1887

Chapter 2 : Causality in Biological Transmission: Forces and Energies

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Causality in Biological Transmission: Forces and Energies, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819743/9781555819736_Chap02-1.gif /docserver/preview/fulltext/10.1128/9781555819743/9781555819736_Chap02-2.gif

Abstract:

The immediate mental representation of the concept of transmission for the public health epidemiologist, clinical microbiologist, or infectious diseases specialist concerns its application to the transmission of pathogenic microorganisms or the transmission of infections. Note that the widely used term “transmissible diseases” is certainly most inappropriate. Disease is the result of particular cross talk between microbe and host and is never transmissible as such. The infective process is what the microbe produces inside a particular host, which is well illustrated in the Latin origin of the word “infection,” derived from ( + ): “to put in, to dip into, to do an action inside.” Microbes are transmissible, not the infection. In general biology, the most frequent use of “transmission” applies to the transmission of hereditary characters (to the progeny), as in population genetics ( ). To our knowledge, a broad conceptual understanding of transmission has not yet been attempted, although Hugh Dingle has approached the need of expanding the transmission-related concept of migration to different hierarchical levels ( ). In this review, I intend to present the concept of transmission in a broad perspective, as a basic biological and evolutionary process, focusing particularly on the causes (forces and energies) governing transmission, a hitherto neglected field in biological and epidemiological research. For this purpose, it is appropriate to review what we collectively have in mind when considering the concept of transmission.

Citation: Baquero F. 2019. Causality in Biological Transmission: Forces and Energies, p 17-31. In Baquero F, Bouza E, Gutiérrez-Fuentes J, Coque T (ed), Microbial Transmission. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MTBP-0018-2016
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

- and -acting modes of transmission. In -acting transmission, biological individuals (circles) belonging to different hierarchical levels (different sizes) are transmitted from one individual to another of a different level, giving rise to embedded entities acting as new complex individuals. In -acting transmission, biological individuals of different complexities are transmitted from a patch to another one, keeping their hierarchical level.

Citation: Baquero F. 2019. Causality in Biological Transmission: Forces and Energies, p 17-31. In Baquero F, Bouza E, Gutiérrez-Fuentes J, Coque T (ed), Microbial Transmission. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MTBP-0018-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

A puzzle representation of centripetal energies in the receiver patch. (Left) Reception of the transmitted entity (broken line, small puzzle piece) in the organized puzzle pattern is assured by local energies (centripetal bonding arrows). (Right) The organized puzzle is bent by external influences, arriving at a catastrophic event leading to a local disintegration of the puzzle pieces, liberating the centripetal energies and eventually creating forces (centrifugal arrows) for new transmission events.

