Chapter 6 : Resistance of Bacteria to Biocides

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Resistance of Bacteria to Biocides, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819804/9781555819798_Chap06-1.gif /docserver/preview/fulltext/10.1128/9781555819804/9781555819798_Chap06-2.gif


Chemical biocides have been used for centuries for making water and foodstuff safe to consume, for treating wounds, and for preserving materials since well before the discovery of microorganisms. Today chemical biocides are heavily used in a wide range of applications and environments including the consumer product, water, wastewater, and food industries; goods manufacturing; the pharmaceutical industry; the health care and veterinary sectors; and the oil and gas industries ( ). This wide range of applications reflects the versatility of biocide products for environmental disinfection, product preservation, and antisepsis ( ). In Europe it is difficult to estimate the quantity of chemical biocides that are used in products or imported ( ), although in 2006 the market for biocides was estimated to be €10 billion to €11 billion ( ). It is, however, clear that the usage of chemical biocides is continuing to increase, particularly in consumer products. This increased usage may be partly due to consumers’ increased awareness of microbial contamination and infection. The rise in antibiotic resistance in bacteria might also have impacted on the usage of biocides, at least in the health care and veterinary settings ( ). Widespread media coverage of issues of hospital cleanliness and “superbugs” have also contributed to better-informed customers, providing better marketing arguments for manufacturers and distributors of biocidal products ( ). Alongside a better-informed public, the global increase in antimicrobial resistance in bacteria is forcing decision makers to tackle this growing issue. One of the recommended interventions is better hygiene and control of bacteria on surfaces in health care settings but also in animal husbandry ( ).

Citation: Maillard J. 2018. Resistance of Bacteria to Biocides, p 109-126. In Schwarz S, Cavaco L, Shen J (ed), Antimicrobial Resistance in Bacteria from Livestock and Companion Animals. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.ARBA-0006-2017
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Diagrammatic comparison of the five families of efflux pumps (reproduced from reference ). MATE, multidrug and toxic compound extrusion; MFS, major facilitator superfamily;’SMR, •••; RND, resistance-nodulation-division; ABC, ATP-binding cassette.

Citation: Maillard J. 2018. Resistance of Bacteria to Biocides, p 109-126. In Schwarz S, Cavaco L, Shen J (ed), Antimicrobial Resistance in Bacteria from Livestock and Companion Animals. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.ARBA-0006-2017
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Schematic map of mutations in the () and () genes. Mutations in are reported on a schematic map. Mutations detected in clinical isolates are mapped above the sequence, while mutations selected are shown below the sequence. (Reproduced from reference .)

Citation: Maillard J. 2018. Resistance of Bacteria to Biocides, p 109-126. In Schwarz S, Cavaco L, Shen J (ed), Antimicrobial Resistance in Bacteria from Livestock and Companion Animals. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.ARBA-0006-2017
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR) . 2009. The antibiotic resistance effect of biocides. http://ec.europa.eu/health/ph_risk/committees/04_scenihr/docs/scenihr_o_021.pdf. Accessed’January 2017.
2. Maillard J-Y . 2005. Usage of antimicrobial biocides and products in the healthcare environment: efficacy, policies, management and perceived problems. Ther Clin Risk Manag 1 : 340 370.
3. Maillard J-Y,, Denyer SP . 2009. Emerging bacterial resistance following biocide exposure: should we be con„cerned? Chim Oggi 27 : 26 28.
4. O’Neill J . 2016. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. The Review on Antimicrobial Resistance. HM Government, London, United Kingdom.
5. Otter JA,, Yezli S,, French GL . 2011. The role played by’contaminated surfaces in the transmission of noso„comial pathogens. Infect Control Hosp Epidemiol 32 : 687 699.[CrossRef][PubMed]
6. Lawley TD,, Clare S,, Deakin LJ,, Goulding D,, Yen JL,, Raisen C,, Brandt C,, Lovell J,, Cooke F,, Clark TG,, Dougan G . 2010. Use of purified Clostridium difficile spores to facilitate evaluation of health care disinfection regimens. Appl Environ Microbiol 76 : 6895 6900.[CrossRef][PubMed]
7. Teunis PF,, Moe CL,, Liu P,, Miller SE,, Lindesmith L,, Baric RS,, Le Pendu J,, Calderon RL . 2008. Norwalk virus: how infectious is it? J Med Virol 80 : 1468 1476.[CrossRef][PubMed]
8. Boyce JM,, Potter-Bynoe G,, Chenevert C,, King T . 1997.’ Environmental contamination due to methicillin-resistant’ Staphylococcus aureus: possible infection control implications. Infect Control Hosp Epidemiol 18 : 622 627.[CrossRef]
9. Bhalla A,, Pultz NJ,, Gries DM,, Ray AJ,, Eckstein EC,, Aron DC,, Donskey CJ . 2004. Acquisition of nosocomial pathogens on hands after contact with environmental surfaces near hospitalized patients. Infect Control Hosp Epidemiol 25 : 164 167.[CrossRef][PubMed]
10. Vonberg RP,, Kuijper EJ,, Wilcox MH,, Barbut F,, Tüll P,, Gastmeier P,, van den Broek PJ,, Colville A,, Coignard B,,’ Daha T,, Debast S,, Duerden BI,, van den Hof S,, van der’Kooi T,, Maarleveld HJ,, Nagy E,, Notermans DW,, O’Driscoll J,, Patel B,, Stone S,, Wiuff C, European C difficile-Infection Control Group, European Centre for Disease Prevention and Control (ECDC) . 2008. Infection control measures to limit the spread of Clostridium difficile. Clin Microbiol Infect 14( Suppl 5) : 2 20.[CrossRef][PubMed]
11. Kramer A,, Schwebke I,, Kampf G . 2006. How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect Dis 6 : 130 138.[CrossRef][PubMed]
12. Fawley WN,, Wilcox MH . 2001. Molecular epidemio„logy of endemic Clostridium difficile infection. Epi„demiol Infect 126 : 343 350.[CrossRef][PubMed]
13. Talon D . 1999. The role of the hospital environment in’the epidemiology of multi-resistant bacteria. J Hosp Infect 43 : 13 17.[CrossRef][PubMed]
14. Hota B . 2004. Contamination, disinfection, and cross-colonization: are hospital surfaces reservoirs for nosocomial infection? Clin Infect Dis 39 : 1182 1189.[CrossRef][PubMed]
15. Cheeseman KE,, Denyer SP,, Hosein IK,, Williams GJ,,’ Maillard J-Y . 2009. Evaluation of the bactericidal efficacy’of three different alcohol hand rubs against 57’clinical isolates of S. aureus. J Hosp Infect 72 : 319 325.[CrossRef][PubMed]
16. Williams GJ,, Denyer SP,, Hosein IK,, Hill DW,, Maillard J-Y . 2009. Limitations of the efficacy of surface disinfection in the healthcare setting. Infect Control Hosp Epidemiol 30 : 570 573.[CrossRef][PubMed]
17. Siani H,, Cooper C,, Maillard J-Y . 2011. Efficacy of “sporicidal” wipes against Clostridium difficile. Am J Infect Control 39 : 212 218.[CrossRef][PubMed]
18. Maillard J-Y,, Bloomfield S,, Coelho JR,, Collier P,, Cookson B,, Fanning S,, Hill A,, Hartemann P,, McBain AJ,, Oggioni M,, Sattar S,, Schweizer HP,, Threlfall J . 2013. Does microbicide use in consumer products promote antimicrobial resistance? A critical review and recommendations for a cohesive approach to risk assessment. Microb Drug Resist 19 : 344 354.[CrossRef][PubMed]
19. Department for Environment, Food & Rural Affairs . 2012. Controlling disease in farm animals. https://www.gov.uk/guidance/controlling-disease-in-farm-animals. Accessed January 2017.
