, Semenkovich CF,, Gordon JI . 2004. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 101 : 15718 15723.[CrossRef]
12. Schwarzer M,, Makki K,, Storelli G,, Machuca-Gayet I,, Srutkova D,, Hermanova P,, Martino ME,, Balmand S,, Hudcovic T,, Heddi A,, Rieusset J,, Kozakova H,, Vidal H,, Leulier F . 2016. Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science 351 : 854 857.[CrossRef]
13. Wichmann A,, Allahyar A,, Greiner TU,, Plovier H,, Lundén ,, Larsson T,, Drucker DJ,, Delzenne NM,, Cani PD,, Bäckhed F . 2013. Microbial modulation of energy availability in the colon regulates intestinal transit. Cell Host Microbe 14 : 582 590.[CrossRef]
14. Schéle E,, Grahnemo L,, Anesten F,, Hallén A,, Bäckhed F,, Jansson JO . 2013. The gut microbiota reduces leptin sensitivity and the expression of the obesity-suppressing neuropeptides proglucagon (Gcg) and brain-derived neurotrophic factor (Bdnf) in the central nervous system. Endocrinology 154 : 3643 3651.[CrossRef]
15. Cani PD,, Delzenne NM . 2011. The gut microbiome as therapeutic target. Pharmacol Ther 130 : 202 212.[CrossRef]
16. Ley RE,, Bäckhed F,, Turnbaugh P,, Lozupone CA,, Knight RD,, Gordon JI . 2005. Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 102 : 11070 11075.[CrossRef]
17. Ley RE,, Turnbaugh PJ,, Klein S,, Gordon JI . 2006. Microbial ecology: human gut microbes associated with obesity. Nature 444 : 1022 1023.[CrossRef]
18. Turnbaugh PJ,, Ley RE,, Mahowald MA,, Magrini V,, Mardis ER,, Gordon JI . 2006. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444 : 1027 1031.[CrossRef]
19. Cani PD,, Amar J,, Iglesias MA,, Poggi M,, Knauf C,, Bastelica D,, Neyrinck AM,, Fava F,, Tuohy KM,, Chabo C,, Waget A,, Delmée E,, Cousin B,, Sulpice T,, Chamontin B,, Ferrières J,, Tanti JF,, Gibson GR,, Casteilla L,, Delzenne NM,, Alessi MC,, Burcelin R . 2007. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56 : 1761 1772.[CrossRef] [PubMed]
20. Bäckhed F,, Manchester JK,, Semenkovich CF,, Gordon JI . 2007. Mechanisms underlying the resistance to diet-induced obesity in germfree mice. Proc Natl Acad Sci USA 104 : 979 984.[CrossRef]
21. Larsen N,, Vogensen FK,, van den Berg FW,, Nielsen DS,, Andreasen AS,, Pedersen BK,, Al-Soud WA,, Sørensen SJ,, Hansen LH,, Jakobsen M . 2010. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 5 : e9085.[CrossRef]
22. Amar J,, Serino M,, Lange C,, Chabo C,, Iacovoni J,, Mondot S,, Lepage P,, Klopp C,, Mariette J,, Bouchez O,, Perez L,, Courtney M,, Marre M,, Klopp P,, Lantieri O,, Doré J,, Charles M,, Balkau B,, Burcelin R , DESIR Study Group . 2011. Involvement of tissue bacteria in the onset of diabetes in humans: evidence for a concept. Diabetologia 54 : 3055 3061.[CrossRef] [PubMed]
23. Qin J , , et al . 2012. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490 : 55 60.[CrossRef]
24. Karlsson FH,, Tremaroli V,, Nookaew I,, Bergström G,, Behre CJ,, Fagerberg B,, Nielsen J,, Bäckhed F . 2013. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498 : 99 103.[CrossRef]
25. Dao MC,, Everard A,, Aron-Wisnewsky J,, Sokolovska N,, Prifti E,, Verger EO,, Kayser BD,, Levenez F,, Chilloux J,, Hoyles L,, Dumas ME,, Rizkalla SW,, Doré J,, Cani PD,, Clément K , MICRO-Obes Consortium . 2016. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 65 : 426 436.[CrossRef]
26. Cotillard A,, Kennedy SP,, Kong LC,, Prifti E,, Pons N,, Le Chatelier E,, Almeida M,, Quinquis B,, Levenez F,, Galleron N,, Gougis S,, Rizkalla S,, Batto JM,, Renault P,, Doré J,, Zucker JD,, Clément K,, Ehrlich SD , ANR MicroObes consortium . 2013. Dietary intervention impact on gut microbial gene richness. Nature 500 : 585 588.[CrossRef]
27. Le Chatelier E , , et al, MetaHIT consortium . 2013. Richness of human gut microbiome correlates with metabolic markers. Nature 500 : 541 546.[CrossRef]
