1887

Chapter 9 : Food-to-Humans Bacterial Transmission

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Food-to-Humans Bacterial Transmission, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819743/9781555819736_Chap09-1.gif /docserver/preview/fulltext/10.1128/9781555819743/9781555819736_Chap09-2.gif

Abstract:

Food is considered one of the main environmental drivers shaping the human microbiota across the life span. Microorganisms vehiculated by food can be related to a variety of scenarios, including those benefiting health (e.g., stimulation of host antibodies, release of chemicals to stimulate the health of the overall system, or inhibition of pathogen development), those causing minimal change within the equilibrium of the host microbial community, and those that are pathogenic or have been associated with gut-host dysbiosis ( ). Recently there has been an increase in knowledge on gut bacterial genera and species commonly affected by diet, as well as evidence suggesting that the intestinal microbiome plays an important role in modulating the risk of several chronic diseases (e.g., inflammatory bowel disease, obesity, type 2 diabetes, cardiovascular disease, and cancer) ( ). Nevertheless, comprehensive information about the types of diet that transmit bacteria implicated in those diseases, as well as environmental and host factors favoring their colonization, remains scarce. Notwithstanding, food as a transmission mode for microorganisms reaching humans is extensively characterized for different pathogenic bacteria, the environment, animals, and humans being their main reservoirs ( Fig. 1 ) and the fecal-oral route their main transmission route ( ). A triad including a contaminated food item, a susceptible human host, and bacterial pathogens able to survive and multiply in specific environmental conditions must be present for the occurrence of a foodborne disease. Nevertheless, transmission of typical foodborne pathogens can also occur more rarely by alternative transmission modes, as by direct contact of humans with infected animals or between humans ( ).

Citation: Antunes P, Novais C, Peixe L. 2019. Food-to-Humans Bacterial Transmission, p 161-193. In Baquero F, Bouza E, Gutiérrez-Fuentes J, Coque T (ed), Microbial Transmission. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MTBP-0019-2016
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Reservoirs of the main pathogenic and potentially beneficial bacteria transmitted from food to humans.

Citation: Antunes P, Novais C, Peixe L. 2019. Food-to-Humans Bacterial Transmission, p 161-193. In Baquero F, Bouza E, Gutiérrez-Fuentes J, Coque T (ed), Microbial Transmission. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MTBP-0019-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Factors that drive transmission of pathogenic bacteria from food to humans.

Citation: Antunes P, Novais C, Peixe L. 2019. Food-to-Humans Bacterial Transmission, p 161-193. In Baquero F, Bouza E, Gutiérrez-Fuentes J, Coque T (ed), Microbial Transmission. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MTBP-0019-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Implications of antibiotic-resistant bacteria transmitted from food to humans. AB, antibiotic resistance.

Citation: Antunes P, Novais C, Peixe L. 2019. Food-to-Humans Bacterial Transmission, p 161-193. In Baquero F, Bouza E, Gutiérrez-Fuentes J, Coque T (ed), Microbial Transmission. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MTBP-0019-2016
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555819743.chap9
1. Josephs-Spaulding J,, Beeler E,, Singh OV . 2016. Human microbiome versus food-borne pathogens: friend or foe. Appl Microbiol Biotechnol 100 : 4845 4863.[CrossRef][PubMed]
2. Kamada N,, Chen GY,, Inohara N,, Núñez G . 2013. Control of pathogens and pathobionts by the gut microbiota. Nat Immunol 14 : 685 690.[CrossRef][PubMed]
3. Voreades N,, Kozil A,, Weir TL . 2014. Diet and the development of the human intestinal microbiome. Front Microbiol 5 : 494.[CrossRef][PubMed]
4. Antonovics J,, Wilson AJ,, Forbes MR,, Hauffe HC,, Kallio ER,, Leggett HC,, Longdon B,, Okamura B,, Sait SM,, Webster JP . 2017. The evolution of transmission mode. Philos Trans R Soc Lond B Biol Sci 372 : 20160083.[CrossRef][PubMed]
5. Bäumler A,, Fang FC . 2013. Host specificity of bacterial pathogens. Cold Spring Harb Perspect Med 3 : a010041.[CrossRef][PubMed]
6. Acheson DK, . 2009. Food and waterborne illnesses, p 480 506. In Schaechter M (ed), The Desk Encyclopedia of Microbiology, 2nd ed. Elsevier, San Diego, CA.[CrossRef]
7. Scallan E,, Hoekstra RM,, Angulo FJ,, Tauxe RV,, Widdowson MA,, Roy SL,, Jones JL,, Griffin PM . 2011. Foodborne illness acquired in the United States—major pathogens. Emerg Infect Dis 17 : 7 15.[CrossRef][PubMed]
8. World Health Organization . 2015. WHO Estimates of the Global Burden of Foodborne Diseases: Foodborne Disease Burden Epidemiology Reference Group 2007–2015. World Health Organization, Geneva, Switzerland. http://apps.who.int/iris/bitstream/10665/199350/1/9789241565165_eng.pdf.
9. Food Standards Agency . 2011. Foodborne Disease Strategy 2010–15: An FSA Programme for the Reduction of Foodborne Diseases in the UK. Food Standards Agency, London, United Kingdom. https://acss.food.gov.uk/sites/default/files/multimedia/pdfs/fds2015.pdf.
10. Hoffmann M,, Luo Y,, Monday SR,, Gonzalez-Escalona N,, Ottesen AR,, Muruvanda T,, Wang C,, Kastanis G,, Keys C,, Janies D,, Senturk IF,, Catalyurek UV,, Wang H,, Hammack TS,, Wolfgang WJ,, Schoonmaker-Bopp D,, Chu A,, Myers R,, Haendiges J,, Evans PS,, Meng J,, Strain EA,, Allard MW,, Brown EW . 2016. Tracing origins of the Salmonella Bareilly strain causing a food-borne outbreak in the United States. J Infect Dis 213 : 502 508.[CrossRef][PubMed]
11. Cutler SJ, . 2014. Bacterial zoonoses: an overview, p 1771 1780. In Sussman M,, Liu D,, Poxton I,, Schwartzman J (ed), Molecular Medical Microbiology, 2nd ed, vol 1. Elsevier, San Diego, CA.