Citation: Baquero F. 2019. Causality in Biological Transmission: Forces and Energies, p 17-31. In Baquero F, Bouza E, Gutiérrez-Fuentes J, Coque T (ed), Microbial Transmission. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MTBP-0018-2016
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555819743.chap2
1. Pierce BA . 2009. Transmission in Population Genetics: A Conceptual Approach, 4th ed. W.H. Freeman and Co, New York, NY.
2. Dingle H,, Drake VA . 2007. What is migration? Bioscience 57 : 113 121.[CrossRef]
3. Margolis E,, Laurence S . 2007. The ontology of concepts—abstract objects or mental representations? Noûs 41 : 561 593.[CrossRef]
4. Baquero F,, Moya A . 2012. Intelligibility in microbial complex systems: Wittgenstein and the score of life. Front Cell Infect Microbiol 2 : 88.[CrossRef][PubMed]
5. De Libera A, . 2014. Analogy, p 31 33. In Cassin B (ed), Dictionary of Untranslatables: A Philosophical Lexicon. Princeton University Press, Princeton, NJ.
6. Hanski I,, Semberloff D, . 1997. The metapopulation approach, its history, conceptual domain, and application to conservation, p 5 26. In Hanski IA,, Gilpin ME (ed), Metapopulation Biology: Ecology, Genetics, and Evolution. Academic Press, San Diego, CA.
7. Antonovics J . 2017. Transmission dynamics: critical questions and challenges. Philos Trans R Soc Lond B Biol Sci 372 : 20160087.[CrossRef][PubMed]
8. Ims RA,, Yoccoz NG, . 1997. Studying transfer processes in metapopulations: emigration, migration, and colonization, p 247 264. In Hanski IA,, Gilpin ME (ed), Metapopulation Biology: Ecology, Genetics, and Evolution. Academic Press, San Diego, CA.
9. Pierce JR . 1980. An Introduction to Information Theory: Symbols, Signals, and Noise. Dover Publications, New York, NY.
10. Shannon C,, Weaver W . 1949. The Mathematical Theory of Communication. Urbana University Press, Urbana, IL.
11. Villalba J,, Navarro FA,, Cortés F . 2017. Origin, history and meanings of the word “transmission.” Microbiol Spec 5( 6).[CrossRef]
12. Barbieri M . 2008. Biosemiotics: a new understanding of life. Naturwissenschaften 95 : 577 599.[CrossRef][PubMed]
13. Cariani P, . 1998. Towards an evolutionary semiotics: the emergence of new functions in organisms and devices, p 359 377. In Van de Vijver G,, Salthe S,, Delpos M (ed), Evolutionary Systems. Kluwer, Dordrecht, The Netherlands.[CrossRef]
14. Noble D . 2011. Differential and integral views of genetics in computational systems biology. Interface Focus 1 : 7 15.[CrossRef][PubMed]
15. Baquero F, . 2014. Genetic hyper-codes and multidimensional Darwinism: replication modes and codes in evolutionary individuals of the bacterial world, p 165 180. In Trueba G (ed), Why does Evolution Matter? The Importance of Understanding Evolution. Cambridge Scholars Publishing, Newcastle upon Tyne, United Kingdom.[PubMed]
16. Richardson LA . 2017. Evolving as a holobiont. PLoS Biol 15 : e2002168.[CrossRef][PubMed]
17. Baquero F . 2004. From pieces to patterns: evolutionary engineering in bacterial pathogens. Nat Rev Microbiol 2 : 510 518.[CrossRef][PubMed]
18. Gould SJ . 2002. The Structure of Evolutionary Theory. Harvard University Press, Cambridge, MA.
19. Baquero F . 2011. The 2010 Garrod Lecture: the dimensions of evolution in antibiotic resistance: ex unibus plurum et ex pluribus unum. J Antimicrob Chemother 66 : 1659 1672.[CrossRef][PubMed]
20. Okasha S . 2006. Evolution and the Levels of Selection. Oxford University Press, Oxford, United Kingdom.[CrossRef]