28. Forslund K,, Hildebrand F,, Nielsen T,, Falony G,, Le Chatelier E,, Sunagawa S,, Prifti E,, Vieira-Silva S,, Gudmundsdottir V,, Krogh Pedersen H,, Arumugam M,, Kristiansen K,, Voigt AY,, Vestergaard H,, Hercog R,, Igor Costea P,, Kultima JR,, Li J,, Jørgensen T,, Levenez F,, Dore J,, Nielsen HB,, Brunak S,, Raes J,, Hansen T,, Wang J,, Ehrlich SD,, Bork P,, Pedersen O , MetaHIT consortium . 2015. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528 : 262 266.[CrossRef]
29. Delzenne NM,, Cani PD,, Everard A,, Neyrinck AM,, Bindels LB . 2015. Gut microorganisms as promising targets for the management of type 2 diabetes. Diabetologia 58 : 2206 2217.[CrossRef]
30. Tilg H,, Kaser A . 2011. Gut microbiome, obesity, and metabolic dysfunction. J Clin Invest 121 : 2126 2132.[CrossRef]
31. Tilg H,, Moschen AR . 2014. Microbiota and diabetes: an evolving relationship. Gut 63 : 1513 1521.[CrossRef]
32. Palau-Rodriguez M,, Tulipani S,, Isabel Queipo-Ortuño M,, Urpi-Sarda M,, Tinahones FJ,, Andres-Lacueva C . 2015. Metabolomic insights into the intricate gut microbial-host interaction in the development of obesity and type 2 diabetes. Front Microbiol 6 : 1151.[CrossRef]
33. Ridaura VK,, Faith JJ,, Rey FE,, Cheng J,, Duncan AE,, Kau AL,, Griffin NW,, Lombard V,, Henrissat B,, Bain JR,, Muehlbauer MJ,, Ilkayeva O,, Semenkovich CF,, Funai K,, Hayashi DK,, Lyle BJ,, Martini MC,, Ursell LK,, Clemente JC,, Van Treuren W,, Walters WA,, Knight R,, Newgard CB,, Heath AC,, Gordon JI . 2013. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341 : 1241214.[CrossRef]
34. Koves TR,, Ussher JR,, Noland RC,, Slentz D,, Mosedale M,, Ilkayeva O,, Bain J,, Stevens R,, Dyck JR,, Newgard CB,, Lopaschuk GD,, Muoio DM . 2008. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab 7 : 45 56.[CrossRef] [PubMed]
35. Cho I,, Yamanishi S,, Cox L,, Methé BA,, Zavadil J,, Li K,, Gao Z,, Mahana D,, Raju K,, Teitler I,, Li H,, Alekseyenko AV,, Blaser MJ . 2012. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 488 : 621 626.[CrossRef]
36. Cox LM,, Yamanishi S,, Sohn J,, Alekseyenko AV,, Leung JM,, Cho I,, Kim SG,, Li H,, Gao Z,, Mahana D,, Zárate Rodriguez JG,, Rogers AB,, Robine N,, Loke P,, Blaser MJ . 2014. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 158 : 705 721.[CrossRef]
37. Vreugdenhil AC,, Rousseau CH,, Hartung T,, Greve JW,, van’t Veer C,, Buurman WA . 2003. Lipopolysaccharide (LPS)-binding protein mediates LPS detoxification by chylomicrons. J Immunol 170 : 1399 1405.[CrossRef]
38. Muccioli GG,, Naslain D,, Bäckhed F,, Reigstad CS,, Lambert DM,, Delzenne NM,, Cani PD . 2010. The endocannabinoid system links gut microbiota to adipogenesis. Mol Syst Biol 6 : 392.[CrossRef]
39. Luche E,, Cousin B,, Garidou L,, Serino M,, Waget A,, Barreau C,, André M,, Valet P,, Courtney M,, Casteilla L,, Burcelin R . 2013. Metabolic endotoxemia directly increases the proliferation of adipocyte precursors at the onset of metabolic diseases through a CD14-dependent mechanism. Mol Metab 2 : 281 291.[CrossRef]
40. Brun P,, Castagliuolo I,, Di Leo V,, Buda A,, Pinzani M,, Palù G,, Martines D . 2007. Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol 292 : G518 G525.[CrossRef]
41. Everard A,, Lazarevic V,, Derrien M,, Girard M,, Muccioli GG,, Neyrinck AM,, Possemiers S,, Van Holle A,, François P,, de Vos WM,, Delzenne NM,, Schrenzel J,, Cani PD . 2011. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes 60 : 2775 2786.[CrossRef]
42. Geurts L,, Lazarevic V,, Derrien M,, Everard A,, Van Roye M,, Knauf C,, Valet P,, Girard M,, Muccioli GG,, François P,, de Vos WM,, Schrenzel J,, Delzenne NM,, Cani PD . 2011. Altered gut microbiota and endocannabinoid system tone in obese and diabetic leptin-resistant mice: impact on apelin regulation in adipose tissue. Front Microbiol 2 : 149.[CrossRef]
43. Cani PD,, Bibiloni R,, Knauf C,, Waget A,, Neyrinck AM,, Delzenne NM,, Burcelin R . 2008. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57 : 1470 1481.[CrossRef]