12. Berry ED,, Wells JE . 2016. Reducing foodborne pathogen persistence and transmission in animal production environments: challenges and opportunities. Microbiol Spectr 4 : PFS-0006-2014.[CrossRef]
13. European Food Safety Authority . 2017. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016. EFSA J 15 : e05077.[CrossRef]
14. Painter JA,, Hoekstra RM,, Ayers T,, Tauxe RV,, Braden CR,, Angulo FJ,, Griffin PM . 2013. Attribution of foodborne illnesses, hospitalizations, and deaths to food commodities by using outbreak data, United States, 1998–2008. Emerg Infect Dis 19 : 407 415.[CrossRef][PubMed]
15. Werber D,, Dreesman J,, Feil F,, van Treeck U,, Fell G,, Ethelberg S,, Hauri AM,, Roggentin P,, Prager R,, Fisher IS,, Behnke SC,, Bartelt E,, Weise E,, Ellis A,, Siitonen A,, Andersson Y,, Tschäpe H,, Kramer MH,, Ammon A . 2005. International outbreak of Salmonella Oranienburg due to German chocolate. BMC Infect Dis 5 : 7.[CrossRef][PubMed]
16. Sheth AN,, Hoekstra M,, Patel N,, Ewald G,, Lord C,, Clarke C,, Villamil E,, Niksich K,, Bopp C,, Nguyen TA,, Zink D,, Lynch M . 2011. A national outbreak of Salmonella serotype Tennessee infections from contaminated peanut butter: a new food vehicle for salmonellosis in the United States. Clin Infect Dis 53 : 356 362.[CrossRef][PubMed]
17. Cavallaro E,, Date K,, Medus C,, Meyer S,, Miller B,, Kim C,, Nowicki S,, Cosgrove S,, Sweat D,, Phan Q,, Flint J,, Daly ER,, Adams J,, Hyytia-Trees E,, Gerner-Smidt P,, Hoekstra RM,, Schwensohn C,, Langer A,, Sodha SV,, Rogers MC,, Angulo FJ,, Tauxe RV,, Williams IT,, Behravesh CB, Salmonella Typhimurium Outbreak Investigation Team . 2011. Salmonella Typhimurium infections associated with peanut products. N Engl J Med 365 : 601 610.[CrossRef][PubMed]
18. Lienau EK,, Strain E,, Wang C,, Zheng J,, Ottesen AR,, Keys CE,, Hammack TS,, Musser SM,, Brown EW,, Allard MW,, Cao G,, Meng J,, Stones R . 2011. Identification of a salmonellosis outbreak by means of molecular sequencing. N Engl J Med 364 : 981 982.[CrossRef][PubMed]
19. Angelo KM,, Conrad AR,, Saupe A,, Dragoo H,, West N,, Sorenson A,, Barnes A,, Doyle M,, Beal J,, Jackson KA,, Stroika S,, Tarr C,, Kucerova Z,, Lance S,, Gould LH,, Wise M,, Jackson BR . 2017. Multistate outbreak of Listeria monocytogenes infections linked to whole apples used in commercially produced, prepackaged caramel apples: United States, 2014–2015. Epidemiol Infect 145 : 848 856.[CrossRef][PubMed]
20. Navarro-Garcia F . 2014. Escherichia coli O104:H4 pathogenesis: an enteroaggregative E. coli/Shiga Toxin-Producing E. coli explosive cocktail of high virulence. Microbiol Spectr 2 : EHEC-0008-2013.[CrossRef]
21. Inns T,, Ashton PM,, Herrera-Leon S,, Lighthill J,, Foulkes S,, Jombart T,, Rehman Y,, Fox A,, Dallman T,, DE Pinna E,, Browning L,, Coia JE,, Edeghere O,, Vivancos R . 2017. Prospective use of whole genome sequencing (WGS) detected a multi-country outbreak of Salmonella Enteritidis. Epidemiol Infect 145 : 289 298.[CrossRef][PubMed]
22. McCollum JT,, Cronquist AB,, Silk BJ,, Jackson KA,, O’Connor KA,, Cosgrove S,, Gossack JP,, Parachini SS,, Jain NS,, Ettestad P,, Ibraheem M,, Cantu V,, Joshi M,, DuVernoy T,, Fogg NW Jr,, Gorny JR,, Mogen KM,, Spires C,, Teitell P,, Joseph LA,, Tarr CL,, Imanishi M,, Neil KP,, Tauxe RV,, Mahon BE . 2013. Multistate outbreak of listeriosis associated with cantaloupe. N Engl J Med 369 : 944 953.[CrossRef][PubMed]
23. Deng X,, den Bakker HC,, Hendriksen RS . 2016. Genomic epidemiology: whole-genome-sequencing-powered surveillance and outbreak investigation of foodborne bacterial pathogens. Annu Rev Food Sci Technol 7 : 353 374.[CrossRef][PubMed]
24. Ronholm J,, Nasheri N,, Petronella N,, Pagotto F . 2016. Navigating microbiological food safety in the era of whole-genome sequencing. Clin Microbiol Rev 29 : 837 857.[CrossRef][PubMed]
25. Ravel A,, Hurst M,, Petrica N,, David J,, Mutschall SK,, Pintar K,, Taboada EN,, Pollari F . 2017. Source attribution of human campylobacteriosis at the point of exposure by combining comparative exposure assessment and subtype comparison based on comparative genomic fingerprinting. PLoS One 12 : e0183790.[CrossRef][PubMed]
26. Kovanen S,, Kivistö R,, Llarena AK,, Zhang J,, Kärkkäinen UM,, Tuuminen T,, Uksila J,, Hakkinen M,, Rossi M,, Hänninen ML . 2016. Tracing isolates from domestic human Campylobacter jejuni infections to chicken slaughter batches and swimming water using whole-genome multilocus sequence typing. Int J Food Microbiol 226 : 53 60.[CrossRef][PubMed]
27. Byrne L,, Fisher I,, Peters T,, Mather A,, Thomson N,, Rosner B,, Bernard H,, McKeown P,, Cormican M,, Cowden J,, Aiyedun V,, Lane C, on behalf of the International Outbreak Control Team . 2014. A multi-country outbreak of Salmonella Newport gastroenteritis in Europe associated with watermelon from Brazil, confirmed by whole genome sequencing: October 2011 to January 2012. Euro Surveill 19 : 6 13.[CrossRef][PubMed]
28. European Centre for Disease Control and Prevention . 2017. Rapid Risk Assessment: Multi-country outbreak of Listeria monocytogenes PCR serogroup IVb, MLST ST6. European Centre for Disease Prevention and Control, Stockholm, Sweden. https://ecdc.europa.eu/sites/portal/files/documents/RRA-Listeria-monocytogenes-2017_0.pdf.
29. Stasiewicz MJ,, Oliver HF,, Wiedmann M,, den Bakker HC . 2015. Whole-genome sequencing allows for improved identification of persistent Listeria monocytogenes in food-associated environments. Appl Environ Microbiol 81 : 6024 6037.[CrossRef][PubMed]
30. Mellmann A,, Harmsen D,, Cummings CA,, Zentz EB,, Leopold SR,, Rico A,, Prior K,, Szczepanowski R,, Ji Y,, Zhang W,, McLaughlin SF,, Henkhaus JK,, Leopold B,, Bielaszewska M,, Prager R,, Brzoska PM,, Moore RL,, Guenther S,, Rothberg JM,, Karch H . 2011. Prospective genomic characterization of the German enterohemorrhagic Escherichia coli O104:H4 outbreak by rapid next generation sequencing technology. PLoS One 6 : e22751.[CrossRef][PubMed]
31. Nyachuba DG . 2010. Foodborne illness: is it on the rise? Nutr Rev 68 : 257 269.[CrossRef][PubMed]
32. Newell DG,, Koopmans M,, Verhoef L,, Duizer E,, Aidara-Kane A,, Sprong H,, Opsteegh M,, Langelaar M,, Threfall J,, Scheutz F,, van der Giessen J,, Kruse H . 2010. Food-borne diseases—the challenges of 20 years ago still persist while new ones continue to emerge. Int J Food Microbiol 139( Suppl 1) : S3 S15.[CrossRef][PubMed]
33. Tauxe RV,, Doyle MP,, Kuchenmüller T,, Schlundt J,, Stein CE . 2010. Evolving public health approaches to the global challenge of foodborne infections. Int J Food Microbiol 139( Suppl 1) : S16 S28.[CrossRef][PubMed]
34. Quested TE,, Cook PE,, Gorris LG,, Cole MB . 2010. Trends in technology, trade and consumption likely to impact on microbial food safety. Int J Food Microbiol 139( Suppl 1) : S29 S42.[CrossRef][PubMed]
35. Boqvist S,, Söderqvist K,, Vågsholm I . 2018. Food safety challenges and One Health within Europe. Acta Vet Scand 60 : 1.[CrossRef][PubMed]