20. Pedrouzo M,, Borrull F,, Marcé RM,, Pocurull E . 2009. Ultra-high-performance liquid chromatography-tandem mass spectrometry for determining the presence of eleven personal care products in surface and wastewaters. J’Chromatogr A 1216 : 6994 7000.[CrossRef][PubMed]
21. Kumar KS,, Priya SM,, Peck AM,, Sajwan KS . 2010. Mass loadings of triclosan and triclocarbon from four wastewater treatment plants to three rivers and landfill in Savannah, Georgia, USA. Arch Environ Contam Toxicol 58 : 275 285.[CrossRef]
22. Wilson B,, Chen RF,, Cantwell M,, Gontz A,, Zhu J,, Olsen CR . 2009. The partitioning of triclosan between aqueous and particulate bound phases in the Hudson River Estuary. Mar Pollut Bull 59 : 207 212.[CrossRef][PubMed]
23. Scientific Committee on Consumer Safety . 2010. Opinion on triclosan antimicrobial resistance. http://ec.europa.eu/health//sites/health/files/scientific_committees/consumer_safety/docs/sccs_o_054.pdf. Accessed January 2017.
24. Knapp L,, Rushton L,, Stapleton H,, Sass A,, Stewart S,,’ Amezquita A,, McClure P,, Mahenthiralingam E,, Maillard J-Y . 2013. The effect of cationic microbicide exposure against Burkholderia cepacia complex (Bcc); the use of Burkholderia lata strain 383 as a model bacterium. J Appl Microbiol 115 : 1117 1126.[CrossRef][PubMed]
25. Wesgate R,, Grasha P,, Maillard J-Y . 2016. Use of a predictive protocol to measure the antimicrobial resistance risks associated with biocidal product usage. Am J Infect Control 44 : 458 464.[CrossRef][PubMed]
26. Oggioni MR,, Furi L,, Coelho JR,, Maillard JY,, Martínez JL . 2013. Recent advances in the potential interconnection between antimicrobial resistance to biocides and antibiotics. Expert Rev Anti Infect Ther 11 : 363 366.[CrossRef][PubMed]
27. Cookson B . 2005. Clinical significance of emergence of’bacterial antimicrobial resistance in the hospital environment. J Appl Microbiol 99 : 989 996.[CrossRef][PubMed]
28. Maillard J-Y . 2007. Bacterial resistance to biocides in the healthcare environment: should it be of genuine concern? J Hosp Infect 65( Suppl 2) : 60 72.[CrossRef]
29. Siani H,, Maillard J-Y . 2015. Best practice in healthcare environment decontamination. Eur J Clin Microbiol Infect’Dis 34 : 1 11.[CrossRef][PubMed]
30. Chapman JS . 1998. Characterizing bacterial resistance to preservatives and disinfectants. Int Biodeter Biodeg 41 : 241 245.[CrossRef]
31. Chapman JS,, Diehl MA,, Fearnside KB . 1998. Preservative tolerance and resistance. Int J Cosmet Sci 20 : 31 39.[CrossRef][PubMed]
32. Hammond SA,, Morgan JR,, Russell AD . 1987. Comparative susceptibility of hospital isolates of Gram-negative bacteria to antiseptics and disinfectants. J Hosp Infect 9 : 255 264.[CrossRef][PubMed]
33. Russell AD . 2003. Biocide use and antibiotic resistance: the relevance of laboratory findings to clinical and environmental situations. Lancet Infect Dis 3 : 794 803.[CrossRef][PubMed]
34. Cloete TE . 2003. Resistance mechanisms of bacteria to antimicrobial compounds. Int Biodeter Biodegrad 51 : 277 282.[CrossRef]
35. Dettenkofer M,, Wenzler S,, Amthor S,, Antes G,, Motschall E,, Daschner FD . 2004. Does disinfection of environmental surfaces influence nosocomial infection rates? A systematic review. Am J Infect Control 32 : 84 89.[CrossRef][PubMed]
36. Poole K . 2002. Mechanisms of bacterial biocide and antibiotic resistance. J Appl Microbiol 92( Suppl) : 55S 64S.[CrossRef][PubMed]
37. Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR) . 2010. Research strategy to address the knowledge gaps on the antimicrobial resistance effects of biocides. http://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_o_028.pdf. Accessed January 2017.
38. Scientific Committee on Consumer Safety (SCCS) . 2010. Opinion on triclosan antimicrobial resistance. http://ec.europa.eu/health//sites/health/files/scientific_committees/consumer_safety/docs/sccs_o_054.pdf. Accessed January 2017.
39. U.S. Food and Drug Administration . 2016. Safety and effectiveness of consumer antiseptics; topical antimicrobial drug products for over-the-counter human use. http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm517478.htm. Accessed January 2017.
40. Lavilla Lerma L,, Benomar N,, Casado Muñoz MC,, Gálvez A,, Abriouel H . 2015. Correlation between antibiotic and biocide resistance in mesophilic and psychro„trophic Pseudomonas spp. isolated from slaughterhouse surfaces throughout meat chain production.’ Food’Micro„biol 51 : 33 44.[CrossRef][PubMed]
41. Cowley NL,, Forbes S,, Amézquita A,, McClure P,, Humphreys GJ,, McBain AJ . 2015. Effects of formu„lation on microbicide potency and mitigation of the development of bacterial insusceptibility. Appl Environ Microbiol 81 : 7330 7338.[CrossRef][PubMed]
42. Sasatsu M,, Shimizu K,, Noguchi N,, Kono M . 1993. Triclosan-resistant Staphylococcus aureus. Lancet 341 : 756.[CrossRef][PubMed]
43. Heath RJ,, Yu YT,, Shapiro MA,, Olson E,, Rock CO . 1998. Broad spectrum antimicrobial biocides target the’FabI component of fatty acid synthesis. J Biol Chem 273 : 30316 30320.[CrossRef][PubMed]
44. Bamber AI,, Neal TJ . 1999. An assessment of triclosan susceptibility in methicillin-resistant and methicillin-sensitive’ Staphylococcus aureus. J Hosp Infect 41 : 107 109.[CrossRef]
45. Randall LP,, Cooles SW,, Piddock LJ,, Woodward MJ . 2004. Effect of triclosan or a phenolic farm disinfec„tant’on the selection of antibiotic-resistant Salmonella enterica. J Antimicrob Chemother 54 : 621 627.[CrossRef][PubMed]
46. McMurry LM,, Oethinger M,, Levy SB . 1998. Overexpression of marA, soxS, or acrAB produces resistance to triclosan in laboratory and clinical strains of Escherichia coli. FEMS Microbiol Lett 166 : 305 309.[CrossRef][PubMed]
47. McMurry LM,, McDermott PF,, Levy SB . 1999. Genetic evidence that InhA of Mycobacterium smegmatis is a target for triclosan. Antimicrob Agents Chemother 43 : 711 713.[PubMed]
48. Cottell A,, Denyer SP,, Hanlon GW,, Ochs D,, Maillard JY . 2009. Triclosan-tolerant bacteria: changes in susceptibility to antibiotics. J Hosp Infect 72 : 71 76.[CrossRef][PubMed]
49. Curiao T,, Marchi E,, Viti C,, Oggioni MR,, Baquero F,, Martinez JL,, Coque TM . 2015. Polymorphic variation in susceptibility and metabolism of triclosan-resistant mutants of Escherichia coli and Klebsiella pneumoniae clinical strains obtained after exposure to biocides and’an„tibiotics. Antimicrob Agents Chemother 59 : 3413 3423.[CrossRef][PubMed]
50. Adair FW,, Geftic SG,, Gelzer J . 1971. Resistance of Pseudomonas to quaternary ammonium compounds. II. Cross-resistance characteristics of a mutant of Pseudomonas aeruginosa. Appl Microbiol 21 : 1058 1063.[PubMed]
51. Russell AD . 2002. Introduction of biocides into clinical practice and the impact on antibiotic-resistant bacteria. J Appl Microbiol 92( Suppl) : 121S 135S.[CrossRef][PubMed]
