1887

Chapter 6 : Intracellular Lifestyles and Their Impact on Host-to-Host Transmission

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Intracellular Lifestyles and Their Impact on Host-to-Host Transmission, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819743/9781555819736_Chap06-1.gif /docserver/preview/fulltext/10.1128/9781555819743/9781555819736_Chap06-2.gif

Abstract:

The bacterial species comprises Gram-negative pathogenic microorganisms that cause infections in humans and livestock. is subdivided into six subspecies, with subspecies I responsible for infections in warm-blooded vertebrates, including mammals and birds ( ). To date, >2,500 serovars have been reported in subspecies I. Some of these serovars are host adapted, whereas others infect a broad range of hosts. Host-adapted serovars cause systemic infections that result in typhoid (paratyphoid) fever and bacteremia. Among these serovars are Typhi, Paratyphi A, Paratyphi C (humans), Cholerasuis (swine), Dublin (cow), and Gallinarum (fowl). Nontyphoidal serovars normally cause self-limiting gastroenteritis, although the severity of the infection varies depending on the immune defense status of the host and/or a unique genetic makeup that may render the clone highly invasive. An example is the recently characterized invasive serovar Typhimurium isolates that cause systemic disease in HIV-infected individuals of sub-Saharan African countries ( ) and Latin America ( ). Importantly, high transmissibility has been reported for all serovars, especially in those areas in which hygiene conditions in water and food are poor. The ability of all serovars to cause persistent asymptomatic infections, especially following infection by host-adapted serovars, imposes more difficulties on control of transmission ( ). This capacity to persist in the host without causing pathology has attracted physicians and microbiologists for more than a century, given its undoubtable negative impact on pathogen eradication. The reader is directed to the pioneering book by Ledingham and Arkwright, which in 1912 exhaustively compiled all existing information about cases of asymptomatic carriers and their impact on pathogen transmission ( ). These authors focused on six diseases known at that time to have high transmission rates, including typhoid and paratyphoid fever, diphtheria, epidemic cerebrospinal meningitis, dysentery, and cholera ( ). Studies performed in mouse asymptomatic chronic infection models using the serovar Typhimurium have identified pathogen genes required to persist in the animal for long periods of time (weeks to a few months) ( ). These studies also showed that serovar Typhimurium evolves during a chronic infection in the host and that this condition selects for adaptive mutations ( ). This is an intense and fascinating area of research that will certainly aid to combat transmissibility among individuals. We also refer to the chapter in this book by Wolf-Dietrich Hardt and colleagues, which addresses within-host evolution in and the transmission of the virulent genotype in populations differentially affected by antibiotic treatments.

Citation: Pucciarelli M, García-del Portillo F. 2019. Intracellular Lifestyles and Their Impact on Host-to-Host Transmission, p 95-116. In Baquero F, Bouza E, Gutiérrez-Fuentes J, Coque T (ed), Microbial Transmission. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MTBP-0009-2016
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Distinct intracellular lifestyles of serovar Typhimurium reported in various host locations during local inflammation of the intestine or acute systemic disease. (1) Limited proliferation of serovar Typhimurium in intestinal epithelial cells (IECs) during penetration of the intestinal barrier. The pathogen proliferates actively in a few IECs, which are rapidly extruded by a mechanism that depends on the inflammasome proteins NAIP/NLRC4. This proliferation was reported to occur within phagosomes and in the cytosol. Bacteria have also been observed in phagocytic (neutrophils, macrophages) and nonphagocytic cells (fibroblasts) in the underlying lamina propria. (2) Extrusion of heavily infected epithelial cells observed in the epithelium lining the gallbladder. As in the IECs, there is also evidence for replication of intracellular cytosolic serovar Typhimurium cells. (3) Serovar Typhimurium targets mainly macrophages in the liver. The most-accepted models support an increase in infection foci due to subsequent episodes of macrophage infection, a few rounds of intracellular replication of the pathogen, and reinfection of nearby macrophages. The intracellular lifestyle in these macrophages is entirely intraphagosomal. (4) Serovar Typhimurium colonizes distinct types of phagocytes in the red pulp of the spleen. The infection is highly contained by inflammatory monocytes and neutrophils, although some bacteria colonize and persist in resident macrophages. Note that the proliferation detected in the few epithelial cells that extrude in the intestinal epithelium and gallbladder ultimately favors shedding of the pathogen outside the host. Although not shown, serovar Typhimurium has also been shown to persist in macrophages present in mesenteric lymph nodes.

Citation: Pucciarelli M, García-del Portillo F. 2019. Intracellular Lifestyles and Their Impact on Host-to-Host Transmission, p 95-116. In Baquero F, Bouza E, Gutiérrez-Fuentes J, Coque T (ed), Microbial Transmission. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MTBP-0009-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Representative conditions reported to control intracellular growth of serovars Typhimurium and Typhi favoring persistence inside the infected cell. These examples include (A) the production by intracellular serovar Typhi of defined type III effector proteins targeting Rab proteins (see text for details); (B) inflammasome intervention in IECs to exclude cells heavily infected with serovar Typhimurium; and (C) attenuation of intracellular growth in fibroblasts linked to changes in yet undefined functions of intracellular serovar Typhimurium regulated by the two-component regulatory system PhoP-PhoQ or other regulators (SlyA, RpoS). This process could be either followed by or occur concomitantly with selective autophagy attack (aggrephagy). Formation of small-colony serovar Typhimurium variants has also been shown to occur in fibroblasts at long postinfection times. (D) The actions of toxins encoded in TA loci contribute to the selection of serovar Typhimurium persisters following ingestion by macrophages.