44. Erridge C,, Attina T,, Spickett CM,, Webb DJ . 2007. A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation. Am J Clin Nutr 86 : 1286 1292.[PubMed]
45. Amar J,, Burcelin R,, Ruidavets JB,, Cani PD,, Fauvel J,, Alessi MC,, Chamontin B,, Ferriéres J . 2008. Energy intake is associated with endotoxemia in apparently healthy men. Am J Clin Nutr 87 : 1219 1223.[PubMed]
46. Pussinen PJ,, Havulinna AS,, Lehto M,, Sundvall J,, Salomaa V . 2011. Endotoxemia is associated with an increased risk of incident diabetes. Diabetes Care 34 : 392 397.[CrossRef]
47. Lassenius MI,, Pietiläinen KH,, Kaartinen K,, Pussinen PJ,, Syrjänen J,, Forsblom C,, Pörsti I,, Rissanen A,, Kaprio J,, Mustonen J,, Groop PH,, Lehto M , FinnDiane Study Group . 2011. Bacterial endotoxin activity in human serum is associated with dyslipidemia, insulin resistance, obesity, and chronic inflammation. Diabetes Care 34 : 1809 1815.[CrossRef] [PubMed]
48. Laugerette F,, Vors C,, Géloën A,, Chauvin MA,, Soulage C,, Lambert-Porcheron S,, Peretti N,, Alligier M,, Burcelin R,, Laville M,, Vidal H,, Michalski MC . 2011. Emulsified lipids increase endotoxemia: possible role in early postprandial low-grade inflammation. J Nutr Biochem 22 : 53 59.[CrossRef]
49. Serino M,, Luche E,, Gres S,, Baylac A,, Bergé M,, Cenac C,, Waget A,, Klopp P,, Iacovoni J,, Klopp C,, Mariette J,, Bouchez O,, Lluch J,, Ouarné F,, Monsan P,, Valet P,, Roques C,, Amar J,, Bouloumié A,, Théodorou V,, Burcelin R . 2012. Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota. Gut 61 : 543 553.[CrossRef] [PubMed]
50. Moreno-Navarrete JM,, Escoté X,, Ortega F,, Serino M,, Campbell M,, Michalski MC,, Laville M,, Xifra G,, Luche E,, Domingo P,, Sabater M,, Pardo G,, Waget A,, Salvador J,, Giralt M,, Rodriguez-Hermosa JI,, Camps M,, Kolditz CI,, Viguerie N,, Galitzky J,, Decaunes P,, Ricart W,, Frühbeck G,, Villarroya F,, Mingrone G,, Langin D,, Zorzano A,, Vidal H,, Vendrell J,, Burcelin R,, Vidal-Puig A,, Fernández-Real JM . 2013. A role for adipocyte-derived lipopolysaccharide-binding protein in inflammation- and obesity-associated adipose tissue dysfunction. Diabetologia 56 : 2524 2537.[CrossRef] [PubMed]
51. Gu Y,, Yu S,, Park JY,, Harvatine K,, Lambert JD . 2014. Dietary cocoa reduces metabolic endotoxemia and adipose tissue inflammation in high-fat fed mice. J Nutr Biochem 25 : 439 445.[CrossRef]
52. Wang JH,, Bose S,, Kim GC,, Hong SU,, Kim JH,, Kim JE,, Kim H . 2014. Flos Lonicera ameliorates obesity and associated endotoxemia in rats through modulation of gut permeability and intestinal microbiota. PLoS One 9 : e86117.[CrossRef]
53. Kaliannan K,, Hamarneh SR,, Economopoulos KP,, Nasrin Alam S,, Moaven O,, Patel P,, Malo NS,, Ray M,, Abtahi SM,, Muhammad N,, Raychowdhury A,, Teshager A,, Mohamed MM,, Moss AK,, Ahmed R,, Hakimian S,, Narisawa S,, Millán JL,, Hohmann E,, Warren HS,, Bhan AK,, Malo MS,, Hodin RA . 2013. Intestinal alkaline phosphatase prevents metabolic syndrome in mice. Proc Natl Acad Sci USA 110 : 7003 7008.[CrossRef]
54. Peng X,, Nie Y,, Wu J,, Huang Q,, Cheng Y . 2015. Juglone prevents metabolic endotoxemia-induced hepatitis and neuroinflammation via suppressing TLR4/NF-κB signaling pathway in high-fat diet rats. Biochem Biophys Res Commun 462 : 245 250.[CrossRef]
55. Luck H,, Tsai S,, Chung J,, Clemente-Casares X,, Ghazarian M,, Revelo XS,, Lei H,, Luk CT,, Shi SY,, Surendra A,, Copeland JK,, Ahn J,, Prescott D,, Rasmussen BA,, Chng MH,, Engleman EG,, Girardin SE,, Lam TK,, Croitoru K,, Dunn S,, Philpott DJ,, Guttman DS,, Woo M,, Winer S,, Winer DA . 2015. Regulation of obesity-related insulin resistance with gut anti-inflammatory agents. Cell Metab 21 : 527 542.[CrossRef]
56. Varma MC,, Kusminski CM,, Azharian S,, Gilardini L,, Kumar S,, Invitti C,, McTernan PG . 2016. Metabolic endotoxaemia in childhood obesity. BMC Obes 3 : 3.[CrossRef]