36. Semenza JC,, Lindgren E,, Balkanyi L,, Espinosa L,, Almqvist MS,, Penttinen P,, Rocklöv J . 2016. Determinants and drivers of infectious disease threat events in Europe. Emerg Infect Dis 22 : 581 589.[CrossRef][PubMed]
37. Engering A,, Hogerwerf L,, Slingenbergh J . 2013. Pathogen-host-environment interplay and disease emergence. Emerg Microbes Infect 2 : e5.[CrossRef][PubMed]
38. Rodrigue DC,, Tauxe RV,, Rowe B . 1990. International increase in Salmonellaenteritidis: a new pandemic? Epidemiol Infect 105 : 21 27.[CrossRef][PubMed]
39. Kinross P,, van Alphen L,, Martinez Urtaza J,, Struelens M,, Takkinen J,, Coulombier D,, Makela P,, Bertrand S,, Mattheus W,, Schmid D,, Kanitz E,, Rucker V,, Krisztalovics K,, Paszti J,, Szogyenyi Z,, Lancz Z,, Rabsch W,, Pfefferkorn B,, Hiller P,, Mooijman K,, Gossner C . 2014. Multidisciplinary investigation of a multicountry outbreak of Salmonella Stanley infections associated with turkey meat in the European Union, August 2011 to January 2013. Euro Surveill 19 : 20801.[CrossRef][PubMed]
40. Skarp CP,, Hänninen ML,, Rautelin HI . 2016. Campylobacteriosis: the role of poultry meat. Clin Microbiol Infect 22 : 103 109.[CrossRef][PubMed]
41. Kijlstra A,, Meerburg BG,, Bos AP . 2009. Food safety in free-range and organic livestock systems: risk management and responsibility. J Food Prot 72 : 2629 2637.[CrossRef][PubMed]
42. Jung Y,, Jang H,, Matthews KR . 2014. Effect of the food production chain from farm practices to vegetable processing on outbreak incidence. Microb Biotechnol 7 : 517 527.[CrossRef][PubMed]
43. European Food Safety Authority . 2011. STEC and other pathogenic bacteria in seeds and sprouted seeds. EFSA J 9 : 2424.[CrossRef]
44. Lomonaco S,, Verghese B,, Gerner-Smidt P,, Tarr C,, Gladney L,, Joseph L,, Katz L,, Turnsek M,, Frace M,, Chen Y,, Brown E,, Meinersmann R,, Berrang M,, Knabel S . 2013. Novel epidemic clones of Listeria monocytogenes, United States, 2011. Emerg Infect Dis 19 : 147 150.[CrossRef][PubMed]
45. Markland SM,, Ingram D,, Kniel KE,, Sharma M . 2017. Water for agriculture: the convergence of sustainability and safety. Microbiol Spectr 5 : PFS-0014-2016.[CrossRef]
46. Kniel KE,, Spanninger P . 2017. Preharvest food safety under the influence of a changing climate. Microbiol Spectr 5 : PFS-0015-2016.[CrossRef]
47. Schijven J,, Bouwknegt M,, de Roda Husman AM,, Rutjes S,, Sudre B,, Suk JE,, Semenza JC . 2013. A decision support tool to compare waterborne and foodborne infection and/or illness risks associated with climate change. Risk Anal 33 : 2154 2167.[CrossRef][PubMed]
48. Hellberg RS,, Chu E . 2016. Effects of climate change on the persistence and dispersal of foodborne bacterial pathogens in the outdoor environment: a review. Crit Rev Microbiol 42 : 548 572.[PubMed]
49. Effler E,, Isaäcson M,, Arntzen L,, Heenan R,, Canter P,, Barrett T,, Lee L,, Mambo C,, Levine W,, Zaidi A,, Griffin PM . 2001. Factors contributing to the emergence of Escherichia coli O157 in Africa. Emerg Infect Dis 7 : 812 819.[CrossRef][PubMed]
50. Vezzulli L,, Grande C,, Reid PC,, Hélaouët P,, Edwards M,, Höfle MG,, Brettar I,, Colwell RR,, Pruzzo C . 2016. Climate influence on Vibrio and associated human diseases during the past half-century in the coastal North Atlantic. Proc Natl Acad Sci U S A 113 : E5062 E5071.[CrossRef][PubMed]
51. Asao T,, Kumeda Y,, Kawai T,, Shibata T,, Oda H,, Haruki K,, Nakazawa H,, Kozaki S . 2003. An extensive outbreak of staphylococcal food poisoning due to low-fat milk in Japan: estimation of enterotoxin A in the incriminated milk and powdered skim milk. Epidemiol Infect 130 : 33 40.[CrossRef]
52. European Centre for Disease Prevention and Control . 2018. Salmonella Agona outbreak associated with infant formula milk. European Centre for Disease Prevention and Control, Stockholm, Sweden. https://ecdc.europa.eu/en/news-events/salmonella-agona-outbreak-associated-infant-formula-milk.
53. Centers for Disease Control and Prevention . 2016. Multistate outbreak of listeriosis linked to packaged salads produced at Springfield, Ohio Dole processing facility (final update). Centers for Disease Control and Prevention, Atlanta, GA. https://www.cdc.gov/listeria/outbreaks/bagged-salads-01-16/index.html.
54. Centers for Disease Control and Prevention . 2015. Multistate outbreak of listeriosis linked to Blue Bell Creameries products (final update). Centers for Disease Control and Prevention, Atlanta, GA. https://www.cdc.gov/listeria/outbreaks/ice-cream-03-15/index.html.
55. Powell DA,, Jacob CJ,, Chapman BJ . 2011. Enhancing food safety culture to reduce rates of foodborne illness. Food Control 22 : 817 822.[CrossRef]
56. Gould LH,, Kline J,, Monahan C,, Vierk K . 2017. Outbreaks of disease associated with food imported into the United States, 1996–2014. 1 Emerg Infect Dis 23 : 525 528.[CrossRef][PubMed]
57. Eurostat—Statistics Explained . 2017. Extra-EU trade in agricultural goods. http://ec.europa.eu/eurostat/statistics-explained/index.php/Extra-EU_trade_in_agricultural_goods.
58. Centers for Disease Control and Prevention . 2017. Reports of Salmonella outbreak investigations from 2017. Centers for Disease Control and Prevention, Atlanta, GA. https://www.cdc.gov/salmonella/outbreaks-2017.html.
59. European Food Safety Authority, European Centre for Disease Prevention and Control . 2017. Multi-country outbreak of Salmonella Enteritidis infections linked to Polish eggs. European Food Safety Authority, Parma, Italy. http://onlinelibrary.wiley.com/doi/10.2903/sp.efsa.2017.EN-1353/epdf.
60. Campos J,, Mourão J,, Silveira L,, Saraiva M,, Correia CB,, Maçãs AP,, Peixe L,, Antunes P . 2018. Imported poultry meat as a source of extended-spectrum cephalosporin-resistant CMY-2-producing Salmonella Heidelberg and Salmonella Minnesota in the European Union, 2014–2015. Int J Antimicrob Agents 51 : 151 154.[CrossRef][PubMed]
61. Liakopoulos A,, Geurts Y,, Dierikx CM,, Brouwer MS,, Kant A,, Wit B,, Heymans R,, van Pelt W,, Mevius DJ . 2016. Extended-spectrum cephalosporin-resistant Salmonella enterica serovar Heidelberg strains, the Netherlands. 1 Emerg Infect Dis 22 : 1257 1261.[CrossRef][PubMed]
62. Li K,, Petersen G,, Barco L,, Hvidtfeldt K,, Liu L,, Dalsgaard A . 2017. Salmonella Weltevreden in integrated and non-integrated tilapia aquaculture systems in Guangdong, China. Food Microbiol 65 : 19 24.[CrossRef][PubMed]
63. Rodríguez-Lázaro D,, Ariza-Miguel J,, Diez-Valcarce M,, Stessl B,, Beutlich J,, Fernández-Natal I,, Hernández M,, Wagner M,, Rovira J . 2015. Identification and molecular characterization of pathogenic bacteria in foods confiscated from non-EU flights passengers at one Spanish airport. Int J Food Microbiol 209 : 20 25.[CrossRef][PubMed]
64. Beutlich J,, Hammerl JA,, Appel B,, Nöckler K,, Helmuth R,, Jöst K,, Ludwig ML,, Hanke C,, Bechtold D,, Mayer-Scholl A . 2015. Characterization of illegal food items and identification of foodborne pathogens brought into the European Union via two major German airports. Int J Food Microbiol 209 : 13 19.[CrossRef][PubMed]