Citation: Pucciarelli M, García-del Portillo F. 2019. Intracellular Lifestyles and Their Impact on Host-to-Host Transmission, p 95-116. In Baquero F, Bouza E, Gutiérrez-Fuentes J, Coque T (ed), Microbial Transmission. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MTBP-0009-2016
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555819743.chap6
1. Rivera-Chávez F,, Bäumler AJ . 2015. The pyromaniac inside you: Salmonella metabolism in the host gut. Annu Rev Microbiol 69 : 31 48.[CrossRef][PubMed]
2. LaRock DL,, Chaudhary A,, Miller SI . 2015. Salmonellae interactions with host processes. Nat Rev Microbiol 13 : 191 205.[CrossRef]
3. de Jong HK,, Parry CM,, van der Poll T,, Wiersinga WJ . 2012. Host-pathogen interaction in invasive salmonellosis. PLoS Pathog 8 : e1002933.[CrossRef][PubMed]
4. Graham SM . 2010. Nontyphoidal salmonellosis in Africa. Curr Opin Infect Dis 23 : 409 414.[CrossRef][PubMed]
5. Wiesner M,, Calva JJ,, Bustamante VH,, Pérez-Morales D,, Fernández-Mora M,, Calva E,, Silva C . 2016. A multi-drug resistant Salmonella Typhimurium ST213 human-invasive strain (33676) containing the bla CMY-2 gene on an IncF plasmid is attenuated for virulence in BALB/c mice. BMC Microbiol 16 : 18.[CrossRef]
6. Monack DM . 2012. Salmonella persistence and transmission strategies. Curr Opin Microbiol 15 : 100 107.[CrossRef]
7. Gopinath S,, Carden S,, Monack D . 2012. Shedding light on Salmonella carriers. Trends Microbiol 20 : 320 327.[CrossRef]
8. Ledingham JCG,, Arkwright JA . 1912. The Carrier Problem in Infectious Diseases. Edward Arnold, London, United Kingdom.
9. Søndberg E,, Jelsbak L . 2016. Salmonella Typhimurium undergoes distinct genetic adaption during chronic infections of mice. BMC Microbiol 16 : 30.[CrossRef]
10. Lawley TD,, Chan K,, Thompson LJ,, Kim CC,, Govoni GR,, Monack DM . 2006. Genome-wide screen for Salmonella genes required for long-term systemic infection of the mouse. PLoS Pathog 2 : e11.[CrossRef]
11. Takeuchi A . 1967. Electron microscope studies of experimental Salmonella infection. I. Penetration into the intestinal epithelium by Salmonella typhimurium. Am J Pathol 50 : 109 136.[PubMed]
12. Kihlström E,, Edebo L . 1976. Association of viable and inactivated Salmonella typhimurium 395 MS and MR 10 with HeLa cells. Infect Immun 14 : 851 857.
13. Giannella RA,, Washington O,, Gemski P,, Formal SB . 1973. Invasion of HeLa cells by Salmonella typhimurium: a model for study of invasiveness of Salmonella. J Infect Dis 128 : 69 75.[CrossRef][PubMed]
14. Garcia-del Portillo F,, Finlay BB . 1995. Targeting of Salmonella typhimurium to vesicles containing lysosomal membrane glycoproteins bypasses compartments with mannose 6-phosphate receptors. J Cell Biol 129 : 81 97.[CrossRef]
15. Brumell JH,, Perrin AJ,, Goosney DL,, Finlay BB . 2002. Microbial pathogenesis: new niches for Salmonella. Curr Biol 12 : R15 R17.[CrossRef]
16. Scanu T,, Spaapen RM,, Bakker JM,, Pratap CB,, Wu LE,, Hofland I,, Broeks A,, Shukla VK,, Kumar M,, Janssen H,, Song JY,, Neefjes-Borst EA,, te Riele H,, Holden DW,, Nath G,, Neefjes J . 2015. Salmonella manipulation of host signaling pathways provokes cellular transformation associated with gallbladder carcinoma. Cell Host Microbe 17 : 763 774.[CrossRef]
17. Forbester JL,, Goulding D,, Vallier L,, Hannan N,, Hale C,, Pickard D,, Mukhopadhyay S,, Dougan G . 2015. Interaction of Salmonella enterica serovar Typhimurium with intestinal organoids derived from human induced pluripotent stem cells. Infect Immun 83 : 2926 2934.[CrossRef][PubMed]
18. Zhang YG,, Wu S,, Xia Y,, Sun J . 2014. Salmonella-infected crypt-derived intestinal organoid culture system for host-bacterial interactions. Physiol Rep 2 : e12147.[CrossRef]
19. Helaine S,, Cheverton AM,, Watson KG,, Faure LM,, Matthews SA,, Holden DW . 2014. Internalization of Salmonella by macrophages induces formation of nonreplicating persisters. Science 343 : 204 208.[CrossRef][PubMed]
20. Knodler LA . 2015. Salmonella enterica: living a double life in epithelial cells. Curr Opin Microbiol 23 : 23 31.[CrossRef]
21. Malik-Kale P,, Winfree S,, Steele-Mortimer O . 2012. The bimodal lifestyle of intracellular Salmonella in epithelial cells: replication in the cytosol obscures defects in vacuolar replication. PLoS One 7 : e38732.[CrossRef]
22. Figueira R,, Holden DW . 2012. Functions of the Salmonella pathogenicity island 2 (SPI-2) type III secretion system effectors. Microbiology 158 : 1147 1161.[CrossRef][PubMed]
