1887

Chapter 1 : Behavior of Microorganisms in Food: Growth, Survival, and Death

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Behavior of Microorganisms in Food: Growth, Survival, and Death, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819972/9781555819965.ch1-1.gif /docserver/preview/fulltext/10.1128/9781555819972/9781555819965.ch1-2.gif

Abstract:

Understanding the behavior of microorganisms in food is essential for promoting their growth when needed, inhibiting growth-associated spoilage and toxin production, and eliminating infectious pathogens through processing. Therefore, three behavioral modes are addressed: growth, survival, and death. The first part of the chapter describes growth in relation to its phases, quantification, kinetics, and applications in food. Additionally, selected growth-related phenomena are discussed, including quorum sensing and biofilm formation. Considering that metabolism is dependent intimately on growth, this topic is addressed briefly. The second section focuses on the survival behavior of microorganisms and the relevance of this behavior state to food safety. The discussion includes physiological changes leading to this state and survival-associated phenomena such as stress adaptation, persistence, dormancy, and the viable-but-nonculturable state. Implications of these phenomena for safety and quality of food are presented. The third section addresses various aspects of microbial death in food. The discussion includes unmediated microbial death, in which microorganisms die during food storage without the application of external lethal treatments, and programmed cell death, due to the application of certain stresses. Furthermore, the section covers death kinetics when bacterial populations are exposed to lethal factors, phases of the death curve, and the consequences of pathogens’ persistence during the tailing phase of that curve.

Citation: Yousef A, Abdelhamid A. 2019. Behavior of Microorganisms in Food: Growth, Survival, and Death, p 3-21. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch1
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.1
Figure 1.1

Conceptual behavior of microorganisms in various environments. The scale of the axis symbolizes populations of single-celled foodborne microorganisms.

Citation: Yousef A, Abdelhamid A. 2019. Behavior of Microorganisms in Food: Growth, Survival, and Death, p 3-21. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 1.2
Figure 1.2

Typical bacterial growth curve, fitted with a logistic model.

Citation: Yousef A, Abdelhamid A. 2019. Behavior of Microorganisms in Food: Growth, Survival, and Death, p 3-21. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 1.3
Figure 1.3

Glucose metabolism through aerobic respiration. In the absence of oxygen, the presence of an alternative oxygen acceptor results in anaerobic respiration. EMP, Embden-Meyerhof-Parnas.

Citation: Yousef A, Abdelhamid A. 2019. Behavior of Microorganisms in Food: Growth, Survival, and Death, p 3-21. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 1.4
Figure 1.4

Microbial reduction of nitrate and other inorganic nitrogen during anaerobic respiration.

Citation: Yousef A, Abdelhamid A. 2019. Behavior of Microorganisms in Food: Growth, Survival, and Death, p 3-21. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 1.5
Figure 1.5

Anaerobic metabolism of glucose through fermentation. (Top) Lactate fermentation. (Bottom) Mixed-acid fermentation. Final fermentation products are in dotted boxes.

Citation: Yousef A, Abdelhamid A. 2019. Behavior of Microorganisms in Food: Growth, Survival, and Death, p 3-21. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 1.6
Figure 1.6

Phases of a microbial inactivation curve.