52. Chapman JS . 2003. Disinfectant resistance mechanisms, cross-resistance, and co-resistance. Int Biodeter Bio„degrad 51 : 271 276.[CrossRef]
53. Stickler DJ . 1974. Chlorhexidine resistance in Proteus mirabilis. J Clin Pathol 27 : 284 287.[CrossRef][PubMed]
54. Gillespie MT,, May JW,, Skurray RA . 1986. Plasmid-encoded’resistance to acriflavine and quaternary ammonium compounds in methicillin-resistant Staphylococcus aureus. FEMS Microbiol Lett 34 : 47 51.[CrossRef]
55. Randall LP,, Cooles SW,, Sayers AR,, Woodward MJ . 2001. Association between cyclohexane resistance in Salmonella of different serovars and increased resistance to multiple antibiotics, disinfectants and dyes. J Med Microbiol 50 : 919 924.[CrossRef]
56. Romão CMCPA,, Faria YN,, Pereira LR,, Asensi MD . 2005. Susceptibility of clinical isolates of multiresistant Pseudomonas aeruginosa to a hospital disinfectant and molecular typing. Mem Inst Oswaldo Cruz 100 : 541 548.[CrossRef][PubMed]
57. Winder CL,, Al-Adham IS,, Abdel Malek SM,, Buultjens TE,, Horrocks AJ,, Collier PJ . 2000. Outer membrane protein shifts in biocide-resistant Pseudomonas aeru„ginosa PAO1. J Appl Microbiol 89 : 289 295.[CrossRef][PubMed]
58. O’Rourke E,, Runyan D,, O’Leary J,, Stern J . 2003. Contaminated iodophor in the operating room. Am J Infect Control 31 : 255 256.[CrossRef][PubMed]
59. Griffiths PA,, Babb JR,, Bradley CR,, Fraise AP . 1997. Glutaraldehyde-resistant Mycobacterium chelonae from endoscope washer disinfectors. J Appl Microbiol 82 : 519 526.[CrossRef][PubMed]
60. van Klingeren B,, Pullen W . 1993. Glutaraldehyde resistant mycobacteria from endoscope washers. J Hosp Infect 25 : 147 149.[CrossRef]
61. Manzoor SE,, Lambert PA,, Griffiths PA,, Gill MJ,, FraiseAP . 1999. Reduced glutaraldehyde susceptibility in Mycobacterium chelonae associated with altered cell wall polysaccharides. J Antimicrob Chemother 43 : 759 765.[CrossRef][PubMed]
62. Fraud S,, Maillard J-Y,, Russell AD . 2001. Comparison of the mycobactericidal activity of ortho- phthalal„dehyde, glutaraldehyde and other dialdehydes by a quantitative suspension test. J Hosp Infect 48 : 214 221.[CrossRef][PubMed]
63. Walsh SE,, Maillard J-Y,, Russell AD,, Hann AC . 2001.’ Possible mechanisms for the relative efficacies of’ ortho-phthalaldehyde and glutaraldehyde against glutaraldehyde-resistant Mycobacterium chelonae. J Appl Microbiol 91 : 80 92.[CrossRef][PubMed]
64. Nomura K,, Ogawa M,, Miyamoto H,, Muratani T,, Taniguchi H . 2004. Antibiotic susceptibility of glutaraldehyde-tolerant Mycobacterium chelonae from bronchoscope washing machines. Am J Infect Control 32 : 185 188.[CrossRef][PubMed]
65. Martin DJH,, Denyer SP,, McDonnell G,, Maillard J-Y . 2008. Resistance and cross-resistance to oxidising agents of bacterial isolates from endoscope washer disinfectors. J Hosp Infect 69 : 377 383.[CrossRef][PubMed]
66. Greenberg JT,, Demple B . 1989. A global response induced in Escherichia coli by redox-cycling agents overlaps with that induced by peroxide stress. J Bacteriol 171 : 3933 3939.[CrossRef][PubMed]
67. Greenberg JT,, Monach P,, Chou JH,, Josephy PD,, Demple B . 1990. Positive control of a global antioxidant defense regulon activated by superoxide-generating agents in Escherichia coli. Proc Natl Acad Sci USA 87 : 6181 6185.[CrossRef][PubMed]
68. Dukan S,, Touati D . 1996. Hypochlorous acid stress in Escherichia coli: resistance, DNA damage, and com„parison with hydrogen peroxide stress. J Bacteriol 178 : 6145 6150.[CrossRef][PubMed]
69. Walsh SE,, Maillard J-Y,, Russell AD,, Catrenich CE,, Charbonneau DL,, Bartolo RG . 2003. Development of bacterial resistance to several biocides and effects on antibiotic susceptibility. J Hosp Infect 55 : 98 107.[CrossRef][PubMed]
70. Tattawasart U,, Maillard J-Y,, Furr JR,, Russell AD . 1999. Development of resistance to chlorhexidine diacetate and cetylpyridinium chloride in Pseudomonas stutzeri and changes in antibiotic susceptibility. J Hosp Infect 42 : 219 229.[CrossRef][PubMed]
71. Thomas L,, Maillard J-Y,, Lambert RJW,, Russell AD . 2000. Development of resistance to chlorhexidine diacetate in Pseudomonas aeruginosa and the effect of a “resi„dual” concentration. J Hosp Infect 46 : 297 303.[CrossRef][PubMed]
72. Thomas L,, Russell AD,, Maillard J-Y . 2005. Antimicrobial activity of chlorhexidine diacetate and benzalkonium chloride against Pseudomonas aeruginosa and its response to biocide residues. J Appl Microbiol 98 : 533 543.[CrossRef][PubMed]
73. Molina-González D,, Alonso-Calleja C,, Alonso-Hernando A,, Capita R . 2014. Effect of sub-lethal concentrations of’biocides on the susceptibility to antibiotics of multi-drug resistant Salmonella enterica strains. Food Control 40 : 329 334.[CrossRef]
74. Duarte RS,, Lourenço MCS,, Fonseca LS,, Leão SC,, Amorim EL,, Rocha IL,, Coelho FS,, Viana-Niero C,, Gomes KM,, da Silva MG,, Lorena NS,, Pitombo MB,, Ferreira RM,, Garcia MH,, de Oliveira GP,, Lupi O,, Vilaça BR,, Serradas LR,, Chebabo A,, Marques EA,, Teixeira LM,, Dalcolmo M,, Senna SG,, Sampaio JL . 2009. Epidemic of postsurgical infections caused by Mycobacte„rium massiliense. J Clin Microbiol 47 : 2149 2155.[CrossRef][PubMed]
75. Wisplinghoff H,, Schmitt R,, Wöhrmann A,, Stefanik D,, Seifert H . 2007. Resistance to disinfectants in epide„miologically defined clinical isolates of Acinetobacter baumannii. J Hosp Infect 66 : 174 181.[CrossRef][PubMed]
76. Bock LJ,, Wand ME,, Sutton JM . 2016. Varying activity of chlorhexidine-based disinfectants against Klebsiella pneumoniae clinical isolates and adapted strains. J Hosp Infect 93 : 42 48.[CrossRef][PubMed]
77. Liu Q,, Zhao H,, Han L,, Shu W,, Wu Q,, Ni Y . 2015. Frequency’of biocide-resistant genes and susceptibility to chlorhexidine in high-level mupirocin-resistant, methicillin-resistant Staphylococcus aureus (MuH MRSA). Diagn Microbiol Infect Dis 82 : 278 283.[CrossRef][PubMed]
78. Hijazi K,, Mukhopadhya I,, Abbott F,, Milne K,, Al-Jabri ZJ,, Oggioni MR,, Gould IM . 2016. Susceptibility to chlorhexidine amongst multidrug-resistant clinical iso„lates of Staphylococcus epidermidis from bloodstream infections. Int J Antimicrob Agents 48 : 86 90.[CrossRef][PubMed]
79. Conceição T,, Coelho C,, de Lencastre H,, Aires-de-Sousa M . 2015. High prevalence of biocide resistance determinants in Staphylococcus aureus isolates from three African countries. Antimicrob Agents Chemother 60 : 678 681.[CrossRef][PubMed]
80. Lear JC,, Maillard J-Y,, Dettmar PW,, Goddard PA,, Russell AD . 2002. Chloroxylenol- and triclosan-tolerant bacteria from industrial sources. J Ind Microbiol Bio„technol 29 : 238 242.[CrossRef][PubMed]
81. Lavilla Lerma L,, Benomar N,, Gálvez A,, Abriouel H . 2013. Prevalence of bacteria resistant to antibiotics and/or biocides on meat processing plant surfaces throughout meat chain production. Int J Food Microbiol 161 : 97 106.[CrossRef][PubMed]