23. Moest TP,, Méresse S . 2013. Salmonella T3SSs: successful mission of the secret(ion) agents. Curr Opin Microbiol 16 : 38 44.[CrossRef][PubMed]
24. Galán JE,, Wolf-Watz H . 2006. Protein delivery into eukaryotic cells by type III secretion machines. Nature 444 : 567 573.[CrossRef][PubMed]
25. Patel JC,, Galán JE . 2005. Manipulation of the host actin cytoskeleton by Salmonella—all in the name of entry. Curr Opin Microbiol 8 : 10 15.[CrossRef]
26. Schlumberger MC,, Hardt WD . 2005. Triggered phagocytosis by Salmonella: bacterial molecular mimicry of RhoGTPase activation/deactivation. Curr Top Microbiol Immunol 291 : 29 42.[CrossRef][PubMed]
27. Agbor TA,, McCormick BA . 2011. Salmonella effectors: important players modulating host cell function during infection. Cell Microbiol 13 : 1858 1869.[CrossRef]
28. Aiastui A,, Pucciarelli MG,, García-del Portillo F . 2010. Salmonella enterica serovar Typhimurium invades fibroblasts by multiple routes differing from the entry into epithelial cells. Infect Immun 78 : 2700 2713.[CrossRef]
29. Velge P,, Wiedemann A,, Rosselin M,, Abed N,, Boumart Z,, Chaussé AM,, Grépinet O,, Namdari F,, Roche SM,, Rossignol A,, Virlogeux-Payant I . 2012. Multiplicity of Salmonella entry mechanisms, a new paradigm for Salmonella pathogenesis. MicrobiologyOpen 1 : 243 258.[CrossRef][PubMed]
30. Mijouin L,, Rosselin M,, Bottreau E,, Pizarro-Cerda J,, Cossart P,, Velge P,, Wiedemann A . 2012. Salmonella enteritidis Rck-mediated invasion requires activation of Rac1, which is dependent on the class I PI 3-kinases-Akt signaling pathway. FASEB J 26 : 1569 1581.[CrossRef][PubMed]
31. Rosselin M,, Abed N,, Virlogeux-Payant I,, Bottreau E,, Sizaret PY,, Velge P,, Wiedemann A . 2011. Heterogeneity of type III secretion system (T3SS)-1-independent entry mechanisms used by Salmonella Enteritidis to invade different cell types. Microbiology 157 : 839 847.[CrossRef][PubMed]
32. Desin TS,, Lam PK,, Koch B,, Mickael C,, Berberov E,, Wisner AL,, Townsend HG,, Potter AA,, Köster W . 2009. Salmonella enterica serovar Enteritidis pathogenicity island 1 is not essential for but facilitates rapid systemic spread in chickens. Infect Immun 77 : 2866 2875.[CrossRef][PubMed]
33. Rychlik I,, Karasova D,, Sebkova A,, Volf J,, Sisak F,, Havlickova H,, Kummer V,, Imre A,, Szmolka A,, Nagy B . 2009. Virulence potential of five major pathogenicity islands (SPI-1 to SPI-5) of Salmonella enterica serovar Enteritidis for chickens. BMC Microbiol 9 : 268.[CrossRef]
34. Jones MA,, Wigley P,, Page KL,, Hulme SD,, Barrow PA . 2001. Salmonella enterica serovar Gallinarum requires the Salmonella pathogenicity island 2 type III secretion system but not the Salmonella pathogenicity island 1 type III secretion system for virulence in chickens. Infect Immun 69 : 5471 5476.[CrossRef]
35. Rathman M,, Barker LP,, Falkow S . 1997. The unique trafficking pattern of Salmonella typhimurium-containing phagosomes in murine macrophages is independent of the mechanism of bacterial entry. Infect Immun 65 : 1475 1485.
36. Drecktrah D,, Knodler LA,, Ireland R,, Steele-Mortimer O . 2006. The mechanism of Salmonella entry determines the vacuolar environment and intracellular gene expression. Traffic 7 : 39 51.[CrossRef]
37. Valdez Y,, Ferreira RB,, Finlay BB . 2009. Molecular mechanisms of Salmonella virulence and host resistance. Curr Top Microbiol Immunol 337 : 93 127.[CrossRef][PubMed]
38. Fields PI,, Swanson RV,, Haidaris CG,, Heffron F . 1986. Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc Natl Acad Sci U S A 83 : 5189 5193.[CrossRef][PubMed]
39. Malik-Kale P,, Jolly CE,, Lathrop S,, Winfree S,, Luterbach C,, Steele-Mortimer O . 2011. Salmonella—at home in the host cell. Front Microbiol 2 : 125.[CrossRef]
40. Bakowski MA,, Braun V,, Brumell JH . 2008. Salmonella-containing vacuoles: directing traffic and nesting to grow. Traffic 9 : 2022 2031.[CrossRef]
41. García-del Portillo F,, Núñez-Hernández C,, Eisman B,, Ramos-Vivas J . 2008. Growth control in the Salmonella-containing vacuole. Curr Opin Microbiol 11 : 46 52.[CrossRef][PubMed]
42. Holden DW . 2002. Trafficking of the Salmonella vacuole in macrophages. Traffic 3 : 161 169.[CrossRef]
43. Steele-Mortimer O . 2008. The Salmonella-containing vacuole: moving with the times. Curr Opin Microbiol 11 : 38 45.[CrossRef]