21. Bapteste E,, Lopez P,, Bouchard F,, Baquero F,, McInerney JO,, Burian RM . 2012. Evolutionary analyses of non-genealogical bonds produced by introgressive descent. Proc Natl Acad Sci U S A 109 : 18266 18272.[CrossRef][PubMed]
22. Bapteste E . 2014. The origins of microbial adaptations: how introgressive descent, egalitarian evolutionary transitions and expanded kin selection shape the network of life. Front Microbiol 5 : 83.[CrossRef][PubMed]
23. Balibar F, . 2014. Force and energy, p 343 349. In Cassin B (ed), Dictionary of Untranslatables: A Philosophical Lexicon. Princeton University Press, Princeton, NJ.
24. Beer FP,, Johnston ER,, DeWolf JT . 2004. Mechanics of Materials, 3rd edition, p 322 323. McGraw-Hill, New York, NY.
25. Saunders PT . 1980. An Introduction to Catastrophe Theory, p 41 60. Cambridge University Press, Cambridge, United Kingdom.[CrossRef]
26. Toyabe S,, Sagawa T,, Ueda M,, Muneyuki E,, Sano M . 2010. Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality. Nat Phys 6 : 988 992.[CrossRef]
27. Collier JD . 1986. Entropy in evolution. Biol Philos 1 : 5 24.[CrossRef]
28. Mayr E . 1961. Cause and effect in biology. Science 134 : 1501 1506.[CrossRef][PubMed]
29. Papastergiadis N . 2013. The Turbulence of Migration: Globalization, Deterritorialization and Hybridity. John Wiley & Sons, Hoboken, NJ.[PubMed]
30. Mayr E . 1965. Cause and effect in biology, p 33 50. In Cause and Effect. Free Press, New York.
31. Brandon RN, . 1998. Biological teleology: questions and explanations, p 79 97. In Allen C,, Bekoff M,, Lauder J (ed), Nature’s Purposes. MIT Press, Cambridge MA.
32. Baquero F,, Lemonnier M . 2009. Generational coexistence and ancestor’s inhibition in bacterial populations. FEMS Microbiol Rev 33 : 958 967.[CrossRef][PubMed]
33. Lenski RE,, Ofria C,, Collier TC,, Adami C . 1999. Genome complexity, robustness and genetic interactions in digital organisms. Nature 400 : 661 664.[CrossRef][PubMed]
34. Daubin V,, Ochman H . 2004. Bacterial genomes as new gene homes: the genealogy of ORFans in E. coli. Genome Res 14 : 1036 1042.[CrossRef][PubMed]
35. Levin BR,, Bergstrom CT . 2000. Bacteria are different: observations, interpretations, speculations, and opinions about the mechanisms of adaptive evolution in prokaryotes. Proc Natl Acad Sci U S A 97 : 6981 6985.[CrossRef]
36. Bach LA,, Thomsen R,, Pertoldi C,, Loeschcke V . 2006. Kin competition and the evolution of dispersal in an individual-based model. Ecol Modell 192 : 658 666.[CrossRef]
37. Shmida AV,, Wilson MV . 1985. Biological determinants of species diversity. J Biogeogr 12 : 1 20.[CrossRef]
38. Dingle H . 2014. Migration: The Biology of Life on the Move, 2nd ed, p 324. Oxford University Press, Oxford, United Kingdom.[CrossRef]
39. Hibbing ME,, Fuqua C,, Parsek MR,, Peterson SB . 2010. Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol 8 : 15 25.[CrossRef][PubMed]
40. Taylor CM,, Hastings A . 2005. Allee effects in biological invasions. Ecol Lett 8 : 895 908.[CrossRef]
41. Harbison CW,, Bush SE,, Malenke JR,, Clayton DH . 2008. Comparative transmission dynamics of competing parasite species. Ecology 89 : 3186 3194.[CrossRef]
42. Herre EA,, Knowlton N,, Mueller UG,, Rehner SA . 1999. The evolution of mutualisms: exploring the paths between conflict and cooperation. Trends Ecol Evol 14 : 49 53.[CrossRef]
43. Gardner A,, West SA . 2006. Demography, altruism, and the benefits of budding. J Evol Biol 19 : 1707 1716.[CrossRef][PubMed]