82. Grande Burgos MJ,, Fernández Márquez ML,, Pérez Pulido R,, Gálvez A,, Lucas López R . 2016. Virulence factors and antimicrobial resistance in Escherichia coli strains isolated from hen egg shells. Int J Food Micro„biol 238 : 89 95.[CrossRef][PubMed]
83. Martínez-Suárez JV,, Ortiz S,, López-Alonso V . 2016. Potential impact of the resistance to quaternary ammonium disinfectants on the persistence of Listeria mono„cytogenes in food processing environments. Front Microbiol 7 : 638.[CrossRef][PubMed]
84. Sanford JP . 1970. Disinfectants that don’t. Ann Intern Med 72 : 282 283.[CrossRef][PubMed]
85. Prince J,, Ayliffe GAJ . 1972. In-use testing of disinfec„tants in hospitals. J Clin Pathol 25 : 586 589.[CrossRef][PubMed]
86. Bridges K,, Lowbury EJL . 1977. Drug resistance in relation to use of silver sulphadiazine cream in a burns unit. J Clin Pathol 30 : 160 164.[CrossRef][PubMed]
87. Klasen HJ . 2000. A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver. Burns 26 : 131 138.[CrossRef][PubMed]
88. Reiss I,, Borkhardt A,, Füssle R,, Sziegoleit A,, Gortner L . 2000. Disinfectant contaminated with Klebsiella oxytoca as a source of sepsis in babies. Lancet 356 : 310.[CrossRef][PubMed]
89. Weber DJ,, Rutala WA,, Sickbert-Bennett EE . 2007. Out„breaks associated with contaminated antiseptics and’dis„infectants. Antimicrob Agents Chemother 51 : 4217 4224.[CrossRef][PubMed]
90. Aiello AE,, Marshall B,, Levy SB,, Della-Latta P,, Larson E . 2004. Relationship between triclosan and suscep„tibilities of bacteria isolated from hands in the community. Antimicrob Agents Chemother 48 : 2973 2979.[CrossRef][PubMed]
91. Cole EC,, Addison RM,, Rubino JR,, Leese KE,, Dulaney PD,, Newell MS,, Wilkins J,, Gaber DJ,, Wineinger T,, Criger DA . 2003. Investigation of antibiotic and antibacterial agent cross-resistance in target bacteria from homes of antibacterial product users and nonusers. J’Appl Microbiol 95 : 664 676.[CrossRef][PubMed]
92. Cole EC,, Addison RM,, Dulaney PD,, Leese KE,, Madanat HM,, Guffey AM . 2011. Investigation of antibiotic and antibacterial susceptibility and resistance in Staphylococcus form the skin of users and non-users of anti„bacterial wash products in home environments. Int J’Microbiol Res 3 : 90 96.[CrossRef]
93. Carson RT,, Larson E,, Levy SB,, Marshall BM,, Aiello AE . 2008. Use of antibacterial consumer products containing quaternary ammonium compounds and drug resistance in the community. J Antimicrob Chemother 62 : 1160 1162.[CrossRef][PubMed]
94. Alonso-Calleja C,, Guerrero-Ramos E,, Alonso-Hernando A,, Capita R . 2015. Adaptation and cross-adaptation of’ Escherichia coli ATCC 12806 to several food-grade biocides. Food Control 56 : 86 94.[CrossRef]
95. Ciusa ML,, Furi L,, Knight D,, Decorosi F,, Fondi M,, Raggi C,, Coelho JR,, Aragones L,, Moce L,, Visa P,, Freitas AT,, Baldassarri L,, Fani R,, Viti C,, Orefici G,, Martinez JL,, Morrissey I,, Oggioni MR, BIOHYPO Consortium . 2012. A novel resistance mechanism to triclosan that suggests horizontal gene transfer and demonstrates a potential selective pressure for reduced biocide susceptibility in clinical strains of Staphylococcus aureus. Int J Antimicrob Agents 40 : 210 220.[CrossRef][PubMed]
96. Martin DJH,, Wesgate RL,, Denyer SP,, McDonnell G,, Maillard J-Y . 2015. Bacillus subtilis vegetative isolate surviving chlorine dioxide exposure: an elusive mechanism of resistance. J Appl Microbiol 119 : 1541 1551.[CrossRef][PubMed]
97. Bridier A,, Le Coq D,, del Pilar Sanchez-Vizuete M,, Aymerich S,, Meylheuc T,, Maillard J-Y,, Thomas V,, Dubois-Brissonnet F,, Briandet R . 2012. Biofilms of a Bacillus subtilis endoscope WD isolate that protect Staphylococcus aureus from peracetic acid. PLoS One 7 : e44506.[CrossRef][PubMed]
98. Lear JC,, Maillard J-Y,, Dettmar PW,, Goddard PA,, Russell AD . 2006. Chloroxylenol- and triclosan-tolerant bacteria from industrial sources: susceptibility to anti„biotics and other biocides. Int Biodeter Biodegrad 57 : 51 56.[CrossRef]
99. Fisher CW,, Fiorello A,, Shaffer D,, Jackson M,, McDonnell GE . 2012. Aldehyde-resistant mycobacteria bacteria associated’with the use of endoscope reprocessing systems. Am J Infect Control 40 : 880 882.[CrossRef][PubMed]
100. Alvarado CJ,, Stolz SM,, Maki DG, Centers for Dis„ease’Control (CDC) . 1991. Nosocomial infection and pseudo„infection from contaminated endoscopes and bronchoscopes—Wisconsin and Missouri. MMWR Morb Mortal Wkly Rep 40 : 675 678.
101. Denyer SP,, Stewart GSAB . 1998. Mechanisms of action of disinfectants. Int Biodeter Biodegrad 41 : 261 268.[CrossRef]
102. Maillard J-Y . 2002. Bacterial target sites for biocide action.’ J Appl Microbiol 92( Suppl) : 16S 27S.[CrossRef][PubMed]
103. Denyer SP,, Maillard J-Y . 2002. Cellular impermeability and uptake of biocides and antibiotics in Gram-negative bacteria. J Appl Microbiol 92( Suppl) : 35S 45S.[CrossRef][PubMed]
104. Lambert PA . 2002. Cellular impermeability and uptake of biocides and antibiotics in Gram-positive bacteria and mycobacteria. J Appl Microbiol 92( Suppl) : 46S 54S.[CrossRef][PubMed]
105. McDonnell G,, Russell AD . 1999. Antiseptics and disin„fectants: activity, action, and resistance. Clin Microbiol Rev 12 : 147 179.[PubMed]
106. Leggett MJ,, Schwarz JS,, Burke PA,, Mcdonnell G,, Denyer SP,, Maillard J-Y . 2015. Resistance to and killing by the sporicidal microbicide peracetic acid. J Anti„microb Chemother 70 : 773 779.[CrossRef][PubMed]
107. Munton TJ,, Russell AD . 1970. Effect of glutaraldehyde on protoplasts of Bacillus megaterium. J Gen Microbiol 63 : 367 370.[CrossRef][PubMed]
108. Ayres HM,, Payne DN,, Furr JR,, Russell AD . 1998. Effect’of permeabilizing agents on antibacterial activity against a simple Pseudomonas aeruginosa biofilm. Lett Appl Microbiol 27 : 79 82.[CrossRef][PubMed]
109. Codling CE,, Jones BV,, Mahenthiralingam E,, Russell AD,, Maillard J-Y . 2004. Identification of genes involved in the susceptibility of Serratia marcescens to polyquaternium-1. J Antimicrob Chemother 54 : 370 375.[CrossRef][PubMed]
110. Walsh SE,, Maillard J-Y,, Russell AD,, Hann AC . 2001.’ Possible mechanisms for the relative efficacies of’ ortho-phthalaldehyde and glutaraldehyde against glutaraldehyde-resistant Mycobacterium chelonae. J Appl Microbiol 91 : 80 92.[CrossRef][PubMed]
111. McNeil MR,, Brennan PJ . 1991. Structure, function and’biogenesis of the cell envelope of mycobacteria in relation to bacterial physiology, pathogenesis and drug resistance; some thoughts and possibilities arising from recent structural information. Res Microbiol 142 : 451 463.[CrossRef]
112. Broadley SJ,, Jenkins PA,, Furr JR,, Russell AD . 1995. Potentiation of the effects of chlorhexidine diacetate and cetylpyridinium chloride on mycobacteria by ethambutol. J Med Microbiol 43 : 458 460.[CrossRef][PubMed]