44. Ramsden AE,, Holden DW,, Mota LJ . 2007. Membrane dynamics and spatial distribution of Salmonella-containing vacuoles. Trends Microbiol 15 : 516 524.[CrossRef]
45. Zhao Y,, Gorvel JP,, Méresse S . 2016. Effector proteins support the asymmetric apportioning of Salmonella during cytokinesis. Virulence 7 : 669 678.[CrossRef][PubMed]
46. van der Heijden J,, Finlay BB . 2012. Type III effector-mediated processes in Salmonella infection. Future Microbiol 7 : 685 703.[CrossRef][PubMed]
47. Liss V,, Hensel M . 2015. Take the tube: remodelling of the endosomal system by intracellular Salmonella enterica. Cell Microbiol 17 : 639 647.[CrossRef][PubMed]
48. Jackson LK,, Nawabi P,, Hentea C,, Roark EA,, Haldar K . 2008. The Salmonella virulence protein SifA is a G protein antagonist. Proc Natl Acad Sci U S A 105 : 14141 14146.[CrossRef]
49. D’Costa VM,, Braun V,, Landekic M,, Shi R,, Proteau A,, McDonald L,, Cygler M,, Grinstein S,, Brumell JH . 2015. Salmonella disrupts host endocytic trafficking by SopD2-mediated inhibition of Rab7. Cell Rep 12 : 1508 1518.[CrossRef]
50. Spanò S,, Galán JE . 2012. A Rab32-dependent pathway contributes to Salmonella typhi host restriction. Science 338 : 960 963.[CrossRef][PubMed]
51. Spanò S,, Liu X,, Galán JE . 2011. Proteolytic targeting of Rab29 by an effector protein distinguishes the intracellular compartments of human-adapted and broad-host Salmonella. Proc Natl Acad Sci U S A 108 : 18418 18423.[CrossRef]
52. Garcia-del Portillo F,, Zwick MB,, Leung KY,, Finlay BB . 1993. Salmonella induces the formation of filamentous structures containing lysosomal membrane glycoproteins in epithelial cells. Proc Natl Acad Sci U S A 90 : 10544 10548.[CrossRef]
53. Schroeder N,, Mota LJ,, Méresse S . 2011. Salmonella-induced tubular networks. Trends Microbiol 19 : 268 277.[CrossRef]
54. Stein MA,, Leung KY,, Zwick M,, Garcia-del Portillo F,, Finlay BB . 1996. Identification of a Salmonella virulence gene required for formation of filamentous structures containing lysosomal membrane glycoproteins within epithelial cells. Mol Microbiol 20 : 151 164.[CrossRef][PubMed]
55. Freeman JA,, Ohl ME,, Miller SI . 2003. The Salmonella enterica serovar Typhimurium translocated effectors SseJ and SifB are targeted to the Salmonella-containing vacuole. Infect Immun 71 : 418 427.[CrossRef][PubMed]
56. McEwan DG,, Richter B,, Claudi B,, Wigge C,, Wild P,, Farhan H,, McGourty K,, Coxon FP,, Franz-Wachtel M,, Perdu B,, Akutsu M,, Habermann A,, Kirchof A,, Helfrich MH,, Odgren PR,, Van Hul W,, Frangakis AS,, Rajalingam K,, Macek B,, Holden DW,, Bumann D,, Dikic I . 2015. PLEKHM1 regulates Salmonella-containing vacuole biogenesis and infection. Cell Host Microbe 17 : 58 71.[CrossRef]
57. López-Montero N,, Ramos-Marquès E,, Risco C,, García-Del Portillo F . 2016. Intracellular Salmonella induces aggrephagy of host endomembranes in persistent infections. Autophagy 12 : 1886 1901.[CrossRef][PubMed]
58. Knodler LA,, Nair V,, Steele-Mortimer O . 2014. Quantitative assessment of cytosolic Salmonella in epithelial cells. PLoS One 9 : e84681.[CrossRef]
59. Knodler LA,, Vallance BA,, Celli J,, Winfree S,, Hansen B,, Montero M,, Steele-Mortimer O . 2010. Dissemination of invasive Salmonella via bacterial-induced extrusion of mucosal epithelia. Proc Natl Acad Sci U S A 107 : 17733 17738.[CrossRef]
60. Menendez A,, Arena ET,, Guttman JA,, Thorson L,, Vallance BA,, Vogl W,, Finlay BB . 2009. Salmonella infection of gallbladder epithelial cells drives local inflammation and injury in a model of acute typhoid fever. J Infect Dis 200 : 1703 1713.[CrossRef]
61. Crowley SM,, Knodler LA,, Vallance BA . 2016. Salmonella and the inflammasome: battle for intracellular dominance. Curr Top Microbiol Immunol 397 : 43 67.[CrossRef]
62. Sellin ME,, Maslowski KM,, Maloy KJ,, Hardt WD . 2015. Inflammasomes of the intestinal epithelium. Trends Immunol 36 : 442 450.[CrossRef][PubMed]
63. Sellin ME,, Müller AA,, Felmy B,, Dolowschiak T,, Diard M,, Tardivel A,, Maslowski KM,, Hardt WD . 2014. Epithelium-intrinsic NAIP/NLRC4 inflammasome drives infected enterocyte expulsion to restrict Salmonella replication in the intestinal mucosa. Cell Host Microbe 16 : 237 248.[CrossRef]
64. Núñez-Hernández C,, Tierrez A,, Ortega AD,, Pucciarelli MG,, Godoy M,, Eisman B,, Casadesús J,, García-del Portillo F . 2013. Genome expression analysis of nonproliferating intracellular Salmonella enterica serovar Typhimurium unravels an acid pH-dependent PhoP-PhoQ response essential for dormancy. Infect Immun 81 : 154 165.[CrossRef][PubMed]