44. Tilman D,, Lehman CL,, Yin C . 1997. Habitat destruction, dispersal, and deterministic extinction in competitive communities. Am Nat 149 : 407 435.[CrossRef]
45. Warren PH . 1996. Dispersal and destruction in a multiple habitat system: an experimental approach using protist communities. Oikos 77 : 317 325.[CrossRef]
46. Levin BR,, Bull JJ . 1994. Short-sighted evolution and the virulence of pathogenic microorganisms. Trends Microbiol 2 : 76 81.[CrossRef]
47. Low BS,, Clarke AL,, Lockeridge NA . 1992. Towards an evolutionary demography. Popul Dev Rev 18 : 1 31.[CrossRef]
48. Cody ML,, Overton JM . 1996. Short-term evolution of reduced dispersal in island plant populations. J Ecol 84 : 53 61.[CrossRef]
49. Pianka ER . 1970. On r- and K-selection. Am Nat 104 : 592 597.[CrossRef]
50. Lanza VF,, Baquero F,, de la Cruz F,, Coque TM . 2017. AcCNET (Accessory Genome Constellation Network): comparative genomics software for accessory genome analysis using bipartite networks. Bioinformatics 33 : 283 285.[CrossRef][PubMed]
51. Friedenberg NA . 2003. Experimental evolution of dispersal in spatiotemporally variable microcosms. Ecol Lett 6 : 953 959.[CrossRef]
52. Hargreaves AL,, Eckert CG . 2014. Evolution of dispersal and mating systems along geographic gradients: implications for shifting ranges. Funct Ecol 2 : 5 21.[CrossRef]
53. Odling-Smee FJ,, Laland KN,, Feldman MW . 2003. Niche Construction: The Neglected Process in Evolution. Monographs in Population Biology no. 37. Princeton University Press, Princeton, NJ.
54. Levin SA . 1998. Ecosystems and the biosphere as complex adaptive systems. Ecosystems 1 : 431 436.[CrossRef]
55. Baquero F,, Nombela C . 2012. The microbiome as a human organ. Clin Microbiol Infect 18( Suppl 4) : 2 4.[CrossRef][PubMed]
56. Sonnenburg JL,, Xu J,, Leip DD,, Chen CH,, Westover BP,, Weatherford J,, Buhler JD,, Gordon JI,, Gordon JI . 2005. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 307 : 1955 1959.[CrossRef][PubMed]
57. Sharma NK,, Choudhary KK,, Bajpai R,, Rai AK, . 2010. Freshwater cyanobacterial blooms: causes, consequences and control, p 73 95. In El Nemr A (ed), Impact, Monitoring and Management Impact of Environmental Pollution. Nova Science Publishers Inc, Hauppauge, NY.
58. Andrews JH,, Harris RF, . 1986. r- and K-selection and microbial ecology, p 99 147. In Nelson KE (ed), Advances in Microbial Ecology. Springer US, New York, NY.
59. Wilson AJ,, Morgan ER,, Booth M,, Norman R,, Perkins SE,, Hauffe HC,, Mideo N,, Antonovics J,, McCallum H,, Fenton A . 2017. What is a vector? Philos Trans R Soc Lond B Biol Sci 372 : 20160085.[CrossRef][PubMed]
60. Dawkins R . 1982. Replicators and vehicles, p 45 64. In King’s College Sociobiology Group (ed), Current Problems in Sociobiology. Cambridge University Press, Cambridge, United Kingdom.
61. Baquero F,, Tedim AP,, Coque TM . 2013. Antibiotic resistance shaping multi-level population biology of bacteria. Front Microbiol 4 : 15.[CrossRef][PubMed]
62. Wade MJ,, Kalisz S . 1990. The causes of natural selection. Evolution 44 : 1947 1955.[PubMed]
63. Bell G . 1997. The Basics of Selection, p 31 33. Chapman and Hall, New York, NY.
64. Schoener TW . 2011. The newest synthesis: understanding the interplay of evolutionary and ecological dynamics. Science 331 : 426 429.[CrossRef][PubMed]
65. Saccheri I,, Hanski I . 2006. Natural selection and population dynamics. Trends Ecol Evol 21 : 341 347.[CrossRef][PubMed]
66. Szathmáry E,, Smith JM . 1995. The major evolutionary transitions. Nature 374 : 227 232.[CrossRef][PubMed]