Citation: Yousef A, Abdelhamid A. 2019. Behavior of Microorganisms in Food: Growth, Survival, and Death, p 3-21. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555819972.ch1
1. Chen Y, Pouillot R, S Burall L, Strain EA, Van Doren JM, De Jesus AJ, Laasri A, Wang H, Ali L, Tatavarthy A, Zhang G, Hu L, Day J, Sheth I, Kang J, Sahu S, Srinivasan D, Brown EW, Parish M, Zink DL, Datta AR, Hammack TS, Macarisin D . 2017. Comparative evaluation of direct plating and most probable number for enumeration of low levels of Listeria monocytogenes in naturally contaminated ice cream products. Int J Food Microbiol 241 : 15 22[CrossRef].[PubMed]
2. Hitchens AD, Jinneman K . 2017. Detection of Listeria monocytogenes in foods and environmental samples, and enumeration of Listeria monocytogenes in foods. In Bacteriological analytical manual. FDA, Washington, DC.
3. Maturin L, Peeler JT . 2001. Aerobic plate count. In Bacteriological analytical manual. FDA, Washington, DC.
4. Malacrinò P, Zapparoli G, Torriani S, Dellaglio F . 2001. Rapid detection of viable yeasts and bacteria in wine by flow cytometry. J Microbiol Methods 45 : 127 134[CrossRef].[PubMed]
5. Geng T, Uknalis J, Tu SI, Bhunia AK . 2006. Fiber-optic biosensor employing Alexa-fluor conjugated antibody for detection of Escherichia coli O157:H7 from ground beef in four hours. Sensors (Basel) 6 : 796 807[CrossRef].
6. Kim G, Morgan MT, Ess D, Hahm B, Kothapalli A, Valadez A, Bhunia A . 2006. Detection of Listeria monocytogenes using an automated fiber-optic biosensor: RAPTOR. Key Eng Mater 321–323 : 1168 1171[CrossRef].
7. Morgan MT, Kim GY, Ess D, Kothapalli A, Hahm BK, Bhunia A . 2006. Binding inhibition assay using fiber-optic based biosensor for the detection of foodborne pathogens. Key Eng Mater 321–323 : 1145 1150[CrossRef].
8. Lin YH, Chen SH, Chuang YC, Lu YC, Shen TY, Chang CA, Lin CS . 2008. Disposable amperometric immunosensing strips fabricated by Au nanoparticles-modified screen-printed carbon electrodes for the detection of foodborne pathogen Escherichia coli O157:H7. Biosens Bioelectron 23 : 1832 1837[CrossRef].[PubMed]
9. Che Y, Li Y, Slavik M . 2001. Detection of Campylobacter jejuni in poultry samples using an enzyme-linked immunoassay coupled with an enzyme electrode. Biosens Bioelectron 16 : 791 797[CrossRef].[PubMed]
10. Velusamy V, Arshak K, Korostynska O, Oliwa K, Adley C . 2010. An overview of foodborne pathogen detection: in the perspective of biosensors. Biotechnol Adv 28 : 232 254[CrossRef].[PubMed]
11. Laakso K, Koskenniemi K, Koponen J, Kankainen M, Surakka A, Salusjärvi T, Auvinen P, Savijoki K, Nyman TA, Kalkkinen N, Tynkkynen S, Varmanen P . 2011. Growth phase-associated changes in the proteome and transcriptome of Lactobacillus rhamnosus GG in industrial-type whey medium. Microb Biotechnol 4 : 746 766[CrossRef].[PubMed]
12. Rossignol T, Kobi D, Jacquet-Gutfreund L, Blondin B . 2009. The proteome of a wine yeast strain during fermentation, correlation with the transcriptome. J Appl Microbiol 107 : 47 55[CrossRef].[PubMed]
13. Pitt JI, Hocking AD . 2009. Fungi and Food Spoilage, 2nd ed, p 3 9. Springer, Boston, MA.
14. Czop JK, Bergdoll MS . 1974. Staphylococcal enterotoxin synthesis during the exponential, transitional, and stationary growth phases. Infect Immun 9 : 229 235.[PubMed]
15. Drusch S, Aumann J . 2005. Mycotoxins in fruits: microbiology, occurrence, and changes during fruit processing. Adv Food Nutr Res 50 : 33 78[CrossRef].[PubMed]