57. Radilla-Vázquez RB,, Parra-Rojas I,, Martínez-Hernández NE,, Márquez-Sandoval YF,, Illades-Aguiar B,, Castro-Alarcón N . 2016. Gut microbiota and metabolic endotoxemia in young obese Mexican subjects. Obes Facts 9 : 1 11.[CrossRef]
58. Caesar R,, Tremaroli V,, Kovatcheva-Datchary P,, Cani PD,, Bäckhed F . 2015. Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab 22 : 658 668.[CrossRef]
59. Bevins CL,, Salzman NH . 2011. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol 9 : 356 368.[CrossRef]
60. Pott J,, Hornef M . 2012. Innate immune signalling at the intestinal epithelium in homeostasis and disease. EMBO Rep 13 : 684 698.[CrossRef] [PubMed]
61. Hooper LV,, Macpherson AJ . 2010. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol 10 : 159 169.[CrossRef]
62. Macpherson AJ,, Geuking MB,, Slack E,, Hapfelmeier S,, McCoy KD . 2012. The habitat, double life, citizenship, and forgetfulness of IgA. Immunol Rev 245 : 132 146.[CrossRef]
63. Cani PD,, Everard A,, Duparc T . 2013. Gut microbiota, enteroendocrine functions and metabolism. Curr Opin Pharmacol 13 : 935 940.[CrossRef]
64. Cani PD,, Possemiers S,, Van de Wiele T,, Guiot Y,, Everard A,, Rottier O,, Geurts L,, Naslain D,, Neyrinck A,, Lambert DM,, Muccioli GG,, Delzenne NM . 2009. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 58 : 1091 1103.[CrossRef]
65. Everard A,, Lazarevic V,, Gaïa N,, Johansson M,, Ståhlman M,, Backhed F,, Delzenne NM,, Schrenzel J,, François P,, Cani PD . 2014. Microbiome of prebiotic-treated mice reveals novel targets involved in host response during obesity. ISME J 8 : 2116 2130.[CrossRef]
66. Cani PD,, Possemiers S,, Van de Wiele T,, Guiot Y,, Everard A,, Rottier O,, Geurts L,, Naslain D,, Neyrinck A,, Lambert DM,, Muccioli GG,, Delzenne NM . 2009. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 58 : 1091 1103.[CrossRef]
67. Everard A,, Belzer C,, Geurts L,, Ouwerkerk JP,, Druart C,, Bindels LB,, Guiot Y,, Derrien M,, Muccioli GG,, Delzenne NM,, de Vos WM,, Cani PD . 2013. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA 110 : 9066 9071.[CrossRef]
68. Everard A,, Geurts L,, Caesar R,, Van Hul M,, Matamoros S,, Duparc T,, Denis RG,, Cochez P,, Pierard F,, Castel J,, Bindels LB,, Plovier H,, Robine S,, Muccioli GG,, Renauld JC,, Dumoutier L,, Delzenne NM,, Luquet S,, Bäckhed F,, Cani PD . 2014. Intestinal epithelial MyD88 is a sensor switching host metabolism towards obesity according to nutritional status. Nat Commun 5 : 5648.[CrossRef]
69. Vaishnava S,, Yamamoto M,, Severson KM,, Ruhn KA,, Yu X,, Koren O,, Ley R,, Wakeland EK,, Hooper LV . 2011. The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science 334 : 255 258.[CrossRef]
70. Sommer F,, Adam N,, Johansson ME,, Xia L,, Hansson GC,, Bäckhed F . 2014. Altered mucus glycosylation in core 1 O-glycan-deficient mice affects microbiota composition and intestinal architecture. PLoS One 9 : e85254.[CrossRef]
71. Johansson ME,, Larsson JM,, Hansson GC . 2011. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc Natl Acad Sci USA 108( Suppl 1) : 4659 4665.[CrossRef]
72. Lluch J,, Servant F,, Païssé S,, Valle C,, Valière S,, Kuchly C,, Vilchez G,, Donnadieu C,, Courtney M,, Burcelin R,, Amar J,, Bouchez O,, Lelouvier B . 2015. The characterization of novel tissue microbiota using an optimized 16s metagenomic sequencing pipeline. PLoS One 10 : e0142334.[CrossRef]
73. Bowman KA,, Broussard EK,, Surawicz CM . 2015. Fecal microbiota transplantation: current clinical efficacy and future prospects. Clin Exp Gastroenterol 8 : 285 291.[PubMed]
74. Vrieze A,, Van Nood E,, Holleman F,, Salojärvi J,, Kootte RS,, Bartelsman JF,, Dallinga-Thie GM,, Ackermans MT,, Serlie MJ,, Oozeer R,, Derrien M,, Druesne A,, Van Hylckama Vlieg JE,, Bloks VW,, Groen AK,, Heilig HG,, Zoetendal EG,, Stroes ES,, de Vos WM,, Hoekstra JB,, Nieuwdorp M . 2012. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143 : 913 6.e7.[CrossRef]