65. Rodríguez-Lázaro D,, Oniciuc EA,, García PG,, Gallego D,, Fernández-Natal I,, Dominguez-Gil M,, Eiros-Bouza JM,, Wagner M,, Nicolau AI,, Hernández M . 2017. Detection and characterization of Staphylococcus aureus and methicillin-resistant S. aureus in foods confiscated in EU borders. Front Microbiol 8 : 1344.[CrossRef][PubMed]
66. Callejón RM,, Rodríguez-Naranjo MI,, Ubeda C,, Hornedo-Ortega R,, Garcia-Parrilla MC,, Troncoso AM . 2015. Reported foodborne outbreaks due to fresh produce in the United States and European Union: trends and causes. Foodborne Pathog Dis 12 : 32 38.[CrossRef][PubMed]
67. EFSA Panel on Biological Hazards (BIOHAZ) . 2015. Scientific opinion on the public health risks related to the consumption of raw drinking milk. EFSA J 13 : 3940.[CrossRef]
68. EFSA Panel on Biological Hazards (BIOHAZ), Ricci A,, Allende A,, Bolton D,, Chemaly M,, Davies R,, Escámez PS,, Girones R,, Herman L,, Koutsoumanis K,, Nørrung B,, Robertson L,, Ru G,, Sanaa M,, Simmons M,, Skandamis P,, Snary E,, Speybroeck N,, Ter Kuile B,, Threlfall J,, Wahlström H,, Takkinen J,, Wagner M,, Arcella D,, Da Silva Felicio MT,, Georgiadis M,, Messens W,, Lindqvist R . 2018. Listeria monocytogenes contamination of ready-to-eat foods and the risk for human health in the EU. EFSA J 16 : 5134.[CrossRef]
69. Baker-Austin C,, Stockley L,, Rangdale R,, Martinez-Urtaza J . 2010. Environmental occurrence and clinical impact of Vibrio vulnificus and Vibrio parahaemolyticus: a European perspective. Environ Microbiol Rep 2 : 7 18.[CrossRef][PubMed]
70. Le Roux F,, Wegner KM,, Baker-Austin C,, Vezzulli L,, Osorio CR,, Amaro C,, Ritchie JM,, Defoirdt T,, Destoumieux-Garzón D,, Blokesch M,, Mazel D,, Jacq A,, Cava F,, Gram L,, Wendling CC,, Strauch E,, Kirschner A,, Huehn S . 2015. The emergence of Vibrio pathogens in Europe: ecology, evolution, and pathogenesis (Paris, 11–12th March 2015). Front Microbiol 6 : 830.[PubMed]
71. Osimani A,, Aquilanti L,, Clementi F . 2016. Salmonellosis associated with mass catering: a survey of European Union cases over a 15-year period. Epidemiol Infect 144 : 3000 3012.[CrossRef][PubMed]
72. Jones AK,, Cross P,, Burton M,, Millman C,, O’Brien SJ,, Rigby D . 2017. Estimating the prevalence of food risk increasing behaviours in UK kitchens. PLoS One 12 : e0175816.[CrossRef][PubMed]
73. El Omeiri N,, Puell-Gomez L,, Camps N,, Bartolome-Comas R,, Simon-Soria F,, Soler-Crespo P,, Martin-Granado A,, Echeita-Sarrionandia A,, Herrera-Guibert D . 2007. International outbreak of salmonellosis in a hotel in Lloret de Mar, Spain, August 2007. Euro Surveill 12 : E071018.3.[PubMed]
74. Rebolledo J,, Garvey P,, Ryan A,, O’Donnell J,, Cormican M,, Jackson S,, Cloak F,, Cullen L,, Swaan CM,, Schimmer B,, Appels RW,, Nygard K,, Finley R,, Sreenivasan N,, Lenglet A,, Gossner C,, McKeown P . 2014. International outbreak investigation of Salmonella Heidelberg associated with in-flight catering. Epidemiol Infect 142 : 833 842.[CrossRef][PubMed]
75. Hochberg NS,, Bhadelia N . 2015. Infections associated with exotic cuisine: the dangers of delicacies. Microbiol Spectr 3 : IOL5-0010-2015.[CrossRef]
76. MacDonald PD,, Whitwam RE,, Boggs JD,, MacCormack JN,, Anderson KL,, Reardon JW,, Saah JR,, Graves LM,, Hunter SB,, Sobel J . 2005. Outbreak of listeriosis among Mexican immigrants as a result of consumption of illicitly produced Mexican-style cheese. Clin Infect Dis 40 : 677 682.[CrossRef][PubMed]
77. World Health Organization . 2006. Five Keys to Safer Food Manual. World Health Organization, Geneva, Switzerland. http://apps.who.int/iris/bitstream/10665/43546/1/9789241594639_eng.pdf?ua=1.
78. Mody RK,, Meyer S,, Trees E,, White PL,, Nguyen T,, Sowadsky R,, Henao OL,, Lafon PC,, Austin J,, Azzam I,, Griffin PM,, Tauxe RV,, Smith K,, Williams IT . 2014. Outbreak of Salmonella enterica serotype I 4,5,12:i:- infections: the challenges of hypothesis generation and microwave cooking. Epidemiol Infect 142 : 1050 1060.[CrossRef][PubMed]
79. Lund BM,, O’Brien SJ . 2011. The occurrence and prevention of foodborne disease in vulnerable people. Foodborne Pathog Dis 8 : 961 973.[CrossRef][PubMed]
80. Goulet V,, Hebert M,, Hedberg C,, Laurent E,, Vaillant V,, De Valk H,, Desenclos JC . 2012. Incidence of listeriosis and related mortality among groups at risk of acquiring listeriosis. Clin Infect Dis 54 : 652 660.[CrossRef][PubMed]
81. Pouillot R,, Klontz KC,, Chen Y,, Burall LS,, Macarisin D,, Doyle M,, Bally KM,, Strain E,, Datta AR,, Hammack TS,, Van Doren JM . 2016. Infectious dose of Listeria monocytogenes in outbreak linked to ice cream, United States, 2015. Emerg Infect Dis 22 : 2113 2119.[CrossRef][PubMed]
82. Gould LH,, Demma L,, Jones TF,, Hurd S,, Vugia DJ,, Smith K,, Shiferaw B,, Segler S,, Palmer A,, Zansky S,, Griffin PM . 2009. Hemolytic uremic syndrome and death in persons with Escherichia coli O157:H7 infection, foodborne diseases active surveillance network sites, 2000–2006. Clin Infect Dis 49 : 1480 1485.[CrossRef][PubMed]
83. Rosow LK,, Strober JB . 2015. Infant botulism: review and clinical update. Pediatr Neurol 52 : 487 492.[CrossRef][PubMed]
84. Daniels NA . 2011. Vibrio vulnificus oysters: pearls and perils. Clin Infect Dis 52 : 788 792.[CrossRef][PubMed]
85. Baker-Austin C,, Oliver JD . 2018. Vibrio vulnificus: new insights into a deadly opportunistic pathogen. Environ Microbiol 20 : 423 430.[CrossRef][PubMed]
86. Bos J,, Smithee L,, McClane B,, Distefano RF,, Uzal F,, Songer JG,, Mallonee S,, Crutcher JM . 2005. Fatal necrotizing colitis following a foodborne outbreak of enterotoxigenic Clostridium perfringens type A infection. Clin Infect Dis 40 : e78 e83.[CrossRef][PubMed]
87. Bowen A,, Newman A,, Estivariz C,, Gilbertson N,, Archer J,, Srinivasan A,, Lynch M,, Painter J . 2007. Role of acid-suppressing medications during a sustained outbreak of Salmonella enteritidis infection in a long-term care facility. Infect Control Hosp Epidemiol 28 : 1202 1205.[CrossRef][PubMed]
88. Gillespie IA,, McLauchlin J,, Little CL,, Penman C,, Mook P,, Grant K,, O’Brien SJ . 2009. Disease presentation in relation to infection foci for non-pregnancy-associated human listeriosis in England and Wales, 2001 to 2007. J Clin Microbiol 47 : 3301 3307.[CrossRef][PubMed]
89. Tam CC,, Higgins CD,, Neal KR,, Rodrigues LC,, Millership SE,, O’Brien SJ, Campylobacter Case-Control Study Group . 2009. Chicken consumption and use of acid-suppressing medications as risk factors for Campylobacter enteritis, England. Emerg Infect Dis 15 : 1402 1408.[CrossRef][PubMed]
90. Begley M,, Hill C . 2015. Stress adaptation in foodborne pathogens. Annu Rev Food Sci Technol 6 : 191 210.[CrossRef][PubMed]
91. Wesche AM,, Gurtler JB,, Marks BP,, Ryser ET . 2009. Stress, sublethal injury, resuscitation, and virulence of bacterial foodborne pathogens. J Food Prot 72 : 1121 1138.[CrossRef][PubMed]