65. Cano DA,, Martínez-Moya M,, Pucciarelli MG,, Groisman EA,, Casadesús J,, García-Del Portillo F . 2001. Salmonella enterica serovar Typhimurium response involved in attenuation of pathogen intracellular proliferation. Infect Immun 69 : 6463 6474.[CrossRef][PubMed]
66. Garcia-del Portillo F,, Stein MA,, Finlay BB . 1997. Release of lipopolysaccharide from intracellular compartments containing Salmonella typhimurium to vesicles of the host epithelial cell. Infect Immun 65 : 24 34.[PubMed]
67. Ruby T,, McLaughlin L,, Gopinath S,, Monack D . 2012. Salmonella’s long-term relationship with its host. FEMS Microbiol Rev 36 : 600 615.[CrossRef]
68. Lawley TD,, Bouley DM,, Hoy YE,, Gerke C,, Relman DA,, Monack DM . 2008. Host transmission of Salmonella enterica serovar Typhimurium is controlled by virulence factors and indigenous intestinal microbiota. Infect Immun 76 : 403 416.[CrossRef]
69. Monack DM,, Bouley DM,, Falkow S . 2004. Salmonella typhimurium persists within macrophages in the mesenteric lymph nodes of chronically infected Nramp1 +/+ mice and can be reactivated by IFNγ neutralization. J Exp Med 199 : 231 241.[CrossRef]
70. Eisele NA,, Ruby T,, Jacobson A,, Manzanillo PS,, Cox JS,, Lam L,, Mukundan L,, Chawla A,, Monack DM . 2013. Salmonella require the fatty acid regulator PPARδ for the establishment of a metabolic environment essential for long-term persistence. Cell Host Microbe 14 : 171 182.[CrossRef]
71. Gonzalez-Escobedo G,, Gunn JS . 2013. Gallbladder epithelium as a niche for chronic Salmonella carriage. Infect Immun 81 : 2920 2930.[CrossRef][PubMed]
72. Gunn JS,, Marshall JM,, Baker S,, Dongol S,, Charles RC,, Ryan ET . 2014. Salmonella chronic carriage: epidemiology, diagnosis, and gallbladder persistence. Trends Microbiol 22 : 648 655.[CrossRef][PubMed]
73. Bäumler AJ,, Winter SE,, Thiennimitr P,, Casadesús J . 2011. Intestinal and chronic infections: Salmonella lifestyles in hostile environments. Environ Microbiol Rep 3 : 508 517.[CrossRef]
74. Gonzalez-Escobedo G,, Gunn JS . 2013. Identification of Salmonella enterica serovar Typhimurium genes regulated during biofilm formation on cholesterol gallstone surfaces. Infect Immun 81 : 3770 3780.[CrossRef][PubMed]
75. Cano DA,, Pucciarelli MG,, Martínez-Moya M,, Casadesús J,, García-del Portillo F . 2003. Selection of small-colony variants of Salmonella enterica serovar Typhimurium in nonphagocytic eucaryotic cells. Infect Immun 71 : 3690 3698.[CrossRef]
76. Proctor RA,, Kriegeskorte A,, Kahl BC,, Becker K,, Löffler B,, Peters G . 2014. Staphylococcus aureus small colony variants (SCVs): a road map for the metabolic pathways involved in persistent infections. Front Cell Infect Microbiol 4 : 99.[CrossRef]
77. George AS,, Salas González I,, Lorca GL,, Teplitski M . 2015. Contribution of the Salmonella enterica KdgR regulon to persistence of the pathogen in vegetable soft rots. Appl Environ Microbiol 82 : 1353 1360.[CrossRef]
78. Popp J,, Noster J,, Busch K,, Kehl A,, Zur Hellen G,, Hensel M . 2015. Role of host cell-derived amino acids in nutrition of intracellular Salmonella enterica. Infect Immun 83 : 4466 4475.[CrossRef]
79. Steeb B,, Claudi B,, Burton NA,, Tienz P,, Schmidt A,, Farhan H,, Mazé A,, Bumann D . 2013. Parallel exploitation of diverse host nutrients enhances Salmonella virulence. PLoS Pathog 9 : e1003301.[CrossRef][PubMed]
80. Bowden SD,, Rowley G,, Hinton JC,, Thompson A . 2009. Glucose and glycolysis are required for the successful infection of macrophages and mice by Salmonella enterica serovar Typhimurium. Infect Immun 77 : 3117 3126.[CrossRef]
81. Bowden SD,, Hopper-Chidlaw AC,, Rice CJ,, Ramachandran VK,, Kelly DJ,, Thompson A . 2014. Nutritional and metabolic requirements for the infection of HeLa cells by Salmonella enterica serovar Typhimurium. PLoS One 9 : e96266.[CrossRef]
82. Barat S,, Steeb B,, Mazé A,, Bumann D . 2012. Extensive in vivo resilience of persistent Salmonella. PLoS One 7 : e42007.[CrossRef][PubMed]
83. Fang FC,, Frawley ER,, Tapscott T,, Vázquez-Torres A . 2016. Bacterial stress responses during host infection. Cell Host Microbe 20 : 133 143.[CrossRef][PubMed]
84. Wileman T . 2013. Autophagy as a defence against intracellular pathogens. Essays Biochem 55 : 153 163.[CrossRef]