67. Bapteste E,, O’Malley MA,, Beiko RG,, Ereshefsky M,, Gogarten JP,, Franklin-Hall L,, Lapointe FJ,, Dupré J,, Dagan T,, Boucher Y,, Martin W . 2009. Prokaryotic evolution and the tree of life are two different things. Biol Direct 4 : 34.[CrossRef][PubMed]
68. Antia R,, Levin BR,, May RM . 1994. Within-host population dynamics and the evolution and maintenance of microparasite virulence. Am Nat 144 : 457 472.[CrossRef]
69. Keesing F,, Ostfeld RS, . 2012. Disease ecology, p 217 230. In Ingram JC,, DeClerck F,, Rumbaitis del Rio C (ed), Integrating Ecology and Poverty Reduction: Ecological Dimensions. Springer, New York, NY.
70. Anderson RM,, May RM,, Joysey K,, Mollison D,, Conway GR,, Cartwell R,, Thompson HV,, Dixon B . 1986. The invasion, persistence and spread of infectious diseases within animal and plant communities. Philos Trans R Soc Lond B Biol Sci 314 : 533 570.[CrossRef][PubMed]
71. Anderson RM . 1995. Evolutionary pressures in the spread and persistence of infectious agents in vertebrate populations. Parasitology 111( Suppl) : S15 S31.[CrossRef][PubMed]
72. Anderson RM, . 1982. Transmission dynamics and control of infectious disease agents, p 149 176. In Anderson RM,, May RM (ed), Population Biology of Infectious Diseases. Springer, Berlin, Germany.
73. Anderson RM,, May RM . 1992. Infectious Diseases of Humans: Dynamics and Control, vol 28. Oxford University Press, Oxford, United Kingdom.
74. Read JM,, Keeling MJ . 2003. Disease evolution on networks: the role of contact structure. Proc Biol Sci 270 : 699 708.[CrossRef][PubMed]
75. Zhang G,, Pérez-Jiménez MJ,, Gheorghe M . 2017. Real-Life Applications with Membrane Computing, p 1 9. Springer, Berlin, Germany.
76. Campos M,, Llorens C,, Sempere JM,, Futami R,, Rodriguez I,, Carrasco P,, Capilla R,, Latorre A,, Coque TM,, Moya A,, Baquero F . 2015. A membrane computing simulator of trans-hierarchical antibiotic resistance evolution dynamics in nested ecological compartments (ARES). Biol Direct 10 : 41.[CrossRef][PubMed]
77. Baquero F . 2017. Basic sciences fertilizing clinical microbiology and infection management. Clin Infect Dis 65( Suppl 1) : S80 S83.[PubMed]
78. Okasha S . 2012. Emergence, hierarchy and top-down causation in evolutionary biology. Interface Focus 2 : 49 54.[CrossRef][PubMed]
79. Hanski I . 1998. Metapopulation dynamics. Nature 396 : 41 49.[CrossRef]
80. Zhong W,, Priest NK . 2011. Stress-induced recombination and the mechanism of evolvability. Behav Ecol Sociobiol 65 : 493 502.[CrossRef]
81. Fagan WF,, Cantrell RC,, Cosner C . 1999. How habitat edges change species interactions. Am Nat 153 : 165 182.[CrossRef][PubMed]
82. Levin SA (ed) . 2009. The Princeton Guide to Ecology, p 780. Princeton University Press, Princeton, NJ.
83. Brown JH,, Kodric-Brown A . 1977. Turnover rates in insular biogeography: effect of immigration on extinction. Ecology 58 : 445 449.[CrossRef]
84. Johnson ML,, Gaines MS . 1990. Evolution of dispersal: theoretical models and empirical tests using birds and mammals. Annu Rev Ecol Syst 21 : 449 480.[CrossRef]
85. Wright S . 1943. Isolation by distance. Genetics 28 : 114 138.[PubMed]
86. Winker K . 2000. Migration and speciation. Nature 404 : 36.[CrossRef][PubMed]
87. Brown JS,, Pavlovic NB . 1992. Evolution in heterogeneous environments: effects of migration on habitat specialization. Evol Ecol 6 : 360 382.[CrossRef]

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error