92. Yousef AE,, Courtney PD, . 2003. Basics of stress adaptation and implications in new-generation foods, p 1 30. In Yousef AE,, Juneja VK (ed), Microbial Stress Adaptation and Food Safety. CRC Press, Boca Raton, FL.[PubMed]
93. Browne HP,, Neville BA,, Forster SC,, Lawley TD . 2017. Transmission of the gut microbiota: spreading of health. Nat Rev Microbiol 15 : 531 543.[CrossRef][PubMed]
94. Singh S,, Shalini R . 2016. Effect of hurdle technology in food preservation: a review. Crit Rev Food Sci Nutr 56 : 641 649.[CrossRef][PubMed]
95. Fang FC,, Frawley ER,, Tapscott T,, Vázquez-Torres A . 2016. Bacterial stress responses during host infection. Cell Host Microbe 20 : 133 143.[CrossRef]
96. Alvarez-Ordóñez A,, Broussolle V,, Colin P,, Nguyen-The C,, Prieto M . 2015. The adaptive response of bacterial food-borne pathogens in the environment, host and food: implications for food safety. Int J Food Microbiol 213 : 99 109.[CrossRef]
97. Anderson CJ,, Kendall MM . 2017. Salmonella enterica serovar Typhimurium strategies for host adaptation. Front Microbiol 8 : 1983.[CrossRef][PubMed]
98. Kim JC,, Oh E,, Kim J,, Jeon B . 2015. Regulation of oxidative stress resistance in Campylobacter jejuni, a microaerophilic foodborne pathogen. Front Microbiol 6 : 751.[CrossRef][PubMed]
99. Burgess CM,, Gianotti A,, Gruzdev N,, Holah J,, Knøchel S,, Lehner A,, Margas E,, Esser SS,, Sela Saldinger S,, Tresse O . 2016. The response of foodborne pathogens to osmotic and desiccation stresses in the food chain. Int J Food Microbiol 221 : 37 53.[CrossRef][PubMed]
100. Wieczorek K,, Osek J . 2013. Antimicrobial resistance mechanisms among Campylobacter. BioMed Res Int 2013 : 340605.[CrossRef][PubMed]
101. Mourão J,, Novais C,, Machado J,, Peixe L,, Antunes P . 2015. Metal tolerance in emerging clinically relevant multidrug-resistant Salmonella enterica serotype 4,[5],12:i:- clones circulating in Europe. Int J Antimicrob Agents 45 : 610 616.[CrossRef][PubMed]
102. Mourão J,, Marçal S,, Ramos P,, Campos J,, Machado J,, Peixe L,, Novais C,, Antunes P . 2016. Tolerance to multiple metal stressors in emerging non-typhoidal MDR Salmonella serotypes: a relevant role for copper in anaerobic conditions. J Antimicrob Chemother 71 : 2147 2157.[CrossRef][PubMed]
103. Finn S,, Condell O,, McClure P,, Amézquita A,, Fanning S . 2013. Mechanisms of survival, responses and sources of Salmonella in low-moisture environments. Front Microbiol 4 : 331.[CrossRef][PubMed]
104. Tamber S . 2018. Population-wide survey of Salmonella enterica response to high-pressure processing reveals a diversity of responses and tolerance mechanisms. Appl Environ Microbiol 84 : e01673-17.[PubMed]
105. Dawoud TM,, Davis ML,, Park SH,, Kim SA,, Kwon YM,, Jarvis N,, O’Bryan CA,, Shi Z,, Crandall PG,, Ricke SC . 2017. The potential link between thermal resistance and virulence in Salmonella: a review. Front Vet Sci 4 : 93.[CrossRef][PubMed]
106. Álvarez-Ordóñez A,, Prieto M,, Bernardo A,, Hill C,, López M . 2012. The acid tolerance response of Salmonella spp.: an adaptive strategy to survive in stressful environments prevailing in foods and the host. Food Res Int 45 : 482 492.[CrossRef]
107. Mercer RG,, Zheng J,, Garcia-Hernandez R,, Ruan L,, Gänzle MG,, McMullen LM . 2015. Genetic determinants of heat resistance in Escherichia coli. Front Microbiol 6 : 932.[CrossRef][PubMed]
108. Vidovic S,, Korber DR . 2016. Escherichia coli O157: insights into the adaptive stress physiology and the influence of stressors on epidemiology and ecology of this human pathogen. Crit Rev Microbiol 42 : 83 93.[CrossRef][PubMed]
109. NicAogáin K,, O’Byrne CP . 2016. The role of stress and stress adaptations in determining the fate of the bacterial pathogen Listeria monocytogenes in the food chain. Front Microbiol 7 : 1865.[CrossRef]
110. Møretrø T,, Schirmer BC,, Heir E,, Fagerlund A,, Hjemli P,, Langsrud S . 2017. Tolerance to quaternary ammonium compound disinfectants may enhance growth of Listeria monocytogenes in the food industry. Int J Food Microbiol 241 : 215 224.[CrossRef][PubMed]
111. Kremer PH,, Lees JA,, Koopmans MM,, Ferwerda B,, Arends AW,, Feller MM,, Schipper K,, Valls Seron M,, van der Ende A,, Brouwer MC,, van de Beek D,, Bentley SD . 2017. Benzalkonium tolerance genes and outcome in Listeria monocytogenes meningitis. Clin Microbiol Infect 23 : 265.e1 265.e7.[CrossRef][PubMed]
112. Kalburge SS,, Whitaker WB,, Boyd EF . 2014. High-salt preadaptation of Vibrio parahaemolyticus enhances survival in response to lethal environmental stresses. J Food Prot 77 : 246 253.[CrossRef][PubMed]
113. Duport C,, Jobin M,, Schmitt P . 2016. Adaptation in Bacillus cereus: from stress to disease. Front Microbiol 7 : 1550.[CrossRef][PubMed]
114. Orieskova M,, Kajsik M,, Szemes T,, Holy O,, Forsythe S,, Turna J,, Drahovska H . 2016. Contribution of the thermotolerance genomic island to increased thermal tolerance in Cronobacter strains. Antonie Van Leeuwenhoek 109 : 405 414.[CrossRef][PubMed]
115. Hernández SB,, Cota I,, Ducret A,, Aussel L,, Casadesús J . 2012. Adaptation and preadaptation of Salmonella enterica to bile. PLoS Genet 8 : e1002459.[CrossRef][PubMed]
116. Lianou A,, Nychas GE,, Koutsoumanis KP . 2017. Variability in the adaptive acid tolerance response phenotype of Salmonella enterica strains. Food Microbiol 62 : 99 105.[CrossRef][PubMed]
117. Gruzdev N,, Pinto R,, Sela S . 2011. Effect of desiccation on tolerance of Salmonella enterica to multiple stresses. Appl Environ Microbiol 77 : 1667 1673.[CrossRef][PubMed]
118. Begley M,, Gahan CG,, Hill C . 2002. Bile stress response in Listeria monocytogenes LO28: adaptation, cross-protection, and identification of genetic loci involved in bile resistance. Appl Environ Microbiol 68 : 6005 6012.[CrossRef][PubMed]
119. Chung HJ,, Bang W,, Drake MA . 2006. Stress response of Escherichia coli. Compr Rev Food Sci Food Saf 5 : 52 64.[CrossRef]
120. Schelin J,, Wallin-Carlquist N,, Cohn MT,, Lindqvist R,, Barker GC,, Rådström P . 2011. The formation of Staphylococcus aureus enterotoxin in food environments and advances in risk assessment. Virulence 2 : 580 592.[CrossRef][PubMed]
121. Ehling-Schulz M,, Frenzel E,, Gohar M . 2015. Food-bacteria interplay: pathometabolism of emetic Bacillus cereus. Front Microbiol 6 : 704.[CrossRef][PubMed]
122. Kapperud G,, Gustavsen S,, Hellesnes I,, Hansen AH,, Lassen J,, Hirn J,, Jahkola M,, Montenegro MA,, Helmuth R . 1990. Outbreak of Salmonella typhimurium infection traced to contaminated chocolate and caused by a strain lacking the 60-megadalton virulence plasmid. J Clin Microbiol 28 : 2597 2601.[PubMed]
123. Lenzi LJ,, Lucchesi PM,, Medico L,, Burgán J,, Krüger A . 2016. Effect of the food additives sodium citrate and disodium phosphate on Shiga toxin-producing Escherichia coli and production of stx-phages and Shiga toxin. Front Microbiol 7 : 992.[CrossRef][PubMed]