113. Fraud S,, Hann AC,, Maillard J-Y,, Russell AD . 2003. Effects’of ortho-phthalaldehyde, glutaraldehyde and chlorhexidine diacetate on Mycobacterium chelonae and Mycobacterium abscessus strains with modified’per„meability. J Antimicrob Chemother 51 : 575 584.[CrossRef][PubMed]
114. Svetlíková Z,, Skovierová H,, Niederweis M,, Gaillard J-L,, McDonnell G,, Jackson M . 2009. Role of porins in’the susceptibility of Mycobacterium smegmatis and Mycobacterium chelonae to aldehyde-based disinfec„tants and drugs. Antimicrob Agents Chemother 53 : 4015 4018.[CrossRef][PubMed]
115. Tattawasart U,, Maillard JY,, Furr JR,, Russell AD,, Russell AD . 2000. Outer membrane changes in Pseudomonas stutzeri resistant to chlorhexidine diacetate and cetylpyridinium chloride. Int J Antimicrob Agents 16 : 233 238.[CrossRef]
116. Fernández-Cuenca F,, Tomás M,, Caballero-Moyano FJ,, Bou G,, Martínez-Martínez L,, Vila J,, Pachón J,, Cisneros JM,, Rodríguez-Baño J,, Pascual Á, Spanish Group of Nosocomial Infections (GEIH) from the Spanish Society of Clinical Microbiology and Infectious Diseases (SEIMC) and the Spanish Network for Research in Infectious Diseases (REIPI), Spanish Group of Nosocomial Infections GEIH from the Spanish Society of Clinical Microbiology and Infectious Diseases SEIMC and the Spanish Network for Research in Infectious Diseases REIPI . 2015. Reduced susceptibility to biocides in Acinetobacter baumannii: association with resistance to’antimicrobials, epidemiological behaviour, biological cost and effect on the expression of genes encoding porins and efflux pumps. J Antimicrob Chemother 70 : 3222 3229.[PubMed]
117. Tattawasart U,, Hann AC,, Maillard J-Y,, Furr JR,, Russell AD . 2000. Cytological changes in chlorhexidine-resistant’isolates of Pseudomonas stutzeri. J Antimicrob Chemother 45 : 145 152.[CrossRef][PubMed]
118. Braoudaki M,, Hilton AC . 2005. Mechanisms of resistance in Salmonella enterica adapted to erythromycin, benzalkonium chloride and triclosan. Int J Antimicrob Agents 25 : 31 37.[CrossRef][PubMed]
119. Pagès JM,, James CE,, Winterhalter M . 2008. The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria. Nat Rev Microbiol 6 : 893 903.[CrossRef][PubMed]
120. Nikaido H . 2003. Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67 : 593 656.[CrossRef][PubMed]
121. Gandhi PA,, Sawant AD,, Wilson LA,, Ahearn DG . 1993. Adaptation and growth of Serratia marcescens in contact lens disinfectant solutions containing chlorhexidine gluconate. Appl Environ Microbiol 59 : 183 188.[PubMed]
122. Brözel VS,, Cloete TE . 1994. Resistance of Pseudo„monas aeruginosa to isothiazolone. J Appl Bacteriol 76 : 576 582.[CrossRef][PubMed]
123. Jones MV,, Herd TM,, Christie HJ . 1989. Resistance of Pseudomonas aeruginosa to amphoteric and quaternary ammonium biocides. Microbios 58 : 49 61.[PubMed]
124. Méchin L,, Dubois-Brissonnet F,, Heyd B,, Leveau JY . 1999. Adaptation of Pseudomonas aeruginosa ATCC 15442 to didecyldimethylammonium bromide induces changes in membrane fatty acid composition and in resistance of cells. J Appl Microbiol 86 : 859 866.[CrossRef][PubMed]
125. Guérin-Méchin L,, Dubois-Brissonnet F,, Heyd B,, Leveau JY . 1999. Specific variations of fatty acid composition of Pseudomonas aeruginosa ATCC 15442 induced by quaternary ammonium compounds and relation with resistance to bactericidal activity. J Appl Microbiol 87 : 735 742.[CrossRef][PubMed]
126. Guérin-Méchin L,, Dubois-Brissonnet F,, Heyd B,, Leveau JY . 2000. Quaternary ammonium compound stresses induce specific variations in fatty acid composition of Pseudomonas aeruginosa. Int J Food Microbiol 55 : 157 159.[CrossRef]
127. Tkachenko O,, Shepard J,, Aris VM,, Joy A,, Bello A,, Londono I,, Marku J,, Soteropoulos P,, Peteroy-Kelly MA . 2007. A triclosan-ciprofloxacin cross-resistant mutant’strain of Staphylococcus aureus displays an alteration’in the expression of several cell membrane struc„tural and functional genes. Res Microbiol 158 : 651 658.[CrossRef][PubMed]
128. Boeris PS,, Domenech CE,, Lucchesi GI . 2007. Modi„fication of phospholipid composition in Pseudomonas putida A ATCC 12633 induced by contact with tetra„decyltrimethylammonium. J Appl Microbiol 103 : 1048 1054.[CrossRef][PubMed]
129. Bruinsma GM,, Rustema-Abbing M,, van der Mei HC,,’ Lakkis C,, Busscher HJ . 2006. Resistance to a polyquaternium-1 lens care solution and isoelectric points of Pseudomonas aeruginosa strains. J Antimicrob Chemother 57 : 764 766.[CrossRef][PubMed]
130. Lyon BR,, Skurray R . 1987. Antimicrobial resistance of’ Staphylococcus aureus: genetic basis. Microbiol Rev 51 : 88 134.[PubMed]
131. Tennent JM,, Lyon BR,, Midgley M,, Jones IG,, Purewal AS,, Skurray RA . 1989. Physical and biochemical characterization of the qacA gene encoding antiseptic and disinfectant resistance in Staphylococcus aureus. J Gen Microbiol 135 : 1 10.[PubMed]
132. Littlejohn TG,, Paulsen IT,, Gillespie MT,, Tennent JM,, Midgley M,, Jones IG,, Purewal AS,, Skurray RA . 1992. Substrate specificity and energetics of antiseptic and disinfectant resistance in Staphylococcus aureus. FEMS Microbiol Lett 74 : 259 265.[CrossRef][PubMed]
133. Leelaporn A,, Paulsen IT,, Tennent JM,, Littlejohn TG,, Skurray RA . 1994. Multidrug resistance to antiseptics and disinfectants in coagulase-negative staphylococci. J’Med Microbiol 40 : 214 220.[CrossRef][PubMed]
134. Heir E,, Sundheim G,, Holck AL . 1998. The Staphylococcus qacH gene product: a new member of the SMR family encoding multidrug resistance. FEMS Microbiol Lett 163 : 49 56.[CrossRef][PubMed]
135. Heir E,, Sundheim G,, Holck AL . 1999. The qacG gene on plasmid pST94 confers resistance to quaternary ammonium compounds in staphylococci isolated from the food industry. J Appl Microbiol 86 : 378 388.[CrossRef][PubMed]
136. Rouch DA,, Cram DS,, DiBerardino D,, Littlejohn TG,, Skurray RA . 1990. Efflux-mediated antiseptic resistance gene qacA from Staphylococcus aureus: common ancestry with tetracycline- and sugar-transport proteins. Mol Microbiol 4 : 2051 2062.[CrossRef][PubMed]
137. Huet AA,, Raygada JL,, Mendiratta K,, Seo SM,, Kaatz GW . 2008. Multidrug efflux pump overexpression in Staphylococcus aureus after single and multiple in vitro exposures to biocides and dyes. Microbiology 154 : 3144 3153.[CrossRef][PubMed]
138. Schindler BD,, Kaatz GW . 2016. Multidrug efflux pumps of Gram-positive bacteria. Drug Resist Updat 27 : 1 13.[CrossRef][PubMed]
139. Santos Costa S,, Viveiros M,, Rosato AE,, Melo-Cristino J,, Couto I . 2015. Impact of efflux in the development of’multidrug resistance phenotypes in Staphylococcus aureus. BMC Microbiol 15 : 232.[CrossRef][PubMed]