85. Jo EK,, Yuk JM,, Shin DM,, Sasakawa C . 2013. Roles of autophagy in elimination of intracellular bacterial pathogens. Front Immunol 4 : 97.[CrossRef][PubMed]
86. Steele S,, Brunton J,, Kawula T . 2015. The role of autophagy in intracellular pathogen nutrient acquisition. Front Cell Infect Microbiol 5 : 51.[CrossRef]
87. Winchell CG,, Steele S,, Kawula T,, Voth DE . 2016. Dining in: intracellular bacterial pathogen interplay with autophagy. Curr Opin Microbiol 29 : 9 14.[CrossRef][PubMed]
88. Birmingham CL,, Brumell JH . 2006. Autophagy recognizes intracellular Salmonella enterica serovar Typhimurium in damaged vacuoles. Autophagy 2 : 156 158.[CrossRef]
89. Huett A,, Heath RJ,, Begun J,, Sassi SO,, Baxt LA,, Vyas JM,, Goldberg MB,, Xavier RJ . 2012. The LRR and RING domain protein LRSAM1 is an E3 ligase crucial for ubiquitin-dependent autophagy of intracellular Salmonella Typhimurium. Cell Host Microbe 12 : 778 790.[CrossRef][PubMed]
90. Spinnenhirn V,, Farhan H,, Basler M,, Aichem A,, Canaan A,, Groettrup M . 2014. The ubiquitin-like modifier FAT10 decorates autophagy-targeted Salmonella and contributes to Salmonella resistance in mice. J Cell Sci 127 : 4883 4893.[CrossRef]
91. Yu HB,, Croxen MA,, Marchiando AM,, Ferreira RB,, Cadwell K,, Foster LJ,, Finlay BB . 2014. Autophagy facilitates Salmonella replication in HeLa cells. mBio 5 : e00865-e14.[CrossRef][PubMed]
92. Wessling-Resnick M . 2015. Nramp1 and other transporters involved in metal withholding during infection. J Biol Chem 290 : 18984 18990.[CrossRef]
93. Vassiloyanakopoulos AP,, Okamoto S,, Fierer J . 1998. The crucial role of polymorphonuclear leukocytes in resistance to Salmonella dublin infections in genetically susceptible and resistant mice. Proc Natl Acad Sci U S A 95 : 7676 7681.[CrossRef][PubMed]
94. Segal BH,, Grimm MJ,, Khan AN,, Han W,, Blackwell TS . 2012. Regulation of innate immunity by NADPH oxidase. Free Radic Biol Med 53 : 72 80.[CrossRef][PubMed]
95. Bogdan C . 2015. Nitric oxide synthase in innate and adaptive immunity: an update. Trends Immunol 36 : 161 178.[CrossRef][PubMed]
96. Puri AW,, Broz P,, Shen A,, Monack DM,, Bogyo M . 2012. Caspase-1 activity is required to bypass macrophage apoptosis upon Salmonella infection. Nat Chem Biol 8 : 745 747.[CrossRef]
97. Lara-Tejero M,, Sutterwala FS,, Ogura Y,, Grant EP,, Bertin J,, Coyle AJ,, Flavell RA,, Galán JE . 2006. Role of the caspase-1 inflammasome in Salmonella typhimurium pathogenesis. J Exp Med 203 : 1407 1412.[CrossRef]
98. Miao EA,, Rajan JV . 2011. Salmonella and caspase-1: a complex interplay of detection and evasion. Front Microbiol 2 : 85.[CrossRef][PubMed]
99. Broz P,, Newton K,, Lamkanfi M,, Mariathasan S,, Dixit VM,, Monack DM . 2010. Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella. J Exp Med 207 : 1745 1755.[CrossRef]
100. Birmingham CL,, Smith AC,, Bakowski MA,, Yoshimori T,, Brumell JH . 2006. Autophagy controls Salmonella infection in response to damage to the Salmonella-containing vacuole. J Biol Chem 281 : 11374 11383.[CrossRef]
101. Kreibich S,, Emmenlauer M,, Fredlund J,, Rämö P,, Münz C,, Dehio C,, Enninga J,, Hardt WD . 2015. Autophagy proteins promote repair of endosomal membranes damaged by the Salmonella type three secretion system 1. Cell Host Microbe 18 : 527 537.[CrossRef][PubMed]
102. Benjamin JL,, Sumpter R Jr,, Levine B,, Hooper LV . 2013. Intestinal epithelial autophagy is essential for host defense against invasive bacteria. Cell Host Microbe 13 : 723 734.[CrossRef]
103. Shiloh MU,, MacMicking JD,, Nicholson S,, Brause JE,, Potter S,, Marino M,, Fang F,, Dinauer M,, Nathan C . 1999. Phenotype of mice and macrophages deficient in both phagocyte oxidase and inducible nitric oxide synthase. Immunity 10 : 29 38.[CrossRef]
104. Boyle KB,, Randow F . 2013. The role of ‘eat-me’ signals and autophagy cargo receptors in innate immunity. Curr Opin Microbiol 16 : 339 348.[CrossRef]
105. Begun J,, Lassen KG,, Jijon HB,, Baxt LA,, Goel G,, Heath RJ,, Ng A,, Tam JM,, Kuo SY,, Villablanca EJ,, Fagbami L,, Oosting M,, Kumar V,, Schenone M,, Carr SA,, Joosten LA,, Vyas JM,, Daly MJ,, Netea MG,, Brown GD,, Wijmenga C,, Xavier RJ . 2015. Integrated genomics of Crohn’s disease risk variant identifies a role for CLEC12A in antibacterial autophagy. Cell Rep 11 : 1905 1918.[CrossRef]
106. Miller SI,, Chaudhary A . 2016. A cellular GWAS approach to define human variation in cellular pathways important to inflammation. Pathogens 5 : E39.[CrossRef]