124. Crozier L,, Hedley PE,, Morris J,, Wagstaff C,, Andrews SC,, Toth I,, Jackson RW,, Holden NJ . 2016. Whole-transcriptome analysis of verocytotoxigenic Escherichia coli O157:H7 (Sakai) suggests plant-species-specific metabolic responses on exposure to spinach and lettuce extracts. Front Microbiol 7 : 1088.[PubMed]
125. Lawley TD,, Bouley DM,, Hoy YE,, Gerke C,, Relman DA,, Monack DM . 2008. Host transmission of Salmonella enterica serovar Typhimurium is controlled by virulence factors and indigenous intestinal microbiota. Infect Immun 76 : 403 416.[CrossRef][PubMed]
126. Brooks AN,, Turkarslan S,, Beer KD,, Lo FY,, Baliga NS . 2011. Adaptation of cells to new environments. Wiley Interdiscip Rev Syst Biol Med 3 : 544 561.[CrossRef][PubMed]
127. Abee T,, Koomen J,, Metselaar KI,, Zwietering MH,, den Besten HM . 2016. Impact of pathogen population heterogeneity and stress-resistant variants on food safety. Annu Rev Food Sci Technol 7 : 439 456.[CrossRef][PubMed]
128. Guldimann C,, Guariglia-Oropeza V,, Harrand S,, Kent D,, Boor KJ,, Wiedmann M . 2017. Stochastic and differential activation of σ B and PrfA in Listeria monocytogenes at the single cell level under different environmental stress conditions. Front Microbiol 8 : 348.[CrossRef][PubMed]
129. Ortiz S,, López V,, Martínez-Suárez JV . 2014. Control of Listeria monocytogenes contamination in an Iberian pork processing plant and selection of benzalkonium chloride-resistant strains. Food Microbiol 39 : 81 88.[CrossRef][PubMed]
130. Moura A,, Criscuolo A,, Pouseele H,, Maury MM,, Leclercq A,, Tarr C,, Björkman JT,, Dallman T,, Reimer A,, Enouf V,, Larsonneur E,, Carleton H,, Bracq-Dieye H,, Katz LS,, Jones L,, Touchon M,, Tourdjman M,, Walker M,, Stroika S,, Cantinelli T,, Chenal-Francisque V,, Kucerova Z,, Rocha EP,, Nadon C,, Grant K,, Nielsen EM,, Pot B,, Gerner-Smidt P,, Lecuit M,, Brisse S . 2016. Whole genome-based population biology and epidemiological surveillance of Listeria monocytogenes. Nat Microbiol 2 : 16185.[CrossRef][PubMed]
131. Schmitz-Esser S,, Müller A,, Stessl B,, Wagner M . 2015. Genomes of sequence type 121 Listeria monocytogenes strains harbor highly conserved plasmids and prophages. Front Microbiol 6 : 380.[CrossRef][PubMed]
132. Ferreira V,, Wiedmann M,, Teixeira P,, Stasiewicz MJ . 2014. Listeria monocytogenes persistence in food-associated environments: epidemiology, strain characteristics, and implications for public health. J Food Prot 77 : 150 170.[CrossRef][PubMed]
133. Hingston P,, Chen J,, Dhillon BK,, Laing C,, Bertelli C,, Gannon V,, Tasara T,, Allen K,, Brinkman FS,, Truelstrup Hansen L,, Wang S . 2017. Genotypes associated with Listeria monocytogenes isolates displaying impaired or enhanced tolerances to cold, salt, acid, or desiccation stress. Front Microbiol 8 : 369.[CrossRef][PubMed]
134. Dlusskaya EA,, McMullen LM,, Gänzle MG . 2011. Characterization of an extremely heat-resistant Escherichia coli obtained from a beef processing facility. J Appl Microbiol 110 : 840 849.[CrossRef][PubMed]
135. Mercer RG,, Walker BD,, Yang X,, McMullen LM,, Gänzle MG . 2017. The locus of heat resistance (LHR) mediates heat resistance in Salmonella enterica, Escherichia coli and Enterobacter cloacae. Food Microbiol 64 : 96 103.[CrossRef][PubMed]
136. Zhou K,, Ferdous M,, de Boer RF,, Kooistra-Smid AM,, Grundmann H,, Friedrich AW,, Rossen JW . 2015. The mosaic genome structure and phylogeny of Shiga toxin-producing Escherichia coli O104:H4 is driven by short-term adaptation. Clin Microbiol Infect 21 : 468.e7 468.e18.[CrossRef][PubMed]
137. Grad YH,, Godfrey P,, Cerquiera GC,, Mariani-Kurkdjian P,, Gouali M,, Bingen E,, Shea TP,, Haas BJ,, Griggs A,, Young S,, Zeng Q,, Lipsitch M,, Waldor MK,, Weill FX,, Wortman JR,, Hanage WP . 2013. Comparative genomics of recent Shiga toxin-producing Escherichia coli O104:H4: short-term evolution of an emerging pathogen. mBio 4 : e00452-12.[CrossRef][PubMed]
138. Baquero F,, Tobes R . 2013. Bloody coli: a gene cocktail in Escherichia coli O104:H4. mBio 4 : e00066-13.[CrossRef][PubMed]
139. Karch H,, Denamur E,, Dobrindt U,, Finlay BB,, Hengge R,, Johannes L,, Ron EZ,, Tønjum T,, Sansonetti PJ,, Vicente M . 2012. The enemy within us: lessons from the 2011 European Escherichia coli O104:H4 outbreak. EMBO Mol Med 4 : 841 848.[CrossRef][PubMed]
140. Parker CT,, Kyle JL,, Huynh S,, Carter MQ,, Brandl MT,, Mandrell RE . 2012. Distinct transcriptional profiles and phenotypes exhibited by Escherichia coli O157:H7 isolates related to the 2006 spinach-associated outbreak. Appl Environ Microbiol 78 : 455 463.[CrossRef][PubMed]
141. Martínez-Vaz BM,, Fink RC,, Diez-Gonzalez F,, Sadowsky MJ . 2014. Enteric pathogen-plant interactions: molecular connections leading to colonization and growth and implications for food safety. Microbes Environ 29 : 123 135.[CrossRef][PubMed]
142. Brandl MT,, Amundson R . 2008. Leaf age as a risk factor in contamination of lettuce with Escherichia coli O157:H7 and Salmonella enterica. Appl Environ Microbiol 74 : 2298 2306.[CrossRef][PubMed]
143. Gu G,, Hu J,, Cevallos-Cevallos JM,, Richardson SM,, Bartz JA,, van Bruggen AH . 2011. Internal colonization of Salmonella enterica serovar Typhimurium in tomato plants. PLoS One 6 : e27340.[CrossRef][PubMed]
144. Kroupitski Y,, Golberg D,, Belausov E,, Pinto R,, Swartzberg D,, Granot D,, Sela S . 2009. Internalization of Salmonella enterica in leaves is induced by light and involves chemotaxis and penetration through open stomata. Appl Environ Microbiol 75 : 6076 6086.[CrossRef][PubMed]
145. Shenoy AG,, Oliver HF,, Deering AJ . 2017. Listeria monocytogenes internalizes in romaine lettuce grown in greenhouse conditions. J Food Prot 80 : 573 581.[CrossRef][PubMed]
146. Erickson MC,, Webb CC,, Davey LE,, Payton AS,, Flitcroft ID,, Doyle MP . 2014. Biotic and abiotic variables affecting internalization and fate of Escherichia coli O157:H7 isolates in leafy green roots. J Food Prot 77 : 872 879.[CrossRef][PubMed]
147. Wadamori Y,, Gooneratne R,, Hussain MA . 2017. Outbreaks and factors influencing microbiological contamination of fresh produce. J Sci Food Agric 97 : 1396 1403.[CrossRef][PubMed]
148. Leenanon B,, Drake MA . 2001. Acid stress, starvation, and cold stress affect poststress behavior of Escherichia coli O157:H7 and nonpathogenic Escherichia coli. J Food Prot 64 : 970 974.[CrossRef][PubMed]
149. Poimenidou SV,, Chatzithoma DN,, Nychas GJ,, Skandamis PN . 2016. Adaptive response of Listeria monocytogenes to heats Salinity and low pH, after habituation on cherry tomatoes and lettuce leaves. PLoS One 11 : e0165746.[CrossRef][PubMed]
150. Aviles B,, Klotz C,, Smith T,, Williams R,, Ponder M . 2013. Survival of Salmonella enterica serotype Tennessee during simulated gastric passage is improved by low water activity and high fat content. J Food Prot 76 : 333 337.[CrossRef][PubMed]
151. Birk T,, Kristensen K,, Harboe A,, Hansen TB,, Ingmer H,, De Jonge R,, Takumi K,, Aabo S . 2012. Dietary proteins extend the survival of Salmonella Dublin in a gastric acid environment. J Food Prot 75 : 353 358.[CrossRef][PubMed]