75. Firouzi S,, Barakatun-Nisak MY,, Ismail A,, Majid HA,, Nor Azmi K . 2013. Role of probiotics in modulating glucose homeostasis: evidence from animal and human studies. Int J Food Sci Nutr 64 : 780 786.[CrossRef] [PubMed]
76. Bernardeau M,, Vernoux JP . 2013. Overview of differences between microbial feed additives and probiotics for food regarding regulation, growth promotion effects and health properties and consequences for extrapolation of farm animal results to humans. Clin Microbiol Infect 19 : 321 330.[CrossRef]
77. Delzenne NM,, Neyrinck AM,, Bäckhed F,, Cani PD . 2011. Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nat Rev Endocrinol 7 : 639 646.[CrossRef]
78. Ben Salah R,, Trabelsi I,, Hamden K,, Chouayekh H,, Bejar S . 2013. Lactobacillus plantarum TN8 exhibits protective effects on lipid, hepatic and renal profiles in obese rat. Anaerobe 23 : 55 61.[CrossRef] [PubMed]
79. Jung SP,, Lee KM,, Kang JH,, Yun SI,, Park HO,, Moon Y,, Kim JY . 2013. Effect of Lactobacillus gasseri BNR17 on overweight and obese adults: a randomized, double-blind clinical trial. Korean J Fam Med 34 : 80 89.[CrossRef]
80. Kadooka Y,, Sato M,, Ogawa A,, Miyoshi M,, Uenishi H,, Ogawa H,, Ikuyama K,, Kagoshima M,, Tsuchida T . 2013. Effect of Lactobacillus gasseri SBT2055 in fermented milk on abdominal adiposity in adults in a randomised controlled trial. Br J Nutr 110 : 1696 1703.[CrossRef] [PubMed]
81. Kang JH,, Yun SI,, Park MH,, Park JH,, Jeong SY,, Park HO . 2013. Anti-obesity effect of Lactobacillus gasseri BNR17 in high-sucrose diet-induced obese mice. PLoS One 8 : e54617.[CrossRef]
82. Kondo S,, Kamei A,, Xiao JZ,, Iwatsuki K,, Abe K . 2013. Bifidobacterium breve B-3 exerts metabolic syndrome-suppressing effects in the liver of diet-induced obese mice: a DNA microarray analysis. Benef Microbes 4 : 247 251.[CrossRef]
83. Okubo T,, Takemura N,, Yoshida A,, Sonoyama K . 2013. KK/Ta mice administered Lactobacillus plantarum strain no. 14 have lower adiposity and higher insulin sensitivity. Biosci Microbiota Food Health 32 : 93 100.[CrossRef]
84. Park DY,, Ahn YT,, Park SH,, Huh CS,, Yoo SR,, Yu R,, Sung MK,, McGregor RA,, Choi MS . 2013. Supplementation of Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 in diet-induced obese mice is associated with gut microbial changes and reduction in obesity. PLoS One 8 : e59470.[CrossRef]
85. Poutahidis T,, Kleinewietfeld M,, Smillie C,, Levkovich T,, Perrotta A,, Bhela S,, Varian BJ,, Ibrahim YM,, Lakritz JR,, Kearney SM,, Chatzigiagkos A,, Hafler DA,, Alm EJ,, Erdman SE . 2013. Microbial reprogramming inhibits Western diet-associated obesity. PLoS One 8 : e68596.[CrossRef]
86. Sakai T,, Taki T,, Nakamoto A,, Shuto E,, Tsutsumi R,, Toshimitsu T,, Makino S,, Ikegami S . 2013. Lactobacillus plantarum OLL2712 regulates glucose metabolism in C57BL/6 mice fed a high-fat diet. J Nutr Sci Vitaminol (Tokyo) 59 : 144 147.[CrossRef]
87. Yadav H,, Lee JH,, Lloyd J,, Walter P,, Rane SG . 2013. Beneficial metabolic effects of a probiotic via butyrate-induced GLP-1 hormone secretion. J Biol Chem 288 : 25088 25097.[CrossRef]
88. Yoo SR,, Kim YJ,, Park DY,, Jung UJ,, Jeon SM,, Ahn YT,, Huh CS,, McGregor R,, Choi MS . 2013. Probiotics L. plantarum and L. curvatus in combination alter hepatic lipid metabolism and suppress diet-induced obesity. Obesity (Silver Spring) 21 : 2571 2578.[CrossRef]
89. Karlsson Videhult F,, Öhlund I,, Stenlund H,, Hernell O,, West CE . 2014. Probiotics during weaning: a follow-up study on effects on body composition and metabolic markers at school age. Eur J Nutr 54 : 355 363.[PubMed]
90. Lindsay KL,, Kennelly M,, Culliton M,, Smith T,, Maguire OC,, Shanahan F,, Brennan L,, McAuliffe FM . 2014. Probiotics in obese pregnancy do not reduce maternal fasting glucose: a double-blind, placebo-controlled, randomized trial (Probiotics in Pregnancy Study). Am J Clin Nutr 99 : 1432 1439.[CrossRef]