140. Chuanchuen R,, Beinlich K,, Hoang TT,, Becher A,, Karkhoff-Schweizer RR,, Schweizer HP . 2001. Cross-resistance’between triclosan and antibiotics in Pseudomonas aeruginosa is mediated by multidrug efflux pumps: exposure of a susceptible mutant strain to triclosan selects nfxB mutants overexpressing MexCD-OprJ. Antimicrob Agents Chemother 45 : 428 432.[CrossRef][PubMed]
141. Chuanchuen R,, Narasaki CT,, Schweizer HP . 2002. The’MexJK efflux pump of Pseudomonas aeruginosa requires OprM for antibiotic efflux but not for efflux of triclosan. J Bacteriol 184 : 5036 5044.[CrossRef][PubMed]
142. Mima T,, Joshi S,, Gomez-Escalada M,, Schweizer HP . 2007. Identification and characterization of TriABC-OpmH, a triclosan efflux pump of Pseudomonas aeru„ginosa requiring two membrane fusion proteins. J Bacteriol 189 : 7600 7609.[CrossRef][PubMed]
143. Schweizer HP . 1998. Intrinsic resistance to inhibitors of’fatty acid biosynthesis in Pseudomonas aeruginosa is due to efflux: application of a novel technique for generation of unmarked chromosomal mutations for the study of efflux systems. Antimicrob Agents Chemother 42 : 394 398.[PubMed]
144. Chuanchuen R,, Karkhoff-Schweizer RR,, Schweizer HP . 2003. High-level triclosan resistance in Pseudomonas aeruginosa is solely a result of efflux. Am J Infect Control 31 : 124 127.[CrossRef][PubMed]
145. Morita Y,, Murata T,, Mima T,, Shiota S,, Kuroda T,, Mizushima T,, Gotoh N,, Nishino T,, Tsuchiya T . 2003.’ Induction of mexCD-oprJ operon for a multidrug efflux’pump by disinfectants in wild-type Pseudomonas aeru„ginosa PAO1. J Antimicrob Chemother 51 : 991 994.[CrossRef][PubMed]
146. Moken MC,, McMurry LM,, Levy SB . 1997. Selection of’multiple-antibiotic-resistant (mar) mutants of Escherichia coli by using the disinfectant pine oil: roles of the mar and acrAB loci. Antimicrob Agents Chemother 41 : 2770 2772.[PubMed]
147. Nishino K,, Yamaguchi A . 2001. Analysis of a complete library of putative drug transporter genes in Escherichia coli. J Bacteriol 183 : 5803 5812.[CrossRef][PubMed]
148. Lomovskaya O,, Lewis K . 1992. Emr, an Escherichia coli locus for multidrug resistance. Proc Natl Acad Sci USA 89 : 8938 8942.[CrossRef][PubMed]
149. Davin-Regli A,, Bolla JM,, James CE,, Lavigne JP,, ChevalierJ,, Garnotel E,, Molitor A,, Pagès JM . 2008. Membrane permeability and regulation of drug “influx and efflux” in enterobacterial pathogens. Curr Drug Targets 9 : 750 759.[CrossRef][PubMed]
150. Randall LP,, Cooles SW,, Coldham NG,, Penuela EG,, Mott AC,, Woodward MJ,, Piddock LJ,, Webber MA . 2007. Commonly used farm disinfectants can select for mutant Salmonella enterica serovar Typhimurium with decreased susceptibility to biocides and antibiotics without compromising virulence. J Antimicrob Chemother 60 : 1273 1280.[CrossRef][PubMed]
151. Webber MA,, Randall LP,, Cooles S,, Woodward MJ,, PiddockLJ . 2008. Triclosan resistance in Salmonella enterica serovar Typhimurium. J Antimicrob Chemo„ther 62 : 83 91.[CrossRef][PubMed]
152. Rajamohan G,, Srinivasan VB,, Gebreyes WA . 2010. Novel role of Acinetobacter baumannii RND efflux transporters in mediating decreased susceptibility to biocides. J Antimicrob Chemother 65 : 228 232.[CrossRef][PubMed]
153. Piddock LJ . 2006. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin Microbiol Rev 19 : 382 402.[CrossRef][PubMed]
154. Noguchi N,, Suwa J,, Narui K,, Sasatsu M,, Ito T,, Hiramatsu K,, Song JH . 2005. Susceptibilities to antiseptic agents and distribution of antiseptic-resistance genes qacA/B and smr of methicillin-resistant Staphylococcus aureus isolated in Asia during 1998 and 1999. J Med Microbiol 54 : 557 565.[CrossRef][PubMed]
155. Sánchez MB,, Decorosi F,, Viti C,, Oggioni MR,, Martínez JL,, Hernández A . 2015. Predictive studies suggest that the risk for the selection of antibiotic resistance by bio„cides is likely low in Stenotrophomonas maltophilia. PLoS One 10 : e0132816.[CrossRef][PubMed]
156. Poole K . 2007. Efflux pumps as antimicrobial resistance mechanisms. Ann Med 39 : 162 176.[CrossRef][PubMed]
157. Brown MH,, Paulsen IT,, Skurray RA . 1999. The multidrug efflux protein NorM is a prototype of a new family of transporters. Mol Microbiol 31 : 394 395.[CrossRef][PubMed]
158. Borges-Walmsley MI,, Walmsley AR . 2001. The structure and function of drug pumps. Trends Microbiol 9 : 71 79.[CrossRef][PubMed]
159. Poole K . 2001. Multidrug resistance in Gram-negative bacteria. Curr Opin Microbiol 4 : 500 508.[CrossRef]
160. Poole K . 2002. Outer membranes and efflux: the path to multidrug resistance in Gram-negative bacteria. Curr Pharm Biotechnol 3 : 77 98.[CrossRef][PubMed]
161. Buffet-Bataillon S,, Tattevin P,, Maillard J-Y,, Bonnaure-Mallet M,, Jolivet-Gougeon A . 2016. Efflux pump induction by quaternary ammonium compounds and fluoroquinolone resistance in bacteria. Future Microbiol 11 : 81 92.[CrossRef][PubMed]
162. Bailey AM,, Constantinidou C,, Ivens A,, Garvey MI,,’ Webber MA,, Coldham N,, Hobman JL,, Wain J,, Woodward MJ,, Piddock LJ . 2009. Exposure of Escherichia coli and Salmonella enterica serovar Typhimu„rium to triclosan induces a species-specific response, including drug detoxification. J Antimicrob Chemother 64 : 973 985.[CrossRef][PubMed]
163. Randall LP,, Cooles SW,, Coldham NG,, Penuela EG,, Mott AC,, Woodward MJ,, Piddock LJ,, Webber MA . 2007. Commonly used farm disinfectants can select for mutant Salmonella enterica serovar Typhimurium with decreased susceptibility to biocides and antibiotics without compromising virulence. J Antimicrob Chemother 60 : 1273 1280.[CrossRef][PubMed]
164. Webber MA,, Randall LP,, Cooles S,, Woodward MJ,, PiddockLJ . 2008. Triclosan resistance in Salmonella enterica serovar Typhimurium. J Antimicrob Chemo„ther 62 : 83 91.[CrossRef][PubMed]
165. Buckley AM,, Webber MA,, Cooles S,, Randall LP,, La Ragione RM,, Woodward MJ,, Piddock LJ . 2006. The AcrAB-TolC efflux system of Salmonella enterica sero„var Typhimurium plays a role in pathogenesis. Cell Microbiol 8 : 847 856.[CrossRef][PubMed]
166. Sánchez P,, Moreno E,, Martinez JL . 2005. The biocide triclosan selects Stenotrophomonas maltophilia mutants that overproduce the SmeDEF multidrug efflux pump. Antimicrob Agents Chemother 49 : 781 782.[CrossRef][PubMed]
167. Pumbwe L,, Randall LP,, Woodward MJ,, Piddock LJV . 2004. Expression of the efflux pump genes cmeB, cmeF and the porin gene porA in multiple-antibiotic-resistant Campylobacter jejuni. J Antimicrob Chemother 54 : 341 347.[CrossRef][PubMed]
168. Demple B . 1996. Redox signaling and gene control in the Escherichia coli soxRS oxidative stress regulon: a review. Gene 179 : 53 57.[CrossRef]
169. Hutchinson J,, Runge W,, Mulvey M,, Norris G,, YetmanM,, Valkova N,, Villemur R,, Lepine F . 2004. Burkholderia cepacia infections associated with intrinsically contaminated ultrasound gel: the role of micro„bial’degradation of parabens. Infect Control Hosp Epidemiol 25 : 291 296.[CrossRef][PubMed]