152. Liu Y,, Gill A,, McMullen L,, Gänzle MG . 2015. Variation in heat and pressure resistance of verotoxigenic and nontoxigenic Escherichia coli. J Food Prot 78 : 111 120.[CrossRef][PubMed]
153. Li H,, Gänzle M . 2016. Some like it hot: heat resistance of Escherichia coli in food. Front Microbiol 7 : 1763.[CrossRef][PubMed]
154. Stackhouse RR,, Faith NG,, Kaspar CW,, Czuprynski CJ,, Wong AC . 2012. Survival and virulence of Salmonella enterica serovar Enteritidis filaments induced by reduced water activity. Appl Environ Microbiol 78 : 2213 2220.[CrossRef][PubMed]
155. Zhao X,, Zhong J,, Wei C,, Lin CW,, Ding T . 2017. Current perspectives on viable but non-culturable state in foodborne pathogens. Front Microbiol 8 : 580.[CrossRef][PubMed]
156. Patrone V,, Campana R,, Vallorani L,, Dominici S,, Federici S,, Casadei L,, Gioacchini AM,, Stocchi V,, Baffone W . 2013. CadF expression in Campylobacter jejuni strains incubated under low-temperature water microcosm conditions which induce the viable but non-culturable (VBNC) state. Antonie Van Leeuwenhoek 103 : 979 988.[CrossRef][PubMed]
157. Yaron S,, Matthews KR . 2002. A reverse transcriptase-polymerase chain reaction assay for detection of viable Escherichia coli O157:H7: investigation of specific target genes. J Appl Microbiol 92 : 633 640.[CrossRef][PubMed]
158. Dinu LD,, Bach S . 2011. Induction of viable but nonculturable Escherichia coli O157:H7 in the phyllosphere of lettuce: a food safety risk factor. Appl Environ Microbiol 77 : 8295 8302.[CrossRef][PubMed]
159. Orruño M,, Kaberdin VR,, Arana I . 2017. Survival strategies of Escherichia coli and Vibrio spp.: contribution of the viable but nonculturable phenotype to their stress-resistance and persistence in adverse environments. World J Microbiol Biotechnol 33 : 45.[CrossRef][PubMed]
160. Aurass P,, Prager R,, Flieger A . 2011. EHEC/EAEC O104:H4 strain linked with the 2011 German outbreak of haemolytic uremic syndrome enters into the viable but non-culturable state in response to various stresses and resuscitates upon stress relief. Environ Microbiol 13 : 3139 3148.[CrossRef][PubMed]
161. Schelin J,, Susilo YB,, Johler S . 2017. Expression of staphylococcal enterotoxins under stress encountered during food production and preservation. Toxins (Basel) 9 : E401.[CrossRef][PubMed]
162. Walker-York-Moore L,, Moore SC,, Fox EM . 2017. Characterization of enterotoxigenic Bacillus cereus sensu lato and Staphylococcus aureus isolates and associated enterotoxin production dynamics in milk or meat-based broth. Toxins (Basel) 9 : E225.[CrossRef][PubMed]
163. Wallin-Carlquist N,, Cao R,, Márta D,, da Silva AS,, Schelin J,, Rådström P . 2010. Acetic acid increases the phage-encoded enterotoxin A expression in Staphylococcus aureus. BMC Microbiol 10 : 147.[CrossRef][PubMed]
164. Zeaki N,, Rådström P,, Schelin J . 2015. Evaluation of potential effects of NaCl and sorbic acid on staphylococcal enterotoxin A formation. Microorganisms 3 : 551 566.[CrossRef][PubMed]
165. Regenthal P,, Hansen JS,, André I,, Lindkvist-Petersson K . 2017. Thermal stability and structural changes in bacterial toxins responsible for food poisoning. PLoS One 12 : e0172445.[CrossRef][PubMed]
166. Ikeda T,, Tamate N,, Yamaguchi K,, Makino S . 2005. Mass outbreak of food poisoning disease caused by small amounts of staphylococcal enterotoxins A and H. Appl Environ Microbiol 71 : 2793 2795.[CrossRef][PubMed]
167. Jørgensen HJ,, Mathisen T,, Løvseth A,, Omoe K,, Qvale KS,, Loncarevic S . 2005. An outbreak of staphylococcal food poisoning caused by enterotoxin H in mashed potato made with raw milk. FEMS Microbiol Lett 252 : 267 272.[CrossRef][PubMed]
168. Munns KD,, Selinger LB,, Stanford K,, Guan L,, Callaway TR,, McAllister TA . 2015. Perspectives on super-shedding of Escherichia coli O157:H7 by cattle. Foodborne Pathog Dis 12 : 89 103.[CrossRef][PubMed]
169. Bäumler AJ,, Sperandio V . 2016. Interactions between the microbiota and pathogenic bacteria in the gut. Nature 535 : 85 93.[CrossRef][PubMed]
170. Marzel A,, Desai PT,, Goren A,, Schorr YI,, Nissan I,, Porwollik S,, Valinsky L,, McClelland M,, Rahav G,, Gal-Mor O . 2016. Persistent Infections by nontyphoidal Salmonella in humans: epidemiology and genetics. Clin Infect Dis 62 : 879 886.[CrossRef][PubMed]
171. Feasey NA,, Dougan G,, Kingsley RA,, Heyderman RS,, Gordon MA . 2012. Invasive non-typhoidal Salmonella disease: an emerging and neglected tropical disease in Africa. Lancet 379 : 2489 2499.[CrossRef]
172. Dearlove BL,, Cody AJ,, Pascoe B,, Méric G,, Wilson DJ,, Sheppard SK . 2016. Rapid host switching in generalist Campylobacter strains erodes the signal for tracing human infections. ISME J 10 : 721 729.[CrossRef]
173. Alemka A,, Corcionivoschi N,, Bourke B . 2012. Defense and adaptation: the complex inter-relationship between Campylobacter jejuni and mucus. Front Cell Infect Microbiol 2 : 15.[CrossRef]
174. Robyn J,, Rasschaert G,, Pasmans F,, Heyndrickx M . 2015. Thermotolerant Campylobacter during broiler rearing: risk factors and intervention. Compr Rev Food Sci Food Saf 14 : 81 105.[CrossRef]
175. Stein RA,, Katz DE . 2017. Escherichia coli, cattle and the propagation of disease. FEMS Microbiol Lett 364 : fnx050.[CrossRef][PubMed]
176. Xu Y,, Dugat-Bony E,, Zaheer R,, Selinger L,, Barbieri R,, Munns K,, McAllister TA,, Selinger LB . 2014. Escherichia coli O157:H7 super-shedder and non-shedder feedlot steers harbour distinct fecal bacterial communities. PLoS One 9 : e98115.[CrossRef][PubMed]
177. Wang O,, Liang G,, McAllister TA,, Plastow G,, Stanford K,, Selinger B,, Guan L . 2016. Comparative transcriptomic analysis of rectal tissue from beef steers revealed reduced host immunity in Escherichia coli O157:H7 super-shedders. PLoS One 11 : e0151284.[CrossRef][PubMed]
178. Murase T,, Yamada M,, Muto T,, Matsushima A,, Yamai S . 2000. Fecal excretion of Salmonella enterica serovar Typhimurium following a food-borne outbreak. J Clin Microbiol 38 : 3495 3497.[PubMed]
179. Sheppard SK,, Didelot X,, Meric G,, Torralbo A,, Jolley KA,, Kelly DJ,, Bentley SD,, Maiden MC,, Parkhill J,, Falush D . 2013. Genome-wide association study identifies vitamin B5 biosynthesis as a host specificity factor in Campylobacter. Proc Natl Acad Sci U S A 110 : 11923 11927.[CrossRef][PubMed]
180. Llarena AK,, Taboada E,, Rossi M . 2017. Whole-genome sequencing in epidemiology of Campylobacter jejuni infections. J Clin Microbiol 55 : 1269 1275.[CrossRef][PubMed]
181. Crump JA,, Sjölund-Karlsson M,, Gordon MA,, Parry CM . 2015. Epidemiology, clinical presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial management of invasive Salmonella infections. Clin Microbiol Rev 28 : 901 937.[CrossRef][PubMed]
182. European Commission . 2017. A European One Health Action Plan against Antimicrobial Resistance (AMR). European Commission, Brussels, Belgium https://ec.europa.eu/health/amr/sites/amr/files/amr_action_plan_2017_en.pdf.