91. Miyoshi M,, Ogawa A,, Higurashi S,, Kadooka Y . 2014. Anti-obesity effect of Lactobacillus gasseri SBT2055 accompanied by inhibition of pro-inflammatory gene expression in the visceral adipose tissue in diet-induced obese mice. Eur J Nutr 53 : 599 606.[CrossRef]
92. Moya-Pérez A,, Romo-Vaquero M,, Tomás-Barberán F,, Sanz Y,, García-Conesa MT . 2014. Hepatic molecular responses to Bifidobacterium pseudocatenulatum CECT 7765 in a mouse model of diet-induced obesity. Nutr Metab Cardiovasc Dis 24 : 57 64.[CrossRef]
93. Ogawa A,, Kadooka Y,, Kato K,, Shirouchi B,, Sato M . 2014. Lactobacillus gasseri SBT2055 reduces postprandial and fasting serum non-esterified fatty acid levels in Japanese hypertriacylglycerolemic subjects. Lipids Health Dis 13 : 36.[CrossRef]
94. Park JE,, Oh SH,, Cha YS . 2014. Lactobacillus plantarum LG42 isolated from gajami sik-hae decreases body and fat pad weights in diet-induced obese mice. J Appl Microbiol 116 : 145 156.[CrossRef] [PubMed]
95. Plaza-Diaz J,, Gomez-Llorente C,, Abadia-Molina F,, Saez-Lara MJ,, Campaña-Martin L,, Muñoz-Quezada S,, Romero F,, Gil A,, Fontana L . 2014. Effects of Lactobacillus paracasei CNCM I-4034, Bifidobacterium breve CNCM I-4035 and Lactobacillus rhamnosus CNCM I-4036 on hepatic steatosis in Zucker rats. PLoS One 9 : e98401.[CrossRef]
96. Reichold A,, Brenner SA,, Spruss A,, Förster-Fromme K,, Bergheim I,, Bischoff SC . 2014. Bifidobacterium adolescentis protects from the development of nonalcoholic steatohepatitis in a mouse model. J Nutr Biochem 25 : 118 125.[CrossRef]
97. Ritze Y,, Bárdos G,, Claus A,, Ehrmann V,, Bergheim I,, Schwiertz A,, Bischoff SC . 2014. Lactobacillus rhamnosus GG protects against non-alcoholic fatty liver disease in mice. PLoS One 9 : e80169.[CrossRef]
98. Sanchez M,, Darimont C,, Drapeau V,, Emady-Azar S,, Lepage M,, Rezzonico E,, Ngom-Bru C,, Berger B,, Philippe L,, Ammon-Zuffrey C,, Leone P,, Chevrier G,, St-Amand E,, Marette A,, Doré J,, Tremblay A . 2014. Effect of Lactobacillus rhamnosus CGMCC1.3724 supplementation on weight loss and maintenance in obese men and women. Br J Nutr 111 : 1507 1519.[CrossRef]
99. Toral M,, Gómez-Guzmán M,, Jiménez R,, Romero M,, Sánchez M,, Utrilla MP,, Garrido-Mesa N,, Rodríguez-Cabezas ME,, Olivares M,, Gálvez J,, Duarte J . 2014. The probiotic Lactobacillus coryniformis CECT5711 reduces the vascular pro-oxidant and pro-inflammatory status in obese mice. Clin Sci (Lond) 127 : 33 45.[CrossRef]
100. Wang J,, Tang H,, Zhang C,, Zhao Y,, Derrien M,, Rocher E,, van-Hylckama Vlieg JE,, Strissel K,, Zhao L,, Obin M,, Shen J . 2015. Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice. ISME J 9 : 1 15.[PubMed]
101. Cani PD,, Van Hul M . 2015. Novel opportunities for next-generation probiotics targeting metabolic syndrome. Curr Opin Biotechnol 32 : 21 27.[CrossRef]
102. Minami J,, Kondo S,, Yanagisawa N,, Odamaki T,, Xiao JZ,, Abe F,, Nakajima S,, Hamamoto Y,, Saitoh S,, Shimoda T . 2015. Oral administration of Bifidobacterium breve B-3 modifies metabolic functions in adults with obese tendencies in a randomised controlled trial. J Nutr Sci 4 : e17.[CrossRef]
103. Moya-Pérez A,, Neef A,, Sanz Y . 2015. Bifidobacterium pseudocatenulatum CECT 7765 reduces obesity-associated inflammation by restoring the lymphocyte-macrophage balance and gut microbiota structure in high-fat diet-fed mice. PLoS One 10 : e0126976.[CrossRef]
104. Pothuraju R,, Sharma RK,, Kavadi PK,, Chagalamarri J,, Jangra S,, Bhakri G,, De S . 2016. Anti-obesity effect of milk fermented by Lactobacillus plantarum NCDC 625 alone and in combination with herbs on high fat diet fed C57BL/6J mice. Benef Microbes 7 : 375 385.[CrossRef] [PubMed]
105. Park S,, Bae JH . 2015. Probiotics for weight loss: a systematic review and meta-analysis. Nutr Res 35 : 566 575.[CrossRef]