170. Valkova N,, Lépine F,, Valeanu L,, Dupont M,, Labrie L,, Bisaillon JG,, Beaudet R,, Shareck F,, Villemur R . 2001. Hydrolysis of 4-hydroxybenzoic acid esters (parabens) and their aerobic transformation into phenol by the resistant Enterobacter cloacae strain EM. Appl Environ Microbiol 67 : 2404 2409.[CrossRef][PubMed]
171. Kümmerle N,, Feucht HH,, Kaulfers PM . 1996. Plasmid-mediated formaldehyde resistance in Escherichia coli: characterization of resistance gene. Antimicrob Agents Chemother 40 : 2276 2279.[PubMed]
172. Gomez Escalada M,, Russell AD,, Maillard J-Y,, Ochs D . 2005. Triclosan- bacteria interactions: single or multiple target sites? Lett Appl Microbiol 41 : 476 481.[PubMed]
173. Wu VCH . 2008. A review of microbial injury and recovery’methods in food. Food Microbiol 25 : 735 744.[CrossRef][PubMed]
174. Lambert RJW,, van der Ouderaa M-LH . 1999. An investigation into the differences between the Bioscreen and the traditional plate count disinfectant test methods. J Appl Microbiol 86 : 689 694.[CrossRef][PubMed]
175. Brown MRW,, Williams P . 1985. Influence of substrate limitation and growth phase on sensitivity to antimicrobial agents. J Antimicrob Chemother 15( Suppl A) : 7 14.[CrossRef][PubMed]
176. Wright NE,, Gilbert P . 1987. Influence of specific growth rate and nutrient limitation upon the sensitivity of Escherichia coli towards chlorhexidine diacetate. J’Appl Bacteriol 62 : 309 314.[CrossRef][PubMed]
177. Gomez Escalada M,, Harwood JL,, Maillard J-Y,, Ochs D . 2005. Triclosan inhibition of fatty acid synthesis and’its effect on growth of E. coli and Ps. aeruginosa. J’Antimicrob Chemother 55 : 879 882.[CrossRef][PubMed]
178. McMurry LM,, Oethinger M,, Levy SB . 1998. Triclosan targets lipid synthesis. Nature 394 : 531 532.[CrossRef][PubMed]
179. Levy CW,, Roujeinikova A,, Sedelnikova S,, Baker PJ,, Stuitje AR,, Slabas AR,, Rice DW,, Rafferty JB . 1999. Molecular basis of triclosan activity. Nature 398 : 383 384.[CrossRef][PubMed]
180. Webber MA,, Coldham NG,, Woodward MJ,, Piddock LJV . 2008. Proteomic analysis of triclosan resistance in Salmonella enterica serovar Typhimurium. J Antimicrob Chemother 62 : 92 97.[CrossRef][PubMed]
181. Curiao T,, Marchi E,, Grandgirard D,, León-Sampedro R,, Viti C,, Leib SL,, Baquero F,, Oggioni MR,, Martinez JL,, Coque TM . 2016. Multiple adaptive routes of Salmonella enterica Typhimurium to biocide and antibiotic exposure. BMC Genomics 17 : 491.[CrossRef][PubMed]
182. Seaman PF,, Ochs D,, Day MJ . 2007. Small-colony variants: a novel mechanism for triclosan resistance in methicillin-resistant Staphylococcus aureus. J Antimi„crob Chemother 59 : 43 50.[CrossRef][PubMed]
183. Abdel-Malek SM,, Al-Adham IS,, Winder CL,, Buultjens TE,, Gartland KM,, Collier PJ . 2002. Antimicrobial susceptibility’changes and T-OMP shifts in pyrithione-passaged’planktonic cultures of Pseudomonas aeru„ginosa PAO1. J Appl Microbiol 92 : 729 736.[CrossRef][PubMed]
184. Parikh SL,, Xiao G,, Tonge PJ . 2000. Inhibition of InhA,’the enoyl reductase from Mycobacterium tuberculosis, by triclosan and isoniazid. Biochemistry 39 : 7645 7650.[CrossRef][PubMed]
185. Chen Y,, Pi B,, Zhou H,, Yu Y,, Li L . 2009. Triclosan resistance in clinical isolates of Acinetobacter baumannii. J Med Microbiol 58 : 1086 1091.[CrossRef][PubMed]
186. Zhu L,, Lin J,, Ma J,, Cronan JE,, Wang H . 2010. Triclosan resistance of Pseudomonas aeruginosa PAO1 is due to FabV, a triclosan-resistant enoyl-acyl carrier protein reductase. Antimicrob Agents Chemother 54 : 689 698.[CrossRef][PubMed]
187. Heath RJ,, Li J,, Roland GE,, Rock CO . 2000. Inhibition of the Staphylococcus aureus NADPH-dependent enoyl-acyl carrier protein reductase by triclosan and hexachlorophene. J Biol Chem 275 : 4654 4659.[CrossRef][PubMed]
188. Slater-Radosti C,, Van Aller G,, Greenwood R,, Nicholas R,, Keller PM,, DeWolf WE Jr,, Fan F,, Payne DJ,, Jaworski DD . 2001. Biochemical and genetic characterization of the action of triclosan on Staphylococcus aureus.’ J Antimicrob Chemother 48 : 1 6.[CrossRef][PubMed]
189. Massengo-Tiassé RP,, Cronan JE . 2008. Vibrio cholerae FabV defines a new class of enoyl-acyl carrier protein reductase. J Biol Chem 283 : 1308 1316.[CrossRef][PubMed]
190. Webber MA,, Whitehead RN,, Mount M,, Loman NJ,, Pallen MJ,, Piddock LJV . 2015. Parallel evolutionary pathways to antibiotic resistance selected by biocide exposure.’ J Antimicrob Chemother 70 : 2241 2248.[CrossRef][PubMed]
191. Roujeinikova A,, Levy CW,, Rowsell S,, Sedelnikova S,, Baker PJ,, Minshull CA,, Mistry A,, Colls JG,, Camble R,, Stuitje AR,, Slabas AR,, Rafferty JB,, Pauptit RA,, Viner R,, Rice DW . 1999. Crystallographic analysis of triclosan bound to enoyl reductase. J Mol Biol 294 : 527 535.[CrossRef][PubMed]
192. Stewart MJ,, Parikh S,, Xiao G,, Tonge PJ,, Kisker C . 1999. Structural basis and mechanism of enoyl reductase inhibition by triclosan. J Mol Biol 290 : 859 865.[CrossRef][PubMed]
193. Heath RJ,, Rubin JR,, Holland DR,, Zhang E,, Snow ME,, Rock CO . 1999. Mechanism of triclosan inhibition of bacterial fatty acid synthesis. J Biol Chem 274 : 11110 11114.[CrossRef][PubMed]
194. McCay PH,, Ocampo-Sosa AA,, Fleming GTA . 2010. Effect’of subinhibitory concentrations of benzalkonium chloride on the competitiveness of Pseudomonas aeru„ginosa grown in continuous culture. Microbiology 156 : 30 38.[CrossRef][PubMed]
195. Casado Muñoz MC,, Benomar N,, Ennahar S,, Horvatovich P,, Lavilla Lerma L,, Knapp CW,, Gálvez A,, Abriouel H . 2016. Comparative proteomic analysis of a potentially probiotic Lactobacillus pentosus MP-10 for the identification of key proteins involved in antibiotic resistance and biocide tolerance. Int J Food Microbiol 222 : 8 15.[CrossRef][PubMed]
196. Casado Muñoz MC,, Benomar N,, Lavilla Lerma L,, Knapp CW,, Gálvez A,, Abriouel H . 2016. Biocide tolerance, phenotypic and molecular response of lactic acid bacteria isolated from naturally-fermented Aloreña table to different physico-chemical stresses. Food Micro„biol 60 : 1 12.[CrossRef][PubMed]
197. Jang H-J,, Chang MW,, Toghrol F,, Bentley WE . 2008. Microarray analysis of toxicogenomic effects of tri„closan on Staphylococcus aureus. Appl Microbiol Bio„technol 78 : 695 707.[CrossRef][PubMed]
198. Cerf O,, Carpentier B,, Sanders P . 2010. Tests for de„termining in-use concentrations of antibiotics and dis„infectants are based on entirely different concepts: “resistance” has different meanings. Int J Food Micro„biol 136 : 247 254.[CrossRef][PubMed]
199. Russell AD,, McDonnell G . 2000. Concentration: a major’factor in studying biocidal action. J Hosp Infect 44 : 1 3.[CrossRef][PubMed]
200. Koutsolioutsou A,, Peña-Llopis S,, Demple B . 2005. Constitutive soxR mutations contribute to multiple-antibiotic’resistance in clinical Escherichia coli isolates. Antimicrob Agents Chemother 49 : 2746 2752.[CrossRef][PubMed]