107. Kuijl C,, Savage ND,, Marsman M,, Tuin AW,, Janssen L,, Egan DA,, Ketema M,, van den Nieuwendijk R,, van den Eeden SJ,, Geluk A,, Poot A,, van der Marel G,, Beijersbergen RL,, Overkleeft H,, Ottenhoff TH,, Neefjes J . 2007. Intracellular bacterial growth is controlled by a kinase network around PKB/AKT1. Nature 450 : 725 730.[CrossRef][PubMed]
108. Wild P,, Farhan H,, McEwan DG,, Wagner S,, Rogov VV,, Brady NR,, Richter B,, Korac J,, Waidmann O,, Choudhary C,, Dötsch V,, Bumann D,, Dikic I . 2011. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333 : 228 233.[CrossRef][PubMed]
109. Thurston TL,, Boyle KB,, Allen M,, Ravenhill BJ,, Karpiyevich M,, Bloor S,, Kaul A,, Noad J,, Foeglein A,, Matthews SA,, Komander D,, Bycroft M,, Randow F . 2016. Recruitment of TBK1 to cytosol-invading Salmonella induces WIPI2-dependent antibacterial autophagy. EMBO J 35 : 1779 1792.[CrossRef]
110. Radtke AL,, Delbridge LM,, Balachandran S,, Barber GN,, O’Riordan MX . 2007. TBK1 protects vacuolar integrity during intracellular bacterial infection. PLoS Pathog 3 : e29.[CrossRef]
111. Osborne SE,, Tuinema BR,, Mok MC,, Lau PS,, Bui NK,, Tomljenovic-Berube AM,, Vollmer W,, Zhang K,, Junop M,, Coombes BK . 2012. Characterization of DalS, an ATP-binding cassette transporter for d-alanine, and its role in pathogenesis in Salmonella enterica. J Biol Chem 287 : 15242 15250.[CrossRef]
112. Tuinema BR,, Reid-Yu SA,, Coombes BK . 2014. Salmonella evades d-amino acid oxidase to promote infection in neutrophils. mBio 5 : e01886.[CrossRef][PubMed]
113. Westermann AJ,, Förstner KU,, Amman F,, Barquist L,, Chao Y,, Schulte LN,, Müller L,, Reinhardt R,, Stadler PF,, Vogel J . 2016. Dual RNA-seq unveils noncoding RNA functions in host-pathogen interactions. Nature 529 : 496 501.[CrossRef]
114. Saliba AE,, Westermann AJ,, Gorski SA,, Vogel J . 2014. Single-cell RNA-seq: advances and future challenges. Nucleic Acids Res 42 : 8845 8860.[CrossRef][PubMed]
115. Saliba AE,, Li L,, Westermann AJ,, Appenzeller S,, Stapels DA,, Schulte LN,, Helaine S,, Vogel J . 2016. Single-cell RNA-seq ties macrophage polarization to growth rate of intracellular Salmonella. Nat Microbiol 2 : 16206.[CrossRef]
116. Watson KG,, Holden DW . 2010. Dynamics of growth and dissemination of Salmonellain vivo. Cell Microbiol 12 : 1389 1397.[CrossRef]
117. Gog JR,, Murcia A,, Osterman N,, Restif O,, McKinley TJ,, Sheppard M,, Achouri S,, Wei B,, Mastroeni P,, Wood JL,, Maskell DJ,, Cicuta P,, Bryant CE . 2012. Dynamics of Salmonella infection of macrophages at the single cell level. J R Soc Interface 9 : 2696 2707.[CrossRef][PubMed]
118. Richter-Dahlfors A,, Buchan AM,, Finlay BB . 1997. Murine salmonellosis studied by confocal microscopy: Salmonella typhimurium resides intracellularly inside macrophages and exerts a cytotoxic effect on phagocytes in vivo. J Exp Med 186 : 569 580.[CrossRef]
119. Salcedo SP,, Noursadeghi M,, Cohen J,, Holden DW . 2001. Intracellular replication of Salmonella typhimurium strains in specific subsets of splenic macrophages in vivo. Cell Microbiol 3 : 587 597.[CrossRef][PubMed]
120. Mastroeni P,, Grant A,, Restif O,, Maskell D . 2009. A dynamic view of the spread and intracellular distribution of Salmonella enterica. Nat Rev Microbiol 7 : 73 80.[CrossRef]
121. Claudi B,, Spröte P,, Chirkova A,, Personnic N,, Zankl J,, Schürmann N,, Schmidt A,, Bumann D . 2014. Phenotypic variation of Salmonella in host tissues delays eradication by antimicrobial chemotherapy. Cell 158 : 722 733.[CrossRef]
122. Burton NA,, Schürmann N,, Casse O,, Steeb AK,, Claudi B,, Zankl J,, Schmidt A,, Bumann D . 2014. Disparate impact of oxidative host defenses determines the fate of Salmonella during systemic infection in mice. Cell Host Microbe 15 : 72 83.[CrossRef]
123. Bumann D . 2015. Heterogeneous host-pathogen encounters: act locally, think globally. Cell Host Microbe 17 : 13 19.[CrossRef][PubMed]
124. Gerdes K,, Maisonneuve E . 2012. Bacterial persistence and toxin-antitoxin loci. Annu Rev Microbiol 66 : 103 123.[CrossRef][PubMed]
125. Hauryliuk V,, Atkinson GC,, Murakami KS,, Tenson T,, Gerdes K . 2015. Recent functional insights into the role of (p)ppGpp in bacterial physiology. Nat Rev Microbiol 13 : 298 309.[CrossRef]
126. Maisonneuve E,, Gerdes K . 2014. Molecular mechanisms underlying bacterial persisters. Cell 157 : 539 548.[CrossRef]