106. Karimi G,, Sabran MR,, Jamaluddin R,, Parvaneh K,, Mohtarrudin N,, Ahmad Z,, Khazaai H,, Khodavandi A . 2015. The anti-obesity effects of Lactobacillus casei strain Shirota versus Orlistat on high fat diet-induced obese rats. Food Nutr Res 59 : 29273.[CrossRef]
107. Ukibe K,, Miyoshi M,, Kadooka Y . 2015. Administration of Lactobacillus gasseri SBT2055 suppresses macrophage infiltration into adipose tissue in diet-induced obese mice. Br J Nutr 114 : 1180 1187.[CrossRef] [PubMed]
108. Novotny Núñez I,, Maldonado Galdeano C,, de Moreno de LeBlanc A,, Perdigón G . 2015. Lactobacillus casei CRL 431 administration decreases inflammatory cytokines in a diet-induced obese mouse model. Nutrition 31 : 1000 1007.[CrossRef]
109. Wu M,, McNulty NP,, Rodionov DA,, Khoroshkin MS,, Griffin NW,, Cheng J,, Latreille P,, Kerstetter RA,, Terrapon N,, Henrissat B,, Osterman AL,, Gordon JI . 2015. Genetic determinants of in vivo fitness and diet responsiveness in multiple human gut Bacteroides. Science 350 : aac5992.[CrossRef]
110. Ivanovic N,, Minic R,, Dimitrijevic L,, Radojevic Skodric S,, Zivkovic I,, Djordjevic B . 2015. Lactobacillus rhamnosus LA68 and Lactobacillus plantarum WCFS1 differently influence metabolic and immunological parameters in high fat diet-induced hypercholesterolemia and hepatic steatosis. Food Funct 6 : 558 565.[CrossRef]
111. Druart C,, Alligier M,, Salazar N,, Neyrinck AM,, Delzenne NM . 2014. Modulation of the gut microbiota by nutrients with prebiotic and probiotic properties. Adv Nutr 5 : 624S 633S.[CrossRef]
112. Zhang H,, DiBaise JK,, Zuccolo A,, Kudrna D,, Braidotti M,, Yu Y,, Parameswaran P,, Crowell MD,, Wing R,, Rittmann BE,, Krajmalnik-Brown R . 2009. Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci USA 106 : 2365 2370.[CrossRef]
113. Karlsson CL,, Onnerfält J,, Xu J,, Molin G,, Ahrné S,, Thorngren-Jerneck K . 2012. The microbiota of the gut in preschool children with normal and excessive body weight. Obesity (Silver Spring) 20 : 2257 2261.[CrossRef]
114. Zhang X,, Shen D,, Fang Z,, Jie Z,, Qiu X,, Zhang C,, Chen Y,, Ji L . 2013. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS One 8 : e71108.[CrossRef]
115. Derrien M,, Vaughan EE,, Plugge CM,, de Vos WM . 2004. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol 54 : 1469 1476.[CrossRef] [PubMed]
116. Shin NR,, Lee JC,, Lee HY,, Kim MS,, Whon TW,, Lee MS,, Bae JW . 2014. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 63 : 727 735.[CrossRef]
117. Org E,, Parks BW,, Joo JW,, Emert B,, Schwartzman W,, Kang EY,, Mehrabian M,, Pan C,, Knight R,, Gunsalus R,, Drake TA,, Eskin E,, Lusis AJ . 2015. Genetic and environmental control of host-gut microbiota interactions. Genome Res 25 : 1558 1569.[CrossRef]
118. Everard A,, Matamoros S,, Geurts L,, Delzenne NM,, Cani PD . 2014. Saccharomyces boulardii administration changes gut microbiota and reduces hepatic steatosis, low-grade inflammation, and fat mass in obese and type 2 diabetic db/db mice. MBio 5 : e01011 e01014.[CrossRef]
119. Xu L,, Wang Y,, Wang Y,, Fu J,, Sun M,, Mao Z,, Vandenplas Y . 2016. A double-blinded randomized trial on growth and feeding tolerance with Saccharomyces boulardii CNCM I-745 in formula-fed preterm infants. J Pediatr (Rio J) 92 : 296 301.[CrossRef]
120. Williams CD,, Oxon BM,, Lond H . 1973. Kwashiorkor. A nutritional disease of children associated with a maize diet by Cicely D. Williams from the Lancet, Nov. 16, 1935, p. 1151. Nutr Rev 31 : 350 351.[CrossRef]
121. Brewster DR,, Manary MJ,, Menzies IS,, O’Loughlin EV,, Henry RL . 1997. Intestinal permeability in kwashiorkor. Arch Dis Child 76 : 236 241.[CrossRef]
122. World Health Organization . 2007. Community-based management of severe acute malnutrition: a joint statement of the World Health Organization, World Food Programme, the United Nations System Standing Committee on Nutrition, and the United Nations Children’s Fund. World Health Organization, Geneva, Switzerland.