201. Mokgatla RM,, Gouws PA,, Brözel VS . 2002. Mechanisms contributing to hypochlorous acid resistance of a’ Salmonella isolate from a poultry-processing plant. J’Appl Microbiol 92 : 566 573.[CrossRef][PubMed]
202. Allen MJ,, White GF,, Morby AP . 2006. The response of’ Escherichia coli to exposure to the biocide polyhexa„methylene biguanide. Microbiology 152 : 989 1000.[CrossRef][PubMed]
203. Slade D,, Radman M . 2011. Oxidative stress resistance in Deinococcus radiodurans. Microbiol Mol Biol Rev 75 : 133 191.[CrossRef][PubMed]
204. Daniels C,, Ramos JL . 2009. Adaptive drug resistance mediated by root-nodulation-cell division efflux pumps. Clin Microbiol Infect 15( Suppl 1) : 32 36.[CrossRef][PubMed]
205. Maseda H,, Hashida Y,, Konaka R,, Shirai A,, Kourai H . 2009. Mutational upregulation of a resistance-nodulation-cell division-type multidrug efflux pump, SdeAB, upon exposure to a biocide, cetylpyridinium chloride, and antibiotic resistance in Serratia marcescens. Antimicrob Agents Chemother 53 : 5230 5235.[CrossRef][PubMed]
206. Walsh C,, Fanning S . 2008. Antimicrobial resistance in foodborne pathogens: a cause for concern? Curr Drug Targets 9 : 808 815.[CrossRef][PubMed]
207. Li XZ,, Nikaido H . 2009. Efflux-mediated drug resistance in bacteria: an update. Drugs 69 : 1555 1623.[CrossRef][PubMed]
208. Oethinger M,, Kern WV,, Goldman JD,, Levy SB . 1998. Association of organic solvent tolerance and fluoro„quinolone resistance in clinical isolates of Escherichia coli. J Antimicrob Chemother 41 : 111 114.[CrossRef][PubMed]
209. Pomposiello PJ,, Bennik MH,, Demple B . 2001. Genome-wide transcriptional profiling of the Escherichia coli responses’to superoxide stress and sodium salicylate. J’Bacteriol 183 : 3890 3902.[CrossRef][PubMed]
210. Fraise AP . 2002. Biocide abuse and antimicrobial resistance: a cause for concern? J Antimicrob Chemother 49 : 11 12.[CrossRef][PubMed]
211. Langsrud S,, Sidhu MS,, Heir E,, Holck AL . 2003. Bacterial disinfectant resistance: a challenge for the food industry. Int Biodeter Biodegrad 51 : 283 290.[CrossRef]
212. Braoudaki M,, Hilton AC . 2004. Adaptive resistance to’biocides in Salmonella enterica and Escherichia coli’O157 and cross-resistance to antimicrobial agents. J Clin Microbiol 42 : 73 78.[CrossRef][PubMed]
213. Braoudaki M,, Hilton AC . 2004. Low level of cross-resistance’between triclosan and antibiotics in Escherichia coli K-12 and E. coli O55 compared to E. coli O157. FEMS Microbiol Lett 235 : 305 309.[CrossRef][PubMed]
214. Gilbert P,, McBain AJ . 2003. Potential impact of increased use of biocides in consumer products on prevalence of antibiotic resistance. Clin Microbiol Rev 16 : 189 208.[CrossRef][PubMed]
215. Russell AD . 2004. Bacterial adaptation and resistance to antiseptics, disinfectants and preservatives is not a new phenomenon. J Hosp Infect 57 : 97 104.[CrossRef][PubMed]
216. Alonso-Hernando A,, Capita R,, Prieto M,, Alonso-Calleja C . 2009. Comparison of antibiotic resistance patterns in Listeria monocytogenes and Salmonella enterica strains pre-exposed and exposed to poultry decontaminants. Food Control 20 : 1108 1111.[CrossRef]
217. Weber DJ,, Rutala WA . 2006. Use of germicides in the home and the healthcare setting: is there a relationship between germicide use and antibiotic resistance? Infect Control Hosp Epidemiol 27 : 1107 1119.[CrossRef][PubMed]
218. Pumbwe L,, Skilbeck CA,, Wexler HM . 2007. Induction of multiple antibiotic resistance in Bacteroides fragilis by benzene and benzene-derived active compounds of commonly used analgesics, antiseptics and cleaning agents. J Antimicrob Chemother 60 : 1288 1297.[CrossRef][PubMed]
219. Lara HH,, Ayala-Nunez NV,, Turrent LDCI,, Padilla CR . 2010. Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J Microbiol’Biotech„nol 26 : 615 621.[CrossRef]
220. Peyrat MB,, Soumet C,, Maris P,, Sanders P . 2008. Phenotypes’and genotypes of Campylobacter strains isolated after cleaning and disinfection in poultry’slaugh„terhouses. Vet Microbiol 128 : 313 326.[CrossRef][PubMed]
221. Gilbert P,, McBain AJ,, Bloomfield SF . 2002. Biocide abuse and antimicrobial resistance: being clear about the issues. J Antimicrob Chemother 50 : 137 139, author reply 139–140.[CrossRef][PubMed]
222. Lear JC,, Maillard J-Y,, Dettmar PW,, Goddard PA,, Russell AD . 2006. Chloroxylenol- and triclosan-tolerant bacteria from industrial sources: susceptibility to anti„biotics and other biocides. Int Biodeter Biodegrad 57 : 51 56.[CrossRef]
223. Knapp L,, Amézquita A,, McClure P,, Stewart S,, Maillard J-Y . 2015. Development of a protocol for predicting bacterial resistance to microbicides. Appl Environ Mi„crobiol 81 : 2652 2659.[CrossRef][PubMed]
224. Sundheim G,, Langsrud S,, Heir E,, Holck AL . 1998. Bacterial resistance to disinfectants containing quaternary ammonium compounds. Int Biodeter Biodegrad 41 : 235 239.[CrossRef]
225. International Organization for Standardization . 2006. ISO: 20776-1. Clinical laboratory testing and in vitro diagnostic test systems: susceptibility testing of infectious agents and evaluation of performance of antimicrobial susceptibility test devices. Part 1. Reference method for testing the in vitro activity of antimicrobial agents against rapidly growing aerobic bacteria involved in infectious diseases. British Standard Institute, London, United Kingdom.
226. European Committee on Antimicrobial Susceptibility Testing (EUCAST) . 2014. Breakpoint tables for interpretation of MICs and zone diameters. Version 4.0. 2014. http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_6.0_Breakpoint_table.pdf. Accessed January 2017.
227. Andrews JM, BSAC Working Party on Susceptibility Testing . 2009. BSAC standardized disc susceptibility testing method (version 8). J Antimicrob Chemother 64 : 454 489.[CrossRef][PubMed]
228. Saleh S,, Haddadin RNS,, Baillie S,, Collier PJ . 2011. Triclosan: an update. Lett Appl Microbiol 52 : 87 95.[CrossRef][PubMed]
229. Gradel KO,, Randall L,, Sayers AR,, Davies RH . 2005. Possible associations between Salmonella persistence in poultry houses and resistance to commonly used disin„fectants and a putative role of mar. Vet Microbiol 107 : 127 138.[CrossRef][PubMed]
230. Chuanchuen R,, Pathanasophon P,, Khemtong S,, Wannaprasat W,, Padungtod P . 2008. Susceptibilities to antimicrobials and disinfectants in Salmonella isolates obtained from poultry and swine in Thailand. J Vet Med Sci 70 : 595 601.[CrossRef][PubMed]


Generic image for table
Table 1

Levels of biocide interactions with a bacterial cell

Citation: Maillard J. 2018. Resistance of Bacteria to Biocides, p 109-126. In Schwarz S, Cavaco L, Shen J (ed), Antimicrobial Resistance in Bacteria from Livestock and Companion Animals. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.ARBA-0006-2017