16. Ezraty B, Gennaris A, Barras F, Collet J-F . 2017. Oxidative stress, protein damage and repair in bacteria. Nat Rev Microbiol 15 : 385 396[CrossRef].[PubMed]
17. Fang FC, Frawley ER, Tapscott T, Vázquez-Torres A . 2016. Bacterial stress responses during host infection. Cell Host Microbe 20 : 133 143[CrossRef].[PubMed]
18. Goo E, An JH, Kang Y, Hwang I . 2015. Control of bacterial metabolism by quorum sensing. Trends Microbiol 23 : 567 576[CrossRef].[PubMed]
19. Smith D, Wang JH, Swatton JE, Davenport P, Price B, Mikkelsen H, Stickland H, Nishikawa K, Gardiol N, Spring DR, Welch M . 2006. Variations on a theme: diverse N-acyl homoserine lactone-mediated quorum sensing mechanisms in gram-negative bacteria. Sci Prog 89 : 167 211[CrossRef].[PubMed]
20. Winzer K, Hardie KR, Williams P . 2003. LuxS and autoinducer-2: their contribution to quorum sensing and metabolism in bacteria. Adv Appl Microbiol 53 : 291 396[CrossRef].[PubMed]
21. Reading NC, Torres AG, Kendall MM, Hughes DT, Yamamoto K, Sperandio V . 2007. A novel two-component signaling system that activates transcription of an enterohemorrhagic Escherichia coli effector involved in remodeling of host actin. J Bacteriol 189 : 2468 2476[CrossRef].[PubMed]
22. Sturme MHJ, Kleerebezem M, Nakayama J, Akkermans ADL, Vaughan EE, de Vos WM . 2002. Cell to cell communication by autoinducing peptides in gram-positive bacteria. Antonie van Leeuwenhoek 81 : 233 243[CrossRef].[PubMed]
23. Skandamis PN, Nychas GJE . 2012. Quorum sensing in the context of food microbiology. Appl Environ Microbiol 78 : 5473 5482[CrossRef].[PubMed]
24. Medina-Martínez MS, Uyttendaele M, Demolder V, Debevere J . 2006. Influence of food system conditions on N-acyl-L-homoserine lactones production by Aeromonas spp. Int J Food Microbiol 112 : 244 252[CrossRef].[PubMed]
25. Rutherford ST, Bassler BL . 2012. Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med 2 : a012427[CrossRef].[PubMed]
26. Rasmussen TB, Bjarnsholt T, Skindersoe ME, Hentzer M, Kristoffersen P, Köte M, Nielsen J, Eberl L, Givskov M . 2005. Screening for quorum-sensing inhibitors (QSI) by use of a novel genetic system, the QSI selector. J Bacteriol 187 : 1799 1814[CrossRef].[PubMed]
27. Zhao X, Zhao F, Wang J, Zhong N . 2017. Biofilm formation and control strategies of foodborne pathogens: food safety perspectives. RSC Advances 7 : 36670 36683[CrossRef].
28. Mireles JR II, Toguchi A, Harshey RM . 2001. Salmonella enterica serovar Typhimurium swarming mutants with altered biofilm-forming abilities: surfactin inhibits biofilm formation. J Bacteriol 183 : 5848 5854[CrossRef].[PubMed]
29. Horowitz J, Normand MD, Corradini MG, Peleg M . 2010. Probabilistic model of microbial cell growth, division, and mortality. Appl Environ Microbiol 76 : 230 242[CrossRef].[PubMed]
30. Baranyi J . 2010. Modelling and parameter estimation of bacterial growth with distributed lag time, p 10 14. Ph.D. thesis, University of Szeged, Szeged, Hungary.
31. Yousef AE, Gajewski RJ, Marth EH . 1991. Kinetics of growth and inhibition of Listeria monocytogenes in the presence of antioxidant food additives. J Food Sci 56 : 10 13[CrossRef].
32. Maleki S, Hrudikova R, Zotchev SB, Ertesvåg H . 2016. Identification of a new phosphatase enzyme potentially involved in the sugar phosphate stress response in Pseudomonas fluorescens. Appl Environ Microbiol 83 : e02361 16.[PubMed]
33. Desmasures N, . 2014. Cheese: mold-ripened varieties, p 409 415. In Batt CA,, Tortorello ML (ed), Encyclopedia of Food Microbiology, 2nd ed. Academic Press, Cambridge, MA.