127. Kussell E,, Leibler S . 2005. Phenotypic diversity, population growth, and information in fluctuating environments. Science 309 : 2075 2078.[CrossRef]
128. Kussell E,, Kishony R,, Balaban NQ,, Leibler S . 2005. Bacterial persistence: a model of survival in changing environments. Genetics 169 : 1807 1814.[CrossRef]
129. Lobato-Márquez D,, Díaz-Orejas R,, García-Del Portillo F . 2016. Toxin-antitoxins and bacterial virulence. FEMS Microbiol Rev 40 : 592 609.[CrossRef]
130. Helaine S,, Kugelberg E . 2014. Bacterial persisters: formation, eradication, and experimental systems. Trends Microbiol 22 : 417 424.[CrossRef]
131. Page R,, Peti W . 2016. Toxin-antitoxin systems in bacterial growth arrest and persistence. Nat Chem Biol 12 : 208 214.[CrossRef][PubMed]
132. Correia FF,, D’Onofrio A,, Rejtar T,, Li L,, Karger BL,, Makarova K,, Koonin EV,, Lewis K . 2006. Kinase activity of overexpressed HipA is required for growth arrest and multidrug tolerance in Escherichia coli. J Bacteriol 188 : 8360 8367.[CrossRef]
133. Germain E,, Castro-Roa D,, Zenkin N,, Gerdes K . 2013. Molecular mechanism of bacterial persistence by HipA. Mol Cell 52 : 248 254.[CrossRef][PubMed]
134. Lobato-Márquez D,, Moreno-Córdoba I,, Figueroa V,, Díaz-Orejas R,, García-del Portillo F . 2015. Distinct type I and type II toxin-antitoxin modules control Salmonella lifestyle inside eukaryotic cells. Sci Rep 5 : 9374.[CrossRef]
135. Cheverton AM,, Gollan B,, Przydacz M,, Wong CT,, Mylona A,, Hare SA,, Helaine S . 2016. A Salmonella toxin promotes persister formation through acetylation of tRNA. Mol Cell 63 : 86 96.[CrossRef][PubMed]
136. Nuccio SP,, Bäumler AJ . 2014. Comparative analysis of Salmonella genomes identifies a metabolic network for escalating growth in the inflamed gut. mBio 5 : e00929-e14.[CrossRef][PubMed]
137. Srikumar S,, Kröger C,, Hébrard M,, Colgan A,, Owen SV,, Sivasankaran SK,, Cameron AD,, Hokamp K,, Hinton JC . 2015. RNA-seq brings new insights to the intra-macrophage transcriptome of Salmonella Typhimurium. PLoS Pathog 11 : e1005262.[CrossRef]
138. Hautefort I,, Thompson A,, Eriksson-Ygberg S,, Parker ML,, Lucchini S,, Danino V,, Bongaerts RJ,, Ahmad N,, Rhen M,, Hinton JC . 2008. During infection of epithelial cells Salmonella enterica serovar Typhimurium undergoes a time-dependent transcriptional adaptation that results in simultaneous expression of three type 3 secretion systems. Cell Microbiol 10 : 958 984.[CrossRef]
139. Klemm EJ,, Gkrania-Klotsas E,, Hadfield J,, Forbester JL,, Harris SR,, Hale C,, Heath JN,, Wileman T,, Clare S,, Kane L,, Goulding D,, Otto TD,, Kay S,, Doffinger R,, Cooke FJ,, Carmichael A,, Lever AML,, Parkhill J,, MacLennan CA,, Kumararatne D,, Dougan G,, Kingsley RA . 2016. Emergence of host-adapted Salmonella Enteritidis through rapid evolution in an immunocompromised host. Nat Microbiol 1 : 15023.[CrossRef]
140. Okoro CK,, Barquist L,, Connor TR,, Harris SR,, Clare S,, Stevens MP,, Arends MJ,, Hale C,, Kane L,, Pickard DJ,, Hill J,, Harcourt K,, Parkhill J,, Dougan G,, Kingsley RA . 2015. Signatures of adaptation in human invasive Salmonella Typhimurium ST313 populations tfrom sub-Saharan Africa. PLoS Negl Trop Dis 9 : e0003611.[CrossRef]
141. Wrande M,, Andrews-Polymenis H,, Twedt DJ,, Steele-Mortimer O,, Porwollik S,, McClelland M,, Knodler LA . 2016. Genetic determinants of Salmonella enterica serovar Typhimurium proliferation in the cytosol of epithelial cells. Infect Immun 84 : 3517 3526.[CrossRef]
142. Schlumberger MC,, Hardt WD . 2006. Salmonella type III secretion effectors: pulling the host cell’s strings. Curr Opin Microbiol 9 : 46 54.[CrossRef]
143. Rosselin M,, Virlogeux-Payant I,, Roy C,, Bottreau E,, Sizaret PY,, Mijouin L,, Germon P,, Caron E,, Velge P,, Wiedemann A . 2010. Rck of Salmonella enterica, subspecies enterica serovar Enteritidis, mediates Zipper-like internalization. Cell Res 20 : 647 664.[CrossRef][PubMed]

Tables

Generic image for table
TABLE 1

and host responses discussed in this chapter with probable impact on host-to-host transmission of the pathogen

Citation: Pucciarelli M, García-del Portillo F. 2019. Intracellular Lifestyles and Their Impact on Host-to-Host Transmission, p 95-116. In Baquero F, Bouza E, Gutiérrez-Fuentes J, Coque T (ed), Microbial Transmission. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MTBP-0009-2016

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error