183. European Food Safety Authority, European Centre for Disease Prevention and Control . 2016. The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2014. EFSA J 14 : 4380. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2016.4380/epdf.
184. World Health Organization . 2015. Global Action Plan on Antimicrobial Resistance. World Health Organization, Geneva, Switzerland. http://apps.who.int/iris/bitstream/10665/193736/1/9789241509763_eng.pdf?ua=1.
185. Food and Agriculture Organization of the United Nations . 2016. The FAO Action Plan on Antimicrobial Resistance 2016–2020. Food and Agriculture Organization of the United Nations, Rome, Italy. http://www.fao.org/3/a-i5996e.pdf.
186. World Health Organization . 2017. WHO Guidelines on Use of Medically Important Antimicrobials in Food-Producing Animals. World Health Organization, Geneva, Switzerland. http://apps.who.int/iris/bitstream/10665/258970/1/9789241550130-eng.pdf?ua=1.
187. Centers for Disease Control and Prevention . 2013. Antibiotic Resistance Threats in the United States, 2013. Centers for Disease Control and Prevention, Atlanta, GA. https://www.cdc.gov/drugresistance/threat-report-2013/pdf/ar-threats-2013-508.pdf.
188. European Food Safety Authority . 2009. Joint opinion on antimicrobial resistance (AMR) focused on zoonotic infections. EFSA J 7 : 1372.[CrossRef]
189. Founou LL,, Founou RC,, Essack SY . 2016. Antibiotic resistance in the food chain: a developing country-perspective. Front Microbiol 7 : 1881.[CrossRef]
190. Chang Q,, Wang W,, Regev-Yochay G,, Lipsitch M,, Hanage WP . 2015. Antibiotics in agriculture and the risk to human health: how worried should we be? Evol Appl 8 : 240 247.[CrossRef][PubMed]
191. Holmes AH,, Moore LS,, Sundsfjord A,, Steinbakk M,, Regmi S,, Karkey A,, Guerin PJ,, Piddock LJ . 2016. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 387 : 176 187.[CrossRef]
192. Aarestrup FM . 2015. The livestock reservoir for antimicrobial resistance: a personal view on changing patterns of risks, effects of interventions and the way forward. Philos Trans R Soc Lond B Biol Sci 370 : 20140085.[CrossRef][PubMed]
193. Silveira E,, Freitas AR,, Antunes P,, Barros M,, Campos J,, Coque TM,, Peixe L,, Novais C . 2014. Co-transfer of resistance to high concentrations of copper and first-line antibiotics among Enterococcus from different origins (humans, animals, the environment and foods) and clonal lineages. J Antimicrob Chemother 69 : 899 906.[CrossRef][PubMed]
194. Toutain PL,, Ferran AA,, Bousquet-Melou A,, Pelligand L,, Lees P . 2016. Veterinary medicine needs new green antimicrobial drugs. Front Microbiol 7 : 1196.[CrossRef][PubMed]
195. EFSA Panel on Biological Hazards (BIOHAZ) . 2011. Scientific opinion on the public health risks of bacterial strains producing extended-spectrum β-lactamases and/or AmpC β-lactamases in food and food-producing animals. EFSA J 9 : 2322.[CrossRef]
196. Threlfall EJ,, Ward LR,, Frost JA,, Cheasty T,, Willshaw GA . The emergence and spread of antibiotic resistance in food-borne bacteria in the United Kingdom. AUPA Newsletter 17 : 1 7.
197. Nachamkin I,, Ung H,, Li M . 2002. Increasing fluoroquinolone resistance in Campylobacter jejuni, Pennsylvania, USA,1982–2001. Emerg Infect Dis 8 : 1501 1503.[CrossRef][PubMed]
198. Endtz HP,, Ruijs GJ,, van Klingeren B,, Jansen WH,, van der Reyden T,, Mouton RP . 1991. Quinolone esistance in Campylobacter isolated from man and poultry following the introduction of fluoroquinolones in veterinary medicine. J Antimicrob Chemother 27 : 199 208.[CrossRef][PubMed]
199. Dutil L,, Irwin R,, Finley R,, Ng LK,, Avery B,, Boerlin P,, Bourgault AM,, Cole L,, Daignault D,, Desruisseau A,, Demczuk W,, Hoang L,, Horsman GB,, Ismail J,, Jamieson F,, Maki A,, Pacagnella A,, Pillai DR . 2010. Ceftiofur resistance in Salmonella enterica serovar Heidelberg from chicken meat and humans, Canada. Emerg Infect Dis 16 : 48 54.[CrossRef][PubMed]
200. van den Bogaard AE,, Bruinsma N,, Stobberingh EE . 2000. The effect of banning avoparcin on VRE carriage in The Netherlands. J Antimicrob Chemother 46 : 146 148.[CrossRef][PubMed]
201. Klare I,, Badstübner D,, Konstabel C,, Böhme G,, Claus H,, Witte W . 1999. Decreased incidence of VanA-type vancomycin-resistant enterococci isolated from poultry meat and from fecal samples of humans in the community after discontinuation of avoparcin usage in animal husbandry. Microb Drug Resist 5 : 45 52.[CrossRef][PubMed]
202. Bager F,, Aarestrup FM,, Madsen M,, Wegener HC . 1999. Glycopeptide resistance in Enterococcus faecium from broilers and pigs following discontinued use of avoparcin. Microb Drug Resist 5 : 53 56.[CrossRef][PubMed]
203. Pantosti A,, Del Grosso M,, Tagliabue S,, Macrì A,, Caprioli A . 1999. Decrease of vancomycin-resistant enterococci in poultry meat after avoparcin ban. Lancet 354 : 741 742.[CrossRef]
204. European Centre for Disease Prevention and Control (ECDC), European Food Safety Authority (EFSA), European Medicines Agency (EMA) . 2017. ECDC/EFSA/EMA second joint report on the integrated analysis of the consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food producing animals. Joint Interagency Antimicrobial Consumption and Resistance Analysis (JIACRA) report. EFSA J 15 : 4872.[CrossRef]
205. Antunes P,, Machado J,, Peixe L . 2006. Illegal use of nitrofurans in food animals: contribution to human salmonellosis? Clin Microbiol Infect 12 : 1047 1049.[CrossRef][PubMed]
206. National Antimicrobial Resistance Monitoring System . 2017. NARMS 2015 Integrated Report. Food and Drug Administration, Laurel, MD. https://www.fda.gov/downloads/AnimalVeterinary/SafetyHealth/AntimicrobialResistance/NationalAntimicrobialResistanceMonitoringSystem/UCM581468.pdf.
207. Lee HY,, Su LH,, Tsai MH,, Kim SW,, Chang HH,, Jung SI,, Park KH,, Perera J,, Carlos C,, Tan BH,, Kumarasinghe G,, So T,, Chongthaleong A,, Hsueh PR,, Liu JW,, Song JH,, Chiu CH . 2009. High rate of reduced susceptibility to ciprofloxacin and ceftriaxone among nontyphoid Salmonella clinical isolates in Asia. Antimicrob Agents Chemother 53 : 2696 2699.[CrossRef][PubMed]
208. Van TT,, Nguyen HN,, Smooker PM,, Coloe PJ . 2012. The antibiotic resistance characteristics of non-typhoidal Salmonella enterica isolated from food-producing animals, retail meat and humans in South East Asia. Int J Food Microbiol 154 : 98 106.[CrossRef]