34. Stewart V . 1988. Nitrate respiration in relation to facultative metabolism in enterobacteria. Microbiol Rev 52 : 190 232.[PubMed]
35. Winter SE, Thiennimitr P, Winter MG, Butler BP, Huseby DL, Crawford RW, Russell JM, Bevins CL, Adams LG, Tsolis RM, Roth JR, Bäumler AJ . 2010. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature 467 : 426 429[CrossRef].[PubMed]
36. Li L, Kim SA, Heo JE, Kim TJ, Seo JH, Han NS . 2017. One-pot synthesis of GDP-l-fucose by a four-enzyme cascade expressed in Lactococcus lactis. J Biotechnol 264 : 1 7[CrossRef].[PubMed]
37. Bryan FL . 1982. Diseases transmitted by foods—a classification and summary, 2nd ed. U.S. Department of Health and Human Services, Atlanta, GA.
38. Yousef AE, Marth EH . 1988. Behavior of Listeria monocytogenes during the manufacture and storage of colby cheese. J Food Prot 51 : 12 15[CrossRef].
39. Ryser ET, Marth EH . 1987. Behavior of Listeria monocytogenes during the manufacture and ripening of cheddar cheese. J Food Prot 50 : 7 13[CrossRef].
40. Uesugi AR, Danyluk MD, Harris LJ . 2006. Survival of Salmonella Enteritidis phage type 30 on inoculated almonds stored at −20, 4, 23, and 35°C. J Food Prot 69 : 1851 1857[CrossRef].[PubMed]
41. Kimber MA, Kaur H, Wang L, Danyluk MD, Harris LJ . 2012. Survival of Salmonella, Escherichia coli O157:H7, and Listeria monocytogenes on inoculated almonds and pistachios stored at −19, 4, and 24°C. J Food Prot 75 : 1394 1403[CrossRef].[PubMed]
42. Blessington T, Theofel CG, Mitcham EJ, Harris LJ . 2013. Survival of foodborne pathogens on inshell walnuts. Int J Food Microbiol 166 : 341 348[CrossRef].[PubMed]
43. Islam M, Doyle MP, Phatak SC, Millner P, Jiang X . 2004. Persistence of enterohemorrhagic Escherichia coli O157:H7 in soil and on leaf lettuce and parsley grown in fields treated with contaminated manure composts or irrigation water. J Food Prot 67 : 1365 1370[CrossRef].[PubMed]
44. Yousef AE, Courtney PD, . 2003. Basics of stress adaptation and implications in new-generation foods, p 1- 30. In Yousef AE,, Juneja VK (ed), Microbial Stress Adaptation and Food Safety. CRC Press, Boca Raton, FL.
45. Wesche AM, Gurtler JB, Marks BP, Ryser ET . 2009. Stress, sublethal injury, resuscitation, and virulence of bacterial foodborne pathogens. J Food Prot 72 : 1121 1138[CrossRef].[PubMed]
46. Begley M, Hill C . 2015. Stress adaptation in foodborne pathogens. Annu Rev Food Sci Technol 6 : 191 210[CrossRef].[PubMed]
47. Yang Y, Khoo WJ, Zheng Q, Chung H-J, Yuk H-G . 2014. Growth temperature alters Salmonella Enteritidis heat/acid resistance, membrane lipid composition and stress/virulence related gene expression. Int J Food Microbiol 172 : 102 109[CrossRef].[PubMed]
48. Heermann R, Weber A, Mayer B, Ott M, Hauser E, Gabriel G, Pirch T, Jung K . 2009. The universal stress protein UspC scaffolds the KdpD/KdpE signaling cascade of Escherichia coli under salt stress. J Mol Biol 386 : 134 148[CrossRef].[PubMed]
49. Melov S, Ravenscroft J, Malik S, Gill MS, Walker DW, Clayton PE, Wallace DC, Malfroy B, Doctrow SR, Lithgow GJ . 2000. Extension of life-span with superoxide dismutase/catalase mimetics. Science 289 : 1567 1569[CrossRef].[PubMed]
50. Sleator RD, Wouters J, Gahan CGM, Abee T, Hill C . 2001. Analysis of the role of OpuC, an osmolyte transport system, in salt tolerance and virulence potential of Listeria monocytogenes. Appl Environ Microbiol 67 : 2692 2698[CrossRef].[PubMed]
51. Su J, Gong H, Lai J, Main A, Lu S . 2009. The potassium transporter Trk and external potassium modulate Salmonella enterica protein secretion and virulence. Infect Immun 77 : 667 675[CrossRef].[PubMed]
52. Vanlint D, Rutten N, Michiels CW, Aertsen A . 2012. Emergence and stability of high-pressure resistance in different food-borne pathogens. Appl Environ Microbiol 78 : 3234 3241[CrossRef].[PubMed]
53. Karatzas KAG, Valdramidis VP, Wells-Bennik MHJ . 2005. Contingency locus in ctsR of Listeria monocytogenes Scott A: a strategy for occurrence of abundant piezotolerant isolates within clonal populations. Appl Environ Microbiol 71 : 8390 8396[CrossRef].[PubMed]
54. Van Boeijen IKH, Chavaroche AAE, Valderrama WB, Moezelaar R, Zwietering MH, Abee T . 2010. Population diversity of Listeria monocytogenes LO28: phenotypic and genotypic characterization of variants resistant to high hydrostatic pressure. Appl Environ Microbiol 76 : 2225 2233[CrossRef].[PubMed]
55. Karatzas KAG, Zervos A, Tassou CC, Mallidis CG, Humphrey TJ . 2007. Piezotolerant small-colony variants with increased thermotolerance, antibiotic susceptibility, and low invasiveness in a clonal Staphylococcus aureus population. Appl Environ Microbiol 73 : 1873 1881[CrossRef].[PubMed]
56. Ogden ID, Hepburn NF, MacRae M, Strachan NJC, Fenlon DR, Rusbridge SM, Pennington TH . 2002. Long-term survival of Escherichia coli O157 on pasture following an outbreak associated with sheep at a scout camp. Lett Appl Microbiol 34 : 100 104[CrossRef].[PubMed]
57. Lim JY, Li J, Sheng H, Besser TE, Potter K, Hovde CJ . 2007. Escherichia coli O157:H7 colonization at the rectoanal junction of long-duration culture-positive cattle. Appl Environ Microbiol 73 : 1380 1382[CrossRef].[PubMed]
58. Møretrø T, Midtgaard ES, Nesse LL, Langsrud S . 2003. Susceptibility of Salmonella isolated from fish feed factories to disinfectants and air-drying at surfaces. Vet Microbiol 94 : 207 217[CrossRef].[PubMed]
59. Vestby LK, Møretrø T, Langsrud S, Heir E, Nesse LL . 2009. Biofilm forming abilities of Salmonella are correlated with persistence in fish meal- and feed factories. BMC Vet Res 5 : 20[CrossRef].[PubMed]
60. Carpentier B, Cerf O . 2011. Persistence of Listeria monocytogenes in food industry equipment and premises. Int J Food Microbiol 145 : 1 8[CrossRef].[PubMed]
61. Fox EM, Leonard N, Jordan K . 2011. Physiological and transcriptional characterization of persistent and nonpersistent Listeria monocytogenes isolates. Appl Environ Microbiol 77 : 6559 6569[CrossRef].[PubMed]
62. Edelson-Mammel SG, Porteous MK, Buchanan RL . 2005. Survival of Enterobacter sakazakii in a dehydrated powdered infant formula. J Food Prot 68 : 1900 1902[CrossRef].[PubMed]
63. Kempf B, Bremer E . 1998. Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol 170 : 319 330[CrossRef].[PubMed]
64. Mavri A, Kurincic M, Mozina SS . 2012. The prevalence of antibiotic and biocide resistance among Campylobacter coli and Campylobacter jejuni from different sources. Food Technol Biotechnol 50 : 371 376.
65. Snelling WJ, McKenna JP, Lecky DM, Dooley JSG . 2005. Survival of Campylobacter jejuni in waterborne protozoa. Appl Environ Microbiol 71 : 5560 5571[CrossRef].[PubMed]
66. Mills G, Earnshaw R, Patterson MF . 1998. Effects of high hydrostatic pressure on Clostridium sporogenes spores. Lett Appl Microbiol 26 : 227 230[CrossRef].[PubMed]
67. Bull MK, Olivier SA, van Diepenbeek RJ, Kormelink F, Chapman B . 2009