Chapter 17 : Antimicrobial Resistance in spp. and spp.

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Antimicrobial Resistance in spp. and spp., Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819804/9781555819798_Chap17-1.gif /docserver/preview/fulltext/10.1128/9781555819804/9781555819798_Chap17-2.gif


The genus includes 50 species of nonmotile Gram-negative rods that are strictly aerobic, adapted to a wide range of temperatures, and able to survive on abiotic surfaces. Many species belonging to the genus are able to cause infections, favored by the presence of indwelling devices, in immune-compromised human hosts ( ). The lethality of infections is elevated in more than 50% of cases ( ). Among the spp., is the most prevalent, responsible for 95% of infections and outbreaks in hospitals, followed by . and . . The ability of to survive in the hospital environment promotes its diffusion by outbreaks and epidemics. To date, several global epidemics have occurred, sustained by a few strains belonging to successful lineages, namely, clonal complex I-III, as characterized by multilocus sequence typing ( ). Recently, another lineage with the potential for global diffusion, delineated as sequence type (ST) 25, has emerged ( ). Preventing the introduction of . into hospital settings could contribute to preventing the further spread of multidrug-resistant isolates. Although its reservoir remains unknown, this organism has been found in soil, water, and food, including fish, milk, raw vegetables, and meat, which has earned it the definition of “ubiquitous.” The presence in retail meat samples of . isolates belonging to a clonal complex commonly associated with multidrug-resistant clones invites the speculation that food may carry organisms into hospital settings. A highly selective pressure exerted by antimicrobial usage may positively select those isolates able to acquire and/or develop resistance mechanisms ( ). Unfortunately, spp. can also be pathogenic for animals. In the following paragraphs, an overview of the infections, the principal mechanisms of antibiotic resistance, and their epidemiology in spp. among animals will be presented.

Citation: Lupo A, Haenni M, Madec J. 2018. Antimicrobial Resistance in spp. and spp., p 377-393. In Schwarz S, Cavaco L, Shen J (ed), Antimicrobial Resistance in Bacteria from Livestock and Companion Animals. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.ARBA-0007-2017
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Overview of spp., sequence types, and acquired carbapenem resistance mechanisms.

Citation: Lupo A, Haenni M, Madec J. 2018. Antimicrobial Resistance in spp. and spp., p 377-393. In Schwarz S, Cavaco L, Shen J (ed), Antimicrobial Resistance in Bacteria from Livestock and Companion Animals. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.ARBA-0007-2017
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Fishbain J,, Peleg AY . 2010. Treatment of Acinetobacter infections. Clin Infect Dis 51 : 79 84.[CrossRef][PubMed]
2. Karaiskos I,, Giamarellou H . 2014. Multidrug-resistant and extensively drug-resistant Gram-negative pathogens: current and emerging therapeutic approaches. Expert Opin Pharmacother 15 : 1351 1370.[CrossRef][PubMed]
3. Bartual SG,, Seifert H,, Hippler C,, Luzon MA,, Wisplinghoff H,, Rodríguez-Valera F . 2005. Development of a multilocus sequence typing scheme for characterization of clinical isolates of Acinetobacter baumannii. J Clin Microbiol 43 : 4382 4390.[CrossRef][PubMed]
4. Sahl JW,, Del Franco M,, Pournaras S,, Colman RE,, Karah N,, Dijkshoorn L,, Zarrilli R . 2015. Phylogenetic and genomic diversity in isolates from the globally distributed Acinetobacter baumannii ST25 lineage. Sci Rep 5 : 15188.[CrossRef][PubMed]
5. Lupo A,, Vogt D,, Seiffert SN,, Endimiani A,, Perreten V . 2014. Antibiotic resistance and phylogenetic characterization of Acinetobacter baumannii strains isolated from commercial raw meat in Switzerland. J Food Prot 77 : 1976 1981.[CrossRef][PubMed]
6. Belmonte O,, Pailhoriès H,, Kempf M,, Gaultier MP,, Lemarié C,, Ramont C,, Joly-Guillou ML,, Eveillard M . 2014. High prevalence of closely-related Acinetobacter baumannii in pets according to a multicentre study in veterinary clinics, Reunion Island. Vet Microbiol 170 : 446 450.[CrossRef]
7. Cattabiani F,, Cabassi E,, Allodi C,, Gianelli F . 1976. Bacterial flora of the conjunctival sac of the horse. Ann Sclavo 18 : 91 119. (In Italian.)[PubMed]
8. Johns IC,, Baxter K,, Booler H,, Hicks C,, Menzies-Gow N . 2011. Conjunctival bacterial and fungal flora in healthy horses in the UK. Vet Ophthalmol 14 : 195 199.[CrossRef][PubMed]
9. Kumsa B,, Socolovschi C,, Parola P,, Rolain JM,, Raoult D . 2012. Molecular detection of Acinetobacter species in lice and keds of domestic animals in Oromia Regional State, Ethiopia. PLoS One 7 : e52377.[CrossRef][PubMed]