123. Smythe PM . 1958. Changes in intestinal bacterial flora and role of infection in kwashiorkor. Lancet 2 : 724 727.[CrossRef]
124. Trehan I,, Goldbach HS,, LaGrone LN,, Meuli GJ,, Wang RJ,, Maleta KM,, Manary MJ . 2013. Antibiotics as part of the management of severe acute malnutrition. N Engl J Med 368 : 425 435.[CrossRef] [PubMed]
125. Isanaka S,, Langendorf C,, Berthé F,, Gnegne S,, Li N,, Ousmane N,, Harouna S,, Hassane H,, Schaefer M,, Adehossi E,, Grais RF . 2016. Routine amoxicillin for uncomplicated severe acute malnutrition in children. N Engl J Med 374 : 444 453.[CrossRef]
126. Berkley JA,, Ngari M,, Thitiri J,, Mwalekwa L,, Timbwa M,, Hamid F,, Ali R,, Shangala J,, Mturi N,, Jones KD,, Alphan H,, Mutai B,, Bandika V,, Hemed T,, Awuondo K,, Morpeth S,, Kariuki S,, Fegan G . 2016. Daily co-trimoxazole prophylaxis to prevent mortality in children with complicated severe acute malnutrition: a multicentre, double-blind, randomised placebo-controlled trial. Lancet Glob Health 4 : e464 e473.[CrossRef]
127. Gupta SS,, Mohammed MH,, Ghosh TS,, Kanungo S,, Nair GB,, Mande SS . 2011. Metagenome of the gut of a malnourished child. Gut Pathog 3 : 7.[CrossRef]
128. Monira S,, Nakamura S,, Gotoh K,, Izutsu K,, Watanabe H,, Alam NH,, Endtz HP,, Cravioto A,, Ali SI,, Nakaya T,, Horii T,, Iida T,, Alam M . 2011. Gut microbiota of healthy and malnourished children in bangladesh. Front Microbiol 2 : 228.[CrossRef]
129. Ghosh TS,, Gupta SS,, Bhattacharya T,, Yadav D,, Barik A,, Chowdhury A,, Das B,, Mande SS,, Nair GB . 2014. Gut microbiomes of Indian children of varying nutritional status. PLoS One 9 : e95547.[CrossRef]
130. Smith MI,, Yatsunenko T,, Manary MJ,, Trehan I,, Mkakosya R,, Cheng J,, Kau AL,, Rich SS,, Concannon P,, Mychaleckyj JC,, Liu J,, Houpt E,, Li JV,, Holmes E,, Nicholson J,, Knights D,, Ursell LK,, Knight R,, Gordon JI . 2013. Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science 339 : 548 554.[CrossRef]
131. Subramanian S,, Huq S,, Yatsunenko T,, Haque R,, Mahfuz M,, Alam MA,, Benezra A,, DeStefano J,, Meier MF,, Muegge BD,, Barratt MJ,, VanArendonk LG,, Zhang Q,, Province MA,, Petri WA Jr,, Ahmed T,, Gordon JI . 2014. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature 510 : 417 421.
132. Walker WA,, Iyengar RS . 2015. Breast milk, microbiota, and intestinal immune homeostasis. Pediatr Res 77 : 220 228.[PubMed]
133. Charbonneau MR,, O’Donnell D,, Blanton LV,, Totten SM,, Davis JC,, Barratt MJ,, Cheng J,, Guruge J,, Talcott M,, Bain JR,, Muehlbauer MJ,, Ilkayeva O,, Wu C,, Struckmeyer T,, Barile D,, Mangani C,, Jorgensen J,, Fan YM,, Maleta K,, Dewey KG,, Ashorn P,, Newgard CB,, Lebrilla C,, Mills DA,, Gordon JI . 2016. Sialylated milk oligosaccharides promote microbiota-dependent growth in models of infant undernutrition. Cell 164 : 859 871.[CrossRef]
134. Devkota S,, Chang EB . 2015. Interactions between diet, bile acid metabolism, gut microbiota, and inflammatory bowel diseases. Dig Dis 33 : 351 356.[CrossRef]
135. Blanton LV,, Charbonneau MR,, Salih T,, Barratt MJ,, Venkatesh S,, Ilkaveya O,, Subramanian S,, Manary MJ,, Trehan I,, Jorgensen JM,, Fan YM,, Henrissat B,, Leyn SA,, Rodionov DA,, Osterman AL,, Maleta KM,, Newgard CB,, Ashorn P,, Dewey KG,, Gordon JI . 2016. Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. Science 351 : aad3311.[CrossRef]
136. Kau AL,, Planer JD,, Liu J,, Rao S,, Yatsunenko T,, Trehan I,, Manary MJ,, Liu TC,, Stappenbeck TS,, Maleta KM,, Ashorn P,, Dewey KG,, Houpt ER,, Hsieh CS,, Gordon JI . 2015. Functional characterization of IgA-targeted bacterial taxa from undernourished Malawian children that produce diet-dependent enteropathy. Sci Transl Med 7 : 276ra24.[CrossRef]
137. O’Hara AM,, Shanahan F . 2006. The gut flora as a forgotten organ. EMBO Rep 7 : 688 693.[CrossRef]

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error