1887

Chapter 14 : Breaking Transmission with Vaccines: The Case of Tuberculosis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Breaking Transmission with Vaccines: The Case of Tuberculosis, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819743/9781555819736_Chap14-1.gif /docserver/preview/fulltext/10.1128/9781555819743/9781555819736_Chap14-2.gif

Abstract:

Tuberculosis (TB) is the biggest killer of humanity. TB has killed more human beings than any other infectious disease in history, with an estimated loss of over a billion lives in the past 200 years ( ). Despite effective treatment, in the WHO 2016 there were an estimated 10.4 million new TB cases and 1.8 million deaths attributed to the disease worldwide, surpassing those caused by AIDS ( ). Still more worrying is the rising transmission of multidrug-resistant TB (MDR-TB), caused by mycobacteria that are resistant to treatment with at least two of the most powerful first-line anti-TB drugs, isoniazid and rifampin ( ). Nearly half a million new MDR-TB cases are estimated every year, which together with increasing globalization makes TB an alarming global health problem ( ). Loss of compliance with the current treatments for TB raises the frightening idea of a return to the pre-antibiotic era, when 50% of TB patients died in the absence of an effective treatment. Dissemination of multi- and extremely drug-resistant strains has adverse implications for TB control in the 21st century.

Citation: Gonzalo-Asensio J, Aguilo N, Marinova D, Martin C. 2019. Breaking Transmission with Vaccines: The Case of Tuberculosis, p 249-261. In Baquero F, Bouza E, Gutiérrez-Fuentes J, Coque T (ed), Microbial Transmission. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MTBP-0001-2016
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

transmission. Infected cattle transmit bacteria (orange bacilli) to the neighboring herd members and also during milking. Before milk pasteurization was introduced, was an important cause of cattle-to-human transmission of TB. Now rarely causes TB outbreaks in humans, and transmission of strains between humans is infrequent. Vaccination with BCG (schematized as blue bacilli), starting in the 1920s, was efficient to prevent disseminated forms of TB caused by .

Citation: Gonzalo-Asensio J, Aguilo N, Marinova D, Martin C. 2019. Breaking Transmission with Vaccines: The Case of Tuberculosis, p 249-261. In Baquero F, Bouza E, Gutiérrez-Fuentes J, Coque T (ed), Microbial Transmission. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MTBP-0001-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

transmission. Humans are the only known reservoir of (red bacilli). The infectious cycle starts with the transmission of bacilli by the respiratory route from a patient with active pulmonary disease, who aerosolizes , placing contacts at risk of infection. Epidemiological data indicate that 9 of every 10 infected individuals are chronically infected in the form of LTBI (gray human shapes); therefore, LTBI constitutes a potential reservoir for transmission. People with LTBI are at risk for TB reactivation at some later time, and 1 of every 10 infected persons will develop clinical disease (black human shapes). The essential question on the natural history of TB is when decides to either infect and live with its host in the form of LTBI or to cause active pulmonary disease, which without treatment kills the host, searching the transmission to new hosts. The inner circle shows the lambda phage infectious cycles and their similarities to infection and disease. The lysogenic cycle of lambda phage resembles to LTBI, and the lytic cycle of lambda phage is similar to active TB disease caused by .

Citation: Gonzalo-Asensio J, Aguilo N, Marinova D, Martin C. 2019. Breaking Transmission with Vaccines: The Case of Tuberculosis, p 249-261. In Baquero F, Bouza E, Gutiérrez-Fuentes J, Coque T (ed), Microbial Transmission. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MTBP-0001-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Ending TB transmission with vaccines. A patient with active TB disseminates (red bacilli) to neighboring individuals. One of every 10 persons is susceptible to TB (black human shapes) and therefore will develop clinical disease in the absence of vaccination. A vaccine able to protect against respiratory forms of TB (blue bacilli) will interrupt the TB transmission cycle, contributing enormously to TB control.

Citation: Gonzalo-Asensio J, Aguilo N, Marinova D, Martin C. 2019. Breaking Transmission with Vaccines: The Case of Tuberculosis, p 249-261. In Baquero F, Bouza E, Gutiérrez-Fuentes J, Coque T (ed), Microbial Transmission. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MTBP-0001-2016
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555819743.chap14
1. Paulson T . 2013. Epidemiology: a mortal foe. Nature 502 : S2 S3.[CrossRef]
2. World Health Organization . 2015. World Health Organization Global Tuberculosis Report 2015. World Health Organization, Geneva, Switzerland.
3. Brosch R,, Gordon SV,, Marmiesse M,, Brodin P,, Buchrieser C,, Eiglmeier K,, Garnier T,, Gutierrez C,, Hewinson G,, Kremer K,, Parsons LM,, Pym AS,, Samper S,, van Soolingen D,, Cole ST . 2002. A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci U S A 99 : 3684 3689.[CrossRef]
4. Broset E,, Martín C,, Gonzalo-Asensio J . 2015. Evolutionary landscape of the Mycobacterium tuberculosis complex from the viewpoint of PhoPR: implications for virulence regulation and application to vaccine development. mBio 6 : e01289-e15.[CrossRef]
5. Comas I,, Coscolla M,, Luo T,, Borrell S,, Holt KE,, Kato-Maeda M,, Parkhill J,, Malla B,, Berg S,, Thwaites G,, Yeboah-Manu D,, Bothamley G,, Mei J,, Wei L,, Bentley S,, Harris SR,, Niemann S,, Diel R,, Aseffa A,, Gao Q,, Young D,, Gagneux S . 2013. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat Genet 45 : 1176 1182.[CrossRef]
6. Bos KI,, Harkins KM,, Herbig A,, Coscolla M,, Weber N,, Comas I,, Forrest SA,, Bryant JM,, Harris SR,, Schuenemann VJ,, Campbell TJ,, Majander K,, Wilbur AK,, Guichon RA,, Wolfe Steadman DL,, Cook DC,, Niemann S,, Behr MA,, Zumarraga M,, Bastida R,, Huson D,, Nieselt K,, Young D,, Parkhill J,, Buikstra JE,, Gagneux S,, Stone AC,, Krause J . 2014. Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature 514 : 494 497.[CrossRef][PubMed]
7. Berg S,, Schelling E,, Hailu E,, Firdessa R,, Gumi B,, Erenso G,, Gadisa E,, Mengistu A,, Habtamu M,, Hussein J,, Kiros T,, Bekele S,, Mekonnen W,, Derese Y,, Zinsstag J,, Ameni G,, Gagneux S,, Robertson BD,, Tschopp R,, Hewinson G,, Yamuah L,, Gordon SV,, Aseffa A . 2015. Investigation of the high rates of extrapulmonary tuberculosis in Ethiopia reveals no single driving factor and minimal evidence for zoonotic transmission of Mycobacterium bovis infection. BMC Infect Dis 15 : 112.[CrossRef]
8. Gagneux S . 2012. Host-pathogen coevolution in human tuberculosis. Philos Trans R Soc Lond B Biol Sci 367 : 850 859.[CrossRef][PubMed]
9. Yates TA,, Khan PY,, Knight GM,, Taylor JG,, McHugh TD,, Lipman M,, White RG,, Cohen T,, Cobelens FG,, Wood R,, Moore DAJ,, Abubakar I . 2016. The transmission of Mycobacterium tuberculosis in high burden settings. Lancet Infect Dis 16 : 227 238.[CrossRef]
10. Ernst JD . 2012. The immunological life cycle of tuberculosis. Nat Rev Immunol 12 : 581 591.[CrossRef]
11. Orme IM,, Robinson RT,, Cooper AM . 2015. The balance between protective and pathogenic immune responses in the TB-infected lung. Nat Immunol 16 : 57 63.[CrossRef]
12. Grosset J . 2003. Mycobacterium tuberculosis in the extracellular compartment: an underestimated adversary. Antimicrob Agents Chemother 47 : 833 836.[CrossRef]
13. Andrews JR,, Noubary F,, Walensky RP,, Cerda R,, Losina E,, Horsburgh CR . 2012. Risk of progression to active tuberculosis following reinfection with Mycobacterium tuberculosis. Clin Infect Dis 54 : 784 791.[CrossRef][PubMed]
14. Boritsch EC,, Supply P,, Honoré N,, Seemann T,, Stinear TP,, Brosch R,, Brosch R . 2014. A glimpse into the past and predictions for the future: the molecular evolution of the tuberculosis agent. Mol Microbiol 93 : 835 852.[CrossRef][PubMed]
15. Aguiló N,, Marinova D,, Martín C,, Pardo J . 2013. ESX-1-induced apoptosis during mycobacterial infection: to be or not to be, that is the question. Front Cell Infect Microbiol 3 : 88.[CrossRef]
16. Aguilo JI,, Alonso H,, Uranga S,, Marinova D,, Arbués A,, de Martino A,, Anel A,, Monzon M,, Badiola J,, Pardo J,, Brosch R,, Martin C . 2013. ESX-1-induced apoptosis is involved in cell-to-cell spread of Mycobacterium tuberculosis. Cell Microbiol 15 : 1994 2005.[CrossRef]
17. Neyrolles O,, Guilhot C . 2011. Recent advances in deciphering the contribution of Mycobacterium tuberculosis lipids to pathogenesis. Tuberculosis (Edinb) 91 : 187 195.[CrossRef]
18. Marinova D,, Gonzalo-Asensio J,, Aguilo N,, Martin C . 2013. Recent developments in tuberculosis vaccines. Expert Rev Vaccines 12 : 1431 1448.[CrossRef]
19. Comas I,, Chakravartti J,, Small PM,, Galagan J,, Niemann S,, Kremer K,, Ernst JD,, Gagneux S . 2010. Human T cell epitopes of Mycobacterium tuberculosis are evolutionarily hyperconserved. Nat Genet 42 : 498 503.[CrossRef]
20. Mostowy S,, Inwald J,, Gordon S,, Martin C,, Warren R,, Kremer K,, Cousins D,, Behr MA . 2005. Revisiting the evolution of Mycobacterium bovis. J Bacteriol 187 : 6386 6395.[CrossRef]
21. Gagneux S,, Small PM . 2007. Global phylogeography of Mycobacterium tuberculosis and implications for tuberculosis product development. Lancet Infect Dis 7 : 328 337.[CrossRef]
22. Otal I,, Martín C,, Vincent-Lévy-Frebault V,, Thierry D,, Gicquel B . 1991. Restriction fragment length polymorphism analysis using IS6110 as an epidemiological marker in tuberculosis. J Clin Microbiol 29 : 1252 1254.[PubMed]
23. van Embden JD,, Cave MD,, Crawford JT,, Dale JW,, Eisenach KD,, Gicquel B,, Hermans P,, Martin C,, McAdam R,, Shinnick TM,, Small PM . 1993. Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. J Clin Microbiol 31 : 406 409.[PubMed]
24. Kamerbeek J,, Schouls L,, Kolk A,, van Agterveld M,, van Soolingen D,, Kuijper S,, Bunschoten A,, Molhuizen H,, Shaw R,, Goyal M,, van Embden J . 1997. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol 35 : 907 914.[PubMed]
25. Supply P,, Lesjean S,, Savine E,, Kremer K,, van Soolingen D,, Locht C . 2001. Automated high-throughput genotyping for study of global epidemiology of Mycobacterium tuberculosis based on mycobacterial interspersed repetitive units. J Clin Microbiol 39 : 3563 3571.[CrossRef][PubMed]
26. Baker L,, Brown T,, Maiden MC,, Drobniewski F . 2004. Silent nucleotide polymorphisms and a phylogeny for Mycobacterium tuberculosis. Emerg Infect Dis 10 : 1568 1577.[CrossRef]
27. Comas I,, Gagneux S . 2011. A role for systems epidemiology in tuberculosis research. Trends Microbiol 19 : 492 500.[CrossRef][PubMed]
28. Portevin D,, Gagneux S,, Comas I,, Young D . 2011. Human macrophage responses to clinical isolates from the Mycobacterium tuberculosis complex discriminate between ancient and modern lineages. PLoS Pathog 7 : e1001307.[CrossRef]
29. Gagneux S,, Long CD,, Small PM,, Van T,, Schoolnik GK,, Bohannan BJM . 2006. The competitive cost of antibiotic resistance in Mycobacterium tuberculosis. Science 312 : 1944 1946.[CrossRef]
30. Gagneux S,, Burgos MV,, DeRiemer K,, Encisco A,, Muñoz S,, Hopewell PC,, Small PM,, Pym AS . 2006. Impact of bacterial genetics on the transmission of isoniazid-resistant Mycobacterium tuberculosis. PLoS Pathog 2 : e61.[CrossRef]
31. Bifani PJ,, Plikaytis BB,, Kapur V,, Stockbauer K,, Pan X,, Lutfey ML,, Moghazeh SL,, Eisner W,, Daniel TM,, Kaplan MH,, Crawford JT,, Musser JM,, Kreiswirth BN . 1996. Origin and interstate spread of a New York City multidrug-resistant Mycobacterium tuberculosis clone family. JAMA 275 : 452 457.[CrossRef]
32. Rivero A,, Márquez M,, Santos J,, Pinedo A,, Sánchez MA,, Esteve A,, Samper S,, Martín C . 2001. High rate of tuberculosis reinfection during a nosocomial outbreak of multidrug-resistant tuberculosis caused by Mycobacterium bovis strain B. Clin Infect Dis 32 : 159 161.[CrossRef][PubMed]
33. Samper S,, Martín C . 2007. Spread of extensively drug-resistant tuberculosis. Emerg Infect Dis 13 : 647 648.[CrossRef]
34. Pérez E,, Samper S,, Bordas Y,, Guilhot C,, Gicquel B,, Martín C . 2001. An essential role for phoP in Mycobacterium tuberculosis virulence. Mol Microbiol 41 : 179 187.[CrossRef]
35. Gonzalo-Asensio J,, Malaga W,, Pawlik A,, Astarie-Dequeker C,, Passemar C,, Moreau F,, Laval F,, Daffé M,, Martin C,, Brosch R,, Guilhot C . 2014. Evolutionary history of tuberculosis shaped by conserved mutations in the PhoPR virulence regulator. Proc Natl Acad Sci U S A 111 : 11491 11496.[CrossRef]
36. Bishai W . 2001. Tuberculosis transmission—rogue pathogen or rogue patient? Am J Respir Crit Care Med 164 : 1104 1105.[CrossRef]
37. Marquina-Castillo B,, García-García L,, Ponce-de-León A,, Jimenez-Corona M-E,, Bobadilla-Del Valle M,, Cano-Arellano B,, Canizales-Quintero S,, Martinez-Gamboa A,, Kato-Maeda M,, Robertson B,, Young D,, Small P,, Schoolnik G,, Sifuentes-Osornio J,, Hernández-Pando R . 2009. Virulence, immunopathology and transmissibility of selected strains of Mycobacterium tuberculosis in a murine model. Immunology 128 : 123 133.[CrossRef]
38. Escombe AR,, Oeser C,, Gilman RH,, Navincopa M,, Ticona E,, Martínez C,, Caviedes L,, Sheen P,, Gonzalez A,, Noakes C,, Moore DAJ,, Friedland JS,, Evans CA . 2007. The detection of airborne transmission of tuberculosis from HIV-infected patients, using an in vivo air sampling model. Clin Infect Dis 44 : 1349 1357.[CrossRef]
39. Ameni G,, Vordermeier M,, Aseffa A,, Young DB,, Hewinson RG . 2010. Field evaluation of the efficacy of Mycobacterium bovis bacillus Calmette-Guerin against bovine tuberculosis in neonatal calves in Ethiopia. Clin Vaccine Immunol 17 : 1533 1538.[CrossRef]
40. Larsen GD . 2015. A reliable ruminate for research. Lab Anim (NY) 44 : 337.[CrossRef]
41. Sanchez J,, Tomás L,, Ortega N,, Buendía AJ,, del Rio L,, Salinas J,, Bezos J,, Caro MR,, Navarro JA . 2011. Microscopical and immunological features of tuberculoid granulomata and cavitary pulmonary tuberculosis in naturally infected goats. J Comp Pathol 145 : 107 117.[CrossRef][PubMed]
42. Bezos J,, Casal C,, Díez-Delgado I,, Romero B,, Liandris E,, Álvarez J,, Sevilla IA,, Juan L,, Domínguez L,, Gortázar C . 2015. Goats challenged with different members of the Mycobacterium tuberculosis complex display different clinical pictures. Vet Immunol Immunopathol 167 : 185 189.[CrossRef]
43. Bezos J,, Casal C,, Puentes E,, Díez-Guerrier A,, Romero B,, Aguiló N,, de Juan L,, Martín C,, Domínguez L . 2015. Evaluation of the immunogenicity and diagnostic interference caused by M. tuberculosis SO2 vaccination against tuberculosis in goats. Res Vet Sci 103 : 73 79.[CrossRef]
44. Young D,, Dye C . 2006. The development and impact of tuberculosis vaccines. Cell 124 : 683 687.[CrossRef]
45. World Health Organization . 2011. The Immunological Basis for Immunization Series. Module 5: Tuberculosis. World Health Organization, Geneva, Switzerland.
46. Orme IM . 2010. The Achilles heel of BCG. Tuberculosis (Edinb) 90 : 329 332.[CrossRef]
47. Copin R,, Coscollá M,, Efstathiadis E,, Gagneux S,, Ernst JD . 2014. Impact of in vitro evolution on antigenic diversity of Mycobacterium bovis bacillus Calmette-Guerin (BCG). Vaccine 32 : 5998 6004.[CrossRef][PubMed]
48. Arbués A,, Aguilo JI,, Gonzalo-Asensio J,, Marinova D,, Uranga S,, Puentes E,, Fernandez C,, Parra A,, Cardona P-J,, Vilaplana C,, Ausina V,, Williams A,, Clark S,, Malaga W,, Guilhot C,, Gicquel B,, Martin C . 2013. Construction, characterization and preclinical evaluation of MTBVAC, the first live-attenuated M. tuberculosis-based vaccine to enter clinical trials. Vaccine 31 : 4867 4873.[CrossRef]
49. Martin C,, Williams A,, Hernandez-Pando R,, Cardona PJ,, Gormley E,, Bordat Y,, Soto CY,, Clark SO,, Hatch GJ,, Aguilar D,, Ausina V,, Gicquel B . 2006. The live Mycobacterium tuberculosis phoP mutant strain is more attenuated than BCG and confers protective immunity against tuberculosis in mice and guinea pigs. Vaccine 24 : 3408 3419.[CrossRef][PubMed]
50. Verreck FAW,, Vervenne RAW,, Kondova I,, van Kralingen KW,, Remarque EJ,, Braskamp G,, van der Werff NM,, Kersbergen A,, Ottenhoff THM,, Heidt PJ,, Gilbert SC,, Gicquel B,, Hill AVS,, Martin C,, McShane H,, Thomas AW . 2009. MVA.85A boosting of BCG and an attenuated, phoP deficient M. tuberculosis vaccine both show protective efficacy against tuberculosis in rhesus macaques. PLoS One 4 : e5264.[CrossRef]
51. Nambiar JK,, Pinto R,, Aguilo JI,, Takatsu K,, Martin C,, Britton WJ,, Triccas JA . 2012. Protective immunity afforded by attenuated, PhoP-deficient Mycobacterium tuberculosis is associated with sustained generation of CD4 + T-cell memory. Eur J Immunol 42 : 385 392.[CrossRef][PubMed]
52. Aguilo N,, Uranga S,, Marinova D,, Monzon M,, Badiola J,, Martin C . 2016. MTBVAC vaccine is safe, immunogenic and confers protective efficacy against Mycobacterium tuberculosis in newborn mice. Tuberculosis (Edinb) 96 : 71 74.[CrossRef]
53. Spertini F,, Audran R,, Chakour R,, Karoui O,, Steiner-Monard V,, Thierry A-C,, Mayor CE,, Rettby N,, Jaton K,, Vallotton L,, Lazor-Blanchet C,, Doce J,, Puentes E,, Marinova D,, Aguilo N,, Martin C . 2015. Safety of human immunisation with a live-attenuated Mycobacterium tuberculosis vaccine: a randomised, double-blind, controlled phase I trial. Lancet Respir Med 3 : 953 962.[CrossRef]
54. Marinova D,, Gonzalo-Asensio J,, Aguilo N,, Martin C . 2017. MTBVAC from discovery to clinical trials in tuberculosis-endemic countries. Expert Review of Vaccines 16( 6) : 565 576.[CrossRef]
55. Bezos J,, Casal C,, Álvarez J,, Roy A,, Romero B,, Rodríguez-Bertos A,, Bárcena C,, Díez A,, Juste R,, Gortázar C,, Puentes E,, Aguiló N,, Martín C,, de Juan L,, Domínguez L . 2017. Evaluation of the Mycobacterium tuberculosis SO2 vaccine using a natural tuberculosis infection model in goats. Vet J 223 : 60 67. Epub 2017 May 3.[CrossRef]
56. Aguilo N,, Gonzalo-Asensio J,, Alvarez-Arguedas S,, Marinova D,, Gomez AB,, Uranga S,, Spallek R,, Singh M,, Audran R,, Spertini F,, Martin C . 2017. Reactogenicity to major tuberculosis antigen absent in BCG is linked to improved protection against Mycobacterium tuberculosis. Nat Commun 8 : 16085.[CrossRef]

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error