10. Moore CP,, Heller N,, Majors LJ,, Whitley RD,, Burgess EC,, Weber J . 1988. Prevalence of ocular microorganisms in hospitalized and stabled horses. Am J Vet Res 49 : 773 777.[PubMed]
11. Rudi K,, Moen B,, Sekelja M,, Frisli T,, Lee MR . 2012. An eight-year investigation of bovine livestock fecal microbiota. Vet Microbiol 160 : 369 377.[CrossRef][PubMed]
12. Saphir DA,, Carter GR . 1976. Gingival flora of the dog with special reference to bacteria associated with bites. J Clin Microbiol 3 : 344 349.[PubMed]
13. Endimiani A,, Hujer KM,, Hujer AM,, Bertschy I,, Rossano A,, Koch C,, Gerber V,, Francey T,, Bonomo RA,, Perreten V . 2011. Acinetobacter baumannii isolates from pets and horses in Switzerland: molecular characterization and clinical data. J Antimicrob Chemother 66 : 2248 2254.[CrossRef][PubMed]
14. Vaneechoutte M,, Devriese LA,, Dijkshoorn L,, Lamote B,, Deprez P,, Verschraegen G,, Haesebrouck F . 2000. Acinetobacter baumannii-infected vascular catheters collected from horses in an equine clinic. J Clin Microbiol 38 : 4280 4281.[PubMed]
15. Boerlin P,, Eugster S,, Gaschen F,, Straub R,, Schawalder P . 2001. Transmission of opportunistic pathogens in a veterinary teaching hospital. Vet Microbiol 82 : 347 359.[CrossRef]
16. Zordan S,, Prenger-Berninghoff E,, Weiss R,, van der Reijden T,, van den Broek P,, Baljer G,, Dijkshoorn L . 2011. Multidrug-resistant Acinetobacter baumannii in veterinary clinics, Germany. Emerg Infect Dis 17 : 1751 1754.[CrossRef][PubMed]
17. Mathewson JJ,, Simpson RB . 1982. Glucose-nonfermenting Gram-negative bacilli associated with clinical veterinary specimens. J Clin Microbiol 15 : 1016 1018.[PubMed]
18. Abbott Y,, O’Mahony R,, Leonard N,, Quinn PJ,, van der Reijden T,, Dijkshoorn L,, Fanning S . 2005. Characterization of a 2.6 kbp variable region within a class 1 integron found in an Acinetobacter baumannii strain isolated from a horse. J Antimicrob Chemother 55 : 367 370.[CrossRef][PubMed]
19. Boguta L,, Gradzki Z,, Borges E,, Maurin F,, Kodjo A,, Winiarczyk S . 2002. Bacterial flora in foals with upper respiratory tract infections in Poland. J Vet Med B Infect Dis Vet Public Health 49 : 294 297.[CrossRef][PubMed]
20. Francey T,, Gaschen F,, Nicolet J,, Burnens AP . 2000. The role of Acinetobacter baumannii as a nosocomial pathogen for dogs and cats in an intensive care unit. J Vet Intern Med 14 : 177 183.[CrossRef][PubMed]
21. Lupo A,, Châtre P,, Ponsin C,, Saras E,, Boulouis HJ,, Keck N,, Haenni M,, Madec JY . 2016. Clonal spread of Acinetobacter baumannii sequence type 25 carrying blaOXA-23 in companion animals in France. Antimicrob Agents Chemother 61 : 61.[PubMed]
22. Malinowski E,, Lassa H,, Kłlossowska A,, Smulski S,, Markiewicz H,, Kaczmarowski M . 2006. Etiological agents of dairy cows’ mastitis in western part of Poland. Pol J Vet Sci 9 : 191 194.[PubMed]
23. Nam HM,, Lim SK,, Kang HM,, Kim JM,, Moon JS,, Jang KC,, Kim JM,, Joo YS,, Jung SC . 2009. Prevalence and antimicrobial susceptibility of Gram-negative bacteria isolated from bovine mastitis between 2003 and 2008 in Korea. J Dairy Sci 92 : 2020 2026.[CrossRef][PubMed]
24. Ruppé É,, Woerther PL,, Barbier F . 2015. Mechanisms of antimicrobial resistance in Gram-negative bacilli. Ann Intensive Care 5 : 61.[CrossRef][PubMed]
25. Bonomo RA,, Szabo D . 2006. Mechanisms of multidrug resistance in Acinetobacter species and Pseudomonas aeruginosa. Clin Infect Dis 43( Suppl 2) : S49 S56.[CrossRef][PubMed]
26. Coyne S,, Courvalin P,, Périchon B . 2011. Efflux-mediated antibiotic resistance in Acinetobacter spp. Antimicrob Agents Chemother 55 : 947 953.[CrossRef][PubMed]
27. Coyne S,, Rosenfeld N,, Lambert T,, Courvalin P,, Périchon B . 2010. Overexpression of resistance-nodulation-cell division pump AdeFGH confers multidrug resistance in Acinetobacter baumannii. Antimicrob Agents Chemother 54 : 4389 4393.[CrossRef][PubMed]
28. Damier-Piolle L,, Magnet S,, Brémont S,, Lambert T,, Courvalin P . 2008. AdeIJK, a resistance-nodulation-cell division pump effluxing multiple antibiotics in Acinetobacter baumannii. Antimicrob Agents Chemother 52 : 557 562.[CrossRef][PubMed]
29. Rosenfeld N,, Bouchier C,, Courvalin P,, Périchon B . 2012. Expression of the resistance-nodulation-cell division pump AdeIJK in Acinetobacter baumannii is regulated by AdeN, a TetR-type regulator. Antimicrob Agents Chemother 56 : 2504 2510.[CrossRef][PubMed]
30. Corvec S,, Caroff N,, Espaze E,, Giraudeau C,, Drugeon H,, Reynaud A . 2003. AmpC cephalosporinase hyperproduction in Acinetobacter baumannii clinical strains. J Antimicrob Chemother 52 : 629 635.[CrossRef][PubMed]
31. Mugnier PD,, Poirel L,, Nordmann P . 2009. Functional analysis of insertion sequence ISAba1, responsible for genomic plasticity of Acinetobacter baumannii. J Bacteriol 191 : 2414 2418.[CrossRef][PubMed]
32. Mussi MA,, Relling VM,, Limansky AS,, Viale AM . 2007. CarO, an Acinetobacter baumannii outer membrane protein involved in carbapenem resistance, is essential for l-ornithine uptake. FEBS Lett 581 : 5573 5578.[CrossRef][PubMed]
33. Bonnin RA,, Potron A,, Poirel L,, Lecuyer H,, Neri R,, Nordmann P . 2011. PER-7, an extended-spectrum beta-lactamase with increased activity toward broad-spectrum cephalosporins in Acinetobacter baumannii. Antimicrob Agents Chemother 55 : 2424 2427.[CrossRef][PubMed]
34. Naas T,, Coignard B,, Carbonne A,, Blanckaert K,, Bajolet O,, Bernet C,, Verdeil X,, Astagneau P,, Desenclos JC,, Nordmann P, French Nosocomial Infection Early Warning Investigation and Surveillance Network . 2006. VEB-1 Extended-spectrum beta-lactamase-producing Acinetobacter baumannii, France. Emerg Infect Dis 12 : 1214 1222.[CrossRef][PubMed]
35. Evans BA,, Amyes SG . 2014. OXA β-lactamases. Clin Microbiol Rev 27 : 241 263.[CrossRef][PubMed]
36. Mathlouthi N,, Al-Bayssari C,, Bakour S,, Rolain JM,, Chouchani C . 2017. Prevalence and emergence of carbapenemases-producing Gram-negative bacteria in Mediterranean basin. Crit Rev Microbiol 43 : 43 61.[CrossRef][PubMed]
37. Seward RJ,, Lambert T,, Towner KJ . 1998. Molecular epidemiology of aminoglycoside resistance in Acinetobacter spp. J Med Microbiol 47 : 455 462.[CrossRef][PubMed]
38. Liou GF,, Yoshizawa S,, Courvalin P,, Galimand M . 2006. Aminoglycoside resistance by ArmA-mediated ribosomal 16S methylation in human bacterial pathogens. J Mol Biol 359 : 358 364.[CrossRef][PubMed]
39. Périchon B,, Courvalin P,, Galimand M . 2007. Transferable resistance to aminoglycosides by methylation of G1405 in 16S rRNA and to hydrophilic fluoroquinolones by QepA-mediated efflux in Escherichia coli. Antimicrob Agents Chemother 51 : 2464 2469.[CrossRef][PubMed]
40. Doi Y,, Adams JM,, Yamane K,, Paterson DL . 2007. Identification of 16S rRNA methylase-producing Acinetobacter baumannii clinical strains in North America. Antimicrob Agents Chemother 51 : 4209 4210.[CrossRef][PubMed]
41. Yu YS,, Zhou H,, Yang Q,, Chen YG,, Li LJ . 2007. Widespread occurrence of aminoglycoside resistance due to ArmA methylase in imipenem-resistant Acinetobacter baumannii isolates in China. J Antimicrob Chemother 60 : 454 455.[CrossRef][PubMed]
42. Vila J,, Ruiz J,, Goñi P,, Jimenez de Anta T . 1997. Quinolone-resistance mutations in the topoisomerase IV parC gene of Acinetobacter baumannii. J Antimicrob Chemother 39 : 757 762.[CrossRef][PubMed]
43. Vila J,, Ruiz J,, Goñi P,, Marcos A,, Jimenez de Anta T . 1995. Mutation in the gyrA gene of quinolone-resistant clinical isolates of Acinetobacter baumannii. Antimicrob Agents Chemother 39 : 1201 1203.[CrossRef][PubMed]
44. Houang ET,, Chu YW,, Lo WS,, Chu KY,, Cheng AF . 2003. Epidemiology of rifampin ADP-ribosyltransferase ( arr-2) and metallo-beta-lactamase ( bla IMP-4) gene cassettes in class 1 integrons in Acinetobacter strains isolated from blood cultures in 1997 to 2000. Antimicrob Agents Chemother 47 : 1382 1390.[CrossRef][PubMed]
45. Adams MD,, Nickel GC,, Bajaksouzian S,, Lavender H,, Murthy AR,, Jacobs MR,, Bonomo RA . 2009. Resistance to colistin in Acinetobacter baumannii associated with mutations in the PmrAB two-component system. Antimicrob Agents Chemother 53 : 3628 3634.[CrossRef][PubMed]
46. Peleg AY,, Adams J,, Paterson DL . 2007. Tigecycline efflux as a mechanism for nonsusceptibility in Acinetobacter baumannii. Antimicrob Agents Chemother 51 : 2065 2069.[CrossRef][PubMed]
47. Freitas AR,, Novais C,, Correia R,, Monteiro M,, Coque TM,, Peixe L . 2011. Non-susceptibility to tigecycline in enterococci from hospitalised patients, food products and community sources. Int J Antimicrob Agents 38 : 174 176.[CrossRef][PubMed]
48. Ewers C,, Klotz P,, Leidner U,, Stamm I,, Prenger-Berninghoff E,, Göttig S,, Semmler T,, Scheufen S . 2017. OXA-23 and ISAba1-OXA-66 class D β-lactamases in Acinetobacter baumannii isolates from companion animals. Int J Antimicrob Agents 49 : 37 44.[CrossRef][PubMed]
49. Nigro SJ,, Hall RM . 2016. Structure and context of Acinetobacter transposons carrying the oxa23 carbapenemase gene. J Antimicrob Chemother 71 : 1135 1147.[CrossRef][PubMed]
50. Iacono M,, Villa L,, Fortini D,, Bordoni R,, Imperi F,, Bonnal RJ,, Sicheritz-Ponten T,, De Bellis G,, Visca P,, Cassone A,, Carattoli A . 2008. Whole-genome pyrosequencing of an epidemic multidrug-resistant Acinetobacter baumannii strain belonging to the European clone II group. Antimicrob Agents Chemother 52 : 2616 2625.[CrossRef][PubMed]
51. Shaikh F,, Spence RP,, Levi K,, Ou HY,, Deng Z,, Towner KJ,, Rajakumar K . 2009. ATPase genes of diverse multidrug-resistant Acinetobacter baumannii isolates frequently harbour integrated DNA. J Antimicrob Chemother 63 : 260 264.[CrossRef][PubMed]
52. Poirel L,, Berçot B,, Millemann Y,, Bonnin RA,, Pannaux G,, Nordmann P . 2012. Carbapenemase-producing Acinetobacter spp. in cattle, France. Emerg Infect Dis 18 : 523 525.[CrossRef][PubMed]
53. Wang Y,, Wu C,, Zhang Q,, Qi J,, Liu H,, Wang Y,, He T,, Ma L,, Lai J,, Shen Z,, Liu Y,, Shen J . 2012. Identification of New Delhi metallo-β-lactamase 1 in Acinetobacter lwoffii of food animal origin. PLoS One 7 : e37152.[CrossRef][PubMed]
54. Zhang WJ,, Lu Z,, Schwarz S,, Zhang RM,, Wang XM,, Si W,, Yu S,, Chen L,, Liu S . 2013. Complete sequence of the bla(NDM-1)-carrying plasmid pNDM-AB from Acinetobacter baumannii of food animal origin. J Antimicrob Chemother 68 : 1681 1682.[CrossRef][PubMed]
55. Brahmi S,, Touati A,, Cadière A,, Djahmi N,, Pantel A,, Sotto A,, Lavigne JP,, Dunyach-Remy C . 2016. First description of two sequence type 2 Acinetobacter baumannii isolates carrying OXA-23 carbapenemase in Pagellus acarne fished from the Mediterranean Sea near Bejaia, Algeria. Antimicrob Agents Chemother 60 : 2513 2515.[CrossRef]
56. Al Bayssari C,, Dabboussi F,, Hamze M,, Rolain JM . 2015. Emergence of carbapenemase-producing Pseudomonas aeruginosa and Acinetobacter baumannii in livestock animals in Lebanon. J Antimicrob Chemother 70 : 950 951.[CrossRef][PubMed]
57. Pailhoriès H,, Kempf M,, Belmonte O,, Joly-Guillou ML,, Eveillard M . 2016. First case of OXA-24-producing Acinetobacter baumannii in cattle from Reunion Island, France. Int J Antimicrob Agents 48 : 763 764.[CrossRef][PubMed]
58. Klotz P,, Göttig S,, Leidner U,, Semmler T,, Scheufen S,, Ewers C . 2017. Carbapenem-resistance and pathogenicity of bovine Acinetobacter indicus-like isolates. PLoS One 12 : e0171986.[CrossRef][PubMed]
59. Smet A,, Boyen F,, Pasmans F,, Butaye P,, Martens A,, Nemec A,, Deschaght P,, Vaneechoutte M,, Haesebrouck F . 2012. OXA-23-producing Acinetobacter species from horses: a public health hazard? J Antimicrob Chemother 67 : 3009 3010.[CrossRef][PubMed]
60. Pomba C,, Endimiani A,, Rossano A,, Saial D,, Couto N,, Perreten V . 2014. First report of OXA-23-mediated carbapenem resistance in sequence type 2 multidrug-resistant Acinetobacter baumannii associated with urinary tract infection in a cat. Antimicrob Agents Chemother 58 : 1267 1268.[CrossRef][PubMed]
61. Hérivaux A,, Pailhoriès H,, Quinqueneau C,, Lemarié C,, Joly-Guillou ML,, Ruvoen N,, Eveillard M,, Kempf M . 2016. First report of carbapenemase-producing Acinetobacter baumannii carriage in pets from the community in France. Int J Antimicrob Agents 48 : 220 221.[CrossRef][PubMed]
62. Kimura Y,, Miyamoto T,, Aoki K,, Ishii Y,, Harada K,, Watarai M,, Hatoya S . 2017. Analysis of IMP-1 type metallo-β-lactamase-producing Acinetobacter radioresistens isolated from companion animals. J Infect Chemother 23 : 655 657.[CrossRef][PubMed]
63. Silby MW,, Winstanley C,, Godfrey SAC,, Levy SB,, Jackson RW . 2011. Pseudomonas genomes: diverse and adaptable. FEMS Microbiol Rev 35 : 652 680.[CrossRef][PubMed]
64. Argudín MA,, Deplano A,, Meghraoui A,, Dodémont M,, Heinrichs A,, Denis O,, Nonhoff C,, Roisin S . 2017. Bacteria from animals as a pool of antimicrobial resistance genes. Antibiotics (Basel) 6 : 6.[CrossRef][PubMed]
65. O’Brien HE,, Desveaux D,, Guttman DS . 2011. Next-generation genomics of Pseudomonas syringae. Curr Opin Microbiol 14 : 24 30.[CrossRef][PubMed]
66. Wu X,, Monchy S,, Taghavi S,, Zhu W,, Ramos J,, van der Lelie D . 2011. Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida. FEMS Microbiol Rev 35 : 299 323.[CrossRef][PubMed]
67. Lalucat J,, Bennasar A,, Bosch R,, García-Valdés E,, Palleroni NJ . 2006. Biology of Pseudomonas stutzeri. Microbiol Mol Biol Rev 70 : 510 547.[CrossRef][PubMed]
68. Walker TS,, Bais HP,, Déziel E,, Schweizer HP,, Rahme LG,, Fall R,, Vivanco JM . 2004. Pseudomonas aeruginosa-plant root interactions: pathogenicity, biofilm formation, and root exudation. Plant Physiol 134 : 320 331.[CrossRef][PubMed]
69. Davies JC . 2002. Pseudomonas aeruginosa in cystic fibrosis: pathogenesis and persistence. Paediatr Respir Rev 3 : 128 134.[CrossRef]
70. Lyczak JB,, Cannon CL,, Pier GB . 2000. Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect 2 : 1051 1060.[CrossRef]
71. Hariharan H,, Coles M,, Poole D,, Lund L,, Page R . 2006. Update on antimicrobial susceptibilities of bacterial isolates from canine and feline otitis externa. Can Vet J 47 : 253 255.[PubMed]
72. Petersen AD,, Walker RD,, Bowman MM,, Schott HC II,, Rosser EJ Jr . 2002. Frequency of isolation and antimicrobial susceptibility patterns of Staphylococcus intermedius and Pseudomonas aeruginosa isolates from canine skin and ear samples over a 6-year period (1992–1997). J Am Anim Hosp Assoc 38 : 407 413.[CrossRef][PubMed]
73. Rubin J,, Walker RD,, Blickenstaff K,, Bodeis-Jones S,, Zhao S . 2008. Antimicrobial resistance and genetic characterization of fluoroquinolone resistance of Pseudomonas aeruginosa isolated from canine infections. Vet Microbiol 131 : 164 172.[CrossRef][PubMed]
74. Mekić S,, Matanović K,, Šeol B . 2011. Antimicrobial susceptibility of Pseudomonas aeruginosa isolates from dogs with otitis externa. Vet Rec 169 : 125.[CrossRef][PubMed]
75. ANSES . 2016. Résapath - Réseau d’épidémiosurveillance de l’antibiorésistance des bactéries pathogènes animales, bilan 2015, Lyon et Ploufragan-Plouzané, France, November 2016.
76. Colombini S,, Merchant SR,, Hosgood G . 2000. Microbial flora and antimicrobial susceptibility patterns from dogs with otitis media. Vet Dermatol 11 : 235 239.[CrossRef]
77. Done SH . 1974. Pseudomonas aeruginosa infection in the skin of a dog: a case report. Br Vet J 130 : lxviii lxix.[CrossRef][PubMed]
78. Hillier A,, Alcorn JR,, Cole LK,, Kowalski JJ . 2006. Pyoderma caused by Pseudomonas aeruginosa infection in dogs: 20 cases. Vet Dermatol 17 : 432 439.[CrossRef][PubMed]
79. Wilson DJ,, Baldwin TJ,, Whitehouse CH,, Hullinger G . 2015. Causes of mortality in farmed mink in the Intermountain West, North America. J Vet Diagn Invest 27 : 470 475.[CrossRef][PubMed]
80. Shimizu T,, Homma JY,, Aoyama T,, Onodera T,, Noda H . 1974. Virulence of Pseudomonas aeruginosa and spontaneous spread of pseudomonas pneumonia in a mink ranch. Infect Immun 10 : 16 20.[PubMed]
81. Farrell RK,, Leader RW,, Gorham JR . 1958. An outbreak of hemorrhagic pneumonia in mink; a case report. Cornell Vet 48 : 378 384.[PubMed]
82. Daniel RC,, O’Boyle D,, Marek MS,, Frost AJ . 1982. A survey of clinical mastitis in South-East Queensland dairy herds. Aust Vet J 58 : 143 147.[CrossRef][PubMed]
83. Bradley AJ,, Leach KA,, Breen JE,, Green LE,, Green MJ . 2007. Survey of the incidence and aetiology of mastitis on dairy farms in England and Wales. Vet Rec 160 : 253 257.[CrossRef][PubMed]
84. Persson Y,, Nyman AK,, Grönlund-Andersson U . 2011. Etiology and antimicrobial susceptibility of udder pathogens from cases of subclinical mastitis in dairy cows in Sweden. Acta Vet Scand 53 : 36.[CrossRef][PubMed]
85. Botrel MA,, Haenni M,, Morignat E,, Sulpice P,, Madec JY,, Calavas D . 2010. Distribution and antimicrobial resistance of clinical and subclinical mastitis pathogens in dairy cows in Rhône-Alpes, France. Foodborne Pathog Dis 7 : 479 487.[CrossRef]
86. Nam HM,, Kim JM,, Lim SK,, Jang KC,, Jung SC . 2010. Infectious aetiologies of mastitis on Korean dairy farms during 2008. Res Vet Sci 88 : 372 374.[CrossRef][PubMed]
87. Sela S,, Hammer-Muntz O,, Krifucks O,, Pinto R,, Weisblit L,, Leitner G . 2007. Phenotypic and genotypic characterization of Pseudomonas aeruginosa strains isolated from mastitis outbreaks in dairy herds. J Dairy Res 74 : 425 429.[CrossRef][PubMed]
88. Daly M,, Power E,, Björkroth J,, Sheehan P,, O’Connell A,, Colgan M,, Korkeala H,, Fanning S . 1999. Molecular analysis of Pseudomonas aeruginosa: epidemiological investigation of mastitis outbreaks in Irish dairy herds. Appl Environ Microbiol 65 : 2723 2729.[PubMed]
89. McLennan MW,, Kelly WR,, O’Boyle D . 1997. Pseudomonas mastitis in a dairy herd. Aust Vet J 75 : 790 792.[CrossRef][PubMed]
90. Osborne AD,, Armstrong K,, Catrysse NH,, Butler G,, Versavel L . 1981. An outbreak of Pseudomonas mastitis in dairy cows. Can Vet J 22 : 215 216.[PubMed]
91. Anderson B,, Barton M,, Corbould A,, Dunford PJ,, Elliott J,, Leis T,, Nicholls TJ,, Sharman M,, Stephenson GM . 1979. Pseudomonas aeruginosa mastitis due to contamination of an antibiotic preparation used in dry-cow therapy. Aust Vet J 55 : 90 91.[CrossRef][PubMed]
92. Kirk J,, Mellenberger R . 2016. Mastitis control program for Pseudomonas mastitis in dairy cows. Purdue Dairy Page. https://www.extension.purdue.edu/dairy/health/hlthpub_mastitis.htm.
93. Yeruham I,, Elad D,, Avidar Y,, Goshen T,, Asis E . 2004. Four-year survey of urinary tract infections in calves in Israel. Vet Rec 154 : 204 206.[CrossRef][PubMed]
94. Rice LB . 2008. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J Infect Dis 197 : 1079 1081.[CrossRef][PubMed]
95. CA-SFM/EUCAST . 2016. Comité de l’antibiogramme de la Société Française de Microbiologie. http://www.sfm-microbiologie.org/page/page/showpage/page_id/90.html.
96. Breidenstein EB,, de la Fuente-Núñez C,, Hancock RE . 2011. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol 19 : 419 426.[CrossRef][PubMed]
97. Hancock RE . 1998. Resistance mechanisms in Pseudomonas aeruginosa and other nonfermentative Gram-negative bacteria. Clin Infect Dis 27( Suppl 1) : S93 S99.[CrossRef][PubMed]
98. Li XZ,, Plésiat P,, Nikaido H . 2015. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 28 : 337 418.[CrossRef][PubMed]
99. Girlich D,, Naas T,, Nordmann P . 2004. Biochemical characterization of the naturally occurring oxacillinase OXA-50 of Pseudomonas aeruginosa. Antimicrob Agents Chemother 48 : 2043 2048.[CrossRef][PubMed]
100. Masuda N,, Gotoh N,, Ishii C,, Sakagawa E,, Ohya S,, Nishino T . 1999. Interplay between chromosomal beta-lactamase and the MexAB-OprM efflux system in intrinsic resistance to beta-lactams in Pseudomonas aeruginosa. Antimicrob Agents Chemother 43 : 400 402.[PubMed]
101. Lodge JM,, Minchin SD,, Piddock LJ,, Busby SJ . 1990. Cloning, sequencing and analysis of the structural gene and regulatory region of the Pseudomonas aeruginosa chromosomal ampC beta-lactamase. Biochem J 272 : 627 631.[CrossRef][PubMed]
102. Davey ME,, O’toole GA . 2000. Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64 : 847 867.[CrossRef][PubMed]
103. de Kievit TR . 2009. Quorum sensing in Pseudomonas aeruginosa biofilms. Environ Microbiol 11 : 279 288.[CrossRef][PubMed]
104. Lequette Y,, Greenberg EP . 2005. Timing and localization of rhamnolipid synthesis gene expression in Pseudomonas aeruginosa biofilms. J Bacteriol 187 : 37 44.[CrossRef][PubMed]
105. Harmsen M,, Yang L,, Pamp SJ,, Tolker-Nielsen T . 2010. An update on Pseudomonas aeruginosa biofilm formation, tolerance, and dispersal. FEMS Immunol Med Microbiol 59 : 253 268.[CrossRef][PubMed]
106. Pamp SJ,, Gjermansen M,, Johansen HK,, Tolker-Nielsen T . 2008. Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB- oprM genes. Mol Microbiol 68 : 223 240.[CrossRef][PubMed]
107. Jeannot K,, Elsen S,, Köhler T,, Attree I,, van Delden C,, Plésiat P . 2008. Resistance and virulence of Pseudomonas aeruginosa clinical strains overproducing the MexCD-OprJ efflux pump. Antimicrob Agents Chemother 52 : 2455 2462.[CrossRef][PubMed]
108. Potron A,, Poirel L,, Nordmann P . 2015. Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: mechanisms and epidemiology. Int J Antimicrob Agents 45 : 568 585.[CrossRef][PubMed]
109. Oliphant CM,, Green GM . 2002. Quinolones: a comprehensive review. Am Fam Physician 65 : 455 464.[PubMed]
110. Lin D,, Foley SL,, Qi Y,, Han J,, Ji C,, Li R,, Wu C,, Shen J,, Wang Y . 2012. Characterization of antimicrobial resistance of Pseudomonas aeruginosa isolated from canine infections. J Appl Microbiol 113 : 16 23.[CrossRef][PubMed]
111. Leigue L,, Montiani-Ferreira F,, Moore BA . 2016. Antimicrobial susceptibility and minimal inhibitory concentration of Pseudomonas aeruginosa isolated from septic ocular surface disease in different animal species. Open Vet J 6 : 215 222.[CrossRef][PubMed]
112. Aires JR,, Köhler T,, Nikaido H,, Plésiat P . 1999. Involvement of an active efflux system in the natural resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob Agents Chemother 43 : 2624 2628.[PubMed]
113. Arais LR,, Barbosa AV,, Carvalho CA,, Cerqueira AM . 2016. Antimicrobial resistance, integron carriage, and gyrA and gyrB mutations in Pseudomonas aeruginosa isolated from dogs with otitis externa and pyoderma in Brazil. Vet Dermatol 27 : 113-7e31.[CrossRef][PubMed]
114. Ludwig C,, de Jong A,, Moyaert H,, El Garch F,, Janes R,, Klein U,, Morrissey I,, Thiry J,, Youala M . 2016. Antimicrobial susceptibility monitoring of dermatological bacterial pathogens isolated from diseased dogs and cats across Europe (ComPath results). J Appl Microbiol 121 : 1254 1267.[CrossRef][PubMed]
115. Werckenthin C,, Alesík E,, Grobbel M,, Lübke-Becker A,, Schwarz S,, Wieler LH,, Wallmann J . 2007. Antimicrobial susceptibility of Pseudomonas aeruginosa from dogs and cats as well as Arcanobacterium pyogenes from cattle and swine as determined in the BfT-GermVet monitoring program 2004–2006. Berl Munch Tierarztl Wochenschr 120 : 412 422.[PubMed]
116. Seol B,, Naglić T,, Madić J,, Bedeković M . 2002. In vitro antimicrobial susceptibility of 183 Pseudomonas aeruginosa strains isolated from dogs to selected antipseudomonal agents. J Vet Med B Infect Dis Vet Public Health 49 : 188 192.[CrossRef][PubMed]
117. Jacoby GA . 2005. Mechanisms of resistance to quinolones. Clin Infect Dis 41( Suppl 2) : S120 S126.[CrossRef][PubMed]
118. Mouneimné H,, Robert J,, Jarlier V,, Cambau E . 1999. Type II topoisomerase mutations in ciprofloxacin-resistant strains of Pseudomonas aeruginosa. Antimicrob Agents Chemother 43 : 62 66.[PubMed]
119. Matsumoto M,, Shigemura K,, Shirakawa T,, Nakano Y,, Miyake H,, Tanaka K,, Kinoshita S,, Arakawa S,, Kawabata M,, Fujisawa M . 2012. Mutations in the gyrA and parC genes and in vitro activities of fluoroquinolones in 114 clinical isolates of Pseudomonas aeruginosa derived from urinary tract infections and their rapid detection by denaturing high-performance liquid chromatography. Int J Antimicrob Agents 40 : 440 444.[CrossRef][PubMed]
120. Li XZ,, Nikaido H,, Poole K . 1995. Role of mexA-mexB-oprM in antibiotic efflux in Pseudomonas aeruginosa. Antimicrob Agents Chemother 39 : 1948 1953.[CrossRef][PubMed]
121. Masuda N,, Sakagawa E,, Ohya S,, Gotoh N,, Tsujimoto H,, Nishino T . 2000. Contribution of the MexX-MexY-oprM efflux system to intrinsic resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 44 : 2242 2246.[CrossRef][PubMed]
122. Le Thomas I,, Couetdic G,, Clermont O,, Brahimi N,, Plésiat P,, Bingen E . 2001. In vivo selection of a target/efflux double mutant of Pseudomonas aeruginosa by ciprofloxacin therapy. J Antimicrob Chemother 48 : 553 555.[CrossRef][PubMed]
123. Beinlich KL,, Chuanchuen R,, Schweizer HP . 2001. Contribution of multidrug efflux pumps to multiple antibiotic resistance in veterinary clinical isolates of Pseudomonas aeruginosa. FEMS Microbiol Lett 198 : 129 134.[CrossRef][PubMed]
124. Haenni M,, Hocquet D,, Ponsin C,, Cholley P,, Guyeux C,, Madec JY,, Bertrand X . 2015. Population structure and antimicrobial susceptibility of Pseudomonas aeruginosa from animal infections in France. BMC Vet Res 11 : 9.[CrossRef][PubMed]
125. Morita Y,, Tomida J,, Kawamura Y . 2012. MexXY multidrug efflux system of Pseudomonas aeruginosa. Front Microbiol 3 : 408.[CrossRef][PubMed]
126. Chuanchuen R,, Wannaprasat W,, Ajariyakhajorn K,, Schweizer HP . 2008. Role of the MexXY multidrug efflux pump in moderate aminoglycoside resistance in Pseudomonas aeruginosa isolates from Pseudomonas mastitis. Microbiol Immunol 52 : 392 398.[CrossRef][PubMed]
127. Poonsuk K,, Chuanchuen R . 2012. Contribution of the MexXY multidrug efflux pump and other chromosomal mechanisms on aminoglycoside resistance in Pseudomonas aeruginosa isolates from canine and feline infections. J Vet Med Sci 74 : 1575 1582.[CrossRef][PubMed]
128. Poole K . 2005. Aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 49 : 479 487.[CrossRef][PubMed]
129. Yokoyama K,, Doi Y,, Yamane K,, Kurokawa H,, Shibata N,, Shibayama K,, Yagi T,, Kato H,, Arakawa Y . 2003. Acquisition of 16S rRNA methylase gene in Pseudomonas aeruginosa. Lancet 362 : 1888 1893.[CrossRef]
130. Doi Y,, de Oliveira Garcia D,, Adams J,, Paterson DL . 2007. Coproduction of novel 16S rRNA methylase RmtD and metallo-beta-lactamase SPM-1 in a panresistant Pseudomonas aeruginosa isolate from Brazil. Antimicrob Agents Chemother 51 : 852 856.[CrossRef][PubMed]
131. Li J,, Zou M,, Dou Q,, Hu Y,, Wang H,, Yan Q,, Liu WE . 2016. Characterization of clinical extensively drug-resistant Pseudomonas aeruginosa in the Hunan province of China. Ann Clin Microbiol Antimicrob 15 : 35.[CrossRef][PubMed]
132. Jeannot K,, Bolard A,, Plésiat P . 2017. Resistance to polymyxins in Gram-negative organisms. Int J Antimicrob Agents 49 : 526 535.[CrossRef][PubMed]
133. Liu YY,, Wang Y,, Walsh TR,, Yi LX,, Zhang R,, Spencer J,, Doi Y,, Tian G,, Dong B,, Huang X,, Yu LF,, Gu D,, Ren H,, Chen X,, Lv L,, He D,, Zhou H,, Liang Z,, Liu JH,, Shen J . 2016. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 16 : 161 168.[CrossRef]
134. Lee JY,, Park YK,, Chung ES,, Na IY,, Ko KS . 2016. Evolved resistance to colistin and its loss due to genetic reversion in Pseudomonas aeruginosa. Sci Rep 6 : 25543.[CrossRef][PubMed]
135. Martis N,, Leroy S,, Blanc V . 2014. Colistin in multi-drug resistant Pseudomonas aeruginosa blood-stream infections: a narrative review for the clinician. J Infect 69 : 1 12.[CrossRef][PubMed]
136. Muller C,, Plésiat P,, Jeannot K . 2011. A two-component regulatory system interconnects resistance to polymyxins, aminoglycosides, fluoroquinolones, and β-lactams in Pseudomonas aeruginosa. Antimicrob Agents Chemother 55 : 1211 1221.[CrossRef][PubMed]
137. Moskowitz SM,, Brannon MK,, Dasgupta N,, Pier M,, Sgambati N,, Miller AK,, Selgrade SE,, Miller SI,, Denton M,, Conway SP,, Johansen HK,, Høiby N . 2012. PmrB mutations promote polymyxin resistance of Pseudomonas aeruginosa isolated from colistin-treated cystic fibrosis patients. Antimicrob Agents Chemother 56 : 1019 1030.[CrossRef][PubMed]
138. Gutu AD,, Sgambati N,, Strasbourger P,, Brannon MK,, Jacobs MA,, Haugen E,, Kaul RK,, Johansen HK,, Høiby N,, Moskowitz SM . 2013. Polymyxin resistance of Pseudomonas aeruginosa phoQ mutants is dependent on additional two-component regulatory systems. Antimicrob Agents Chemother 57 : 2204 2215.[CrossRef][PubMed]
139. Wang Y,, Wang X,, Schwarz S,, Zhang R,, Lei L,, Liu X,, Lin D,, Shen J . 2014. IMP-45-producing multidrug-resistant Pseudomonas aeruginosa of canine origin. J Antimicrob Chemother 69 : 2579 2581.[CrossRef][PubMed]
140. Haenni M,, Bour M,, Châtre P,, Madec JY,, Plésiat P,, Jeannot K . 2017. Resistance of animal strains of Pseudomonas aeruginosa to carbapenems. Front Microbiol 8 : 1847.[CrossRef][PubMed]
141. Salomonsen CM,, Themudo GE,, Jelsbak L,, Molin S,, Høiby N,, Hammer AS . 2013. Typing of Pseudomonas aeruginosa from hemorrhagic pneumonia in mink ( Neovison vison). Vet Microbiol 163 : 103 109.[CrossRef][PubMed]
142. Hammer AS,, Pedersen K,, Andersen TH,, Jørgensen JC,, Dietz HH . 2003. Comparison of Pseudomonas aeruginosa isolates from mink by serotyping and pulsed-field gel electrophoresis. Vet Microbiol 94 : 237 243.[CrossRef]
143. Gu J,, Li X,, Yang M,, Du C,, Cui Z,, Gong P,, Xia F,, Song J,, Zhang L,, Li J,, Yu C,, Sun C,, Feng X,, Lei L,, Han W . 2016. Therapeutic effect of Pseudomonas aeruginosa phage YH30 on mink hemorrhagic pneumonia. Vet Microbiol 190 : 5 11.[CrossRef][PubMed]
144. Pedersen K,, Hammer AS,, Sørensen CM,, Heuer OE . 2009. Usage of antimicrobials and occurrence of antimicrobial resistance among bacteria from mink. Vet Microbiol 133 : 115 122.[CrossRef][PubMed]
145. Jensen VF,, Sommer HM,, Struve T,, Clausen J,, Chriél M . 2016. Factors associated with usage of antimicrobials in commercial mink ( Neovison vison) production in Denmark. Prev Vet Med 126 : 170 182.[CrossRef][PubMed]
146. Qi J,, Li L,, Du Y,, Wang S,, Wang J,, Luo Y,, Che J,, Lu J,, Liu H,, Hu G,, Li J,, Gong Y,, Wang G,, Hu M,, Shiganyan,, Liu Y . 2014. The identification, typing, and antimicrobial susceptibility of Pseudomonas aeruginosa isolated from mink with hemorrhagic pneumonia. Vet Microbiol 170 : 456 461.[CrossRef][PubMed]
147. Nikolaisen NK,, Lassen DCK,, Chriél M,, Larsen G,, Jensen VF,, Pedersen K . 2017. Antimicrobial resistance among pathogenic bacteria from mink ( Neovison vison) in Denmark. Acta Vet Scand 59 : 60.[CrossRef][PubMed]
148. Giebink GS . 1999. Otitis media: the chinchilla model. Microb Drug Resist 5 : 57 72.[CrossRef][PubMed]
149. Wideman WL . 2006. Pseudomonas aeruginosa otitis media and interna in a chinchilla ranch. Can Vet J 47 : 799 800.[PubMed]
150. Hirakawa Y,, Sasaki H,, Kawamoto E,, Ishikawa H,, Matsumoto T,, Aoyama N,, Kawasumi K,, Amao H . 2010. Prevalence and analysis of Pseudomonas aeruginosa in chinchillas. BMC Vet Res 6 : 52.[CrossRef][PubMed]
151. Agersø Y,, Sandvang D . 2005. Class 1 integrons and tetracycline resistance genes in alcaligenes, arthrobacter, and Pseudomonas spp. isolated from pigsties and manured soil. Appl Environ Microbiol 71 : 7941 7947.[CrossRef][PubMed]
152. de Oliveira KM,, dos S Júlio PD,, Grisolia AB . 2013. Antimicrobial susceptibility profile of Pseudomonas spp. isolated from a swine slaughterhouse in Dourados, Mato Grosso do Sul State, Brazil. Rev Argent Microbiol 45 : 57 60.[PubMed]
153. Zhang R,, Liu Z,, Li J,, Lei L,, Yin W,, Li M,, Wu C,, Walsh TR,, Wang Y,, Wang S,, Wu Y . 2017. Presence of VIM-positive Pseudomonas species in chickens and their surrounding environment. Antimicrob Agents Chemother 61 : 61.[CrossRef][PubMed]
154. Ohnishi M,, Sawada T,, Hirose K,, Sato R,, Hayashimoto M,, Hata E,, Yonezawa C,, Kato H . 2011. Antimicrobial susceptibilities and bacteriological characteristics of bovine Pseudomonas aeruginosa and Serratia marcescens isolates from mastitis. Vet Microbiol 154 : 202 207.[CrossRef][PubMed]
155. Metcalf ES . 2001. The role of international transport of equine semen on disease transmission. Anim Reprod Sci 68 : 229 237.[CrossRef]
156. Atherton JG,, Pitt TL . 1982. Types of Pseudomonas aeruginosa isolated from horses. Equine Vet J 14 : 329 332.[CrossRef][PubMed]
157. Tazumi A,, Maeda Y,, Buckley T,, Millar B,, Goldsmith C,, Dooley J,, Elborn J,, Matsuda M,, Moore J . 2009. Molecular epidemiology of clinical isolates of Pseudomonas aeruginosa isolated from horses in Ireland. Ir Vet J 62 : 456 459.[CrossRef][PubMed]
158. Kidd TJ,, Gibson JS,, Moss S,, Greer RM,, Cobbold RN,, Wright JD,, Ramsay KA,, Grimwood K,, Bell SC . 2011. Clonal complex Pseudomonas aeruginosa in horses. Vet Microbiol 149 : 508 512.[CrossRef][PubMed]


Generic image for table
Table 1

Antimicrobial susceptibility to fluoroquinolones and aminoglycosides in isolates of animal origin

Citation: Lupo A, Haenni M, Madec J. 2018. Antimicrobial Resistance in spp. and spp., p 377-393. In Schwarz S, Cavaco L, Shen J (ed), Antimicrobial Resistance in Bacteria from Livestock and Companion Animals. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.ARBA-0007-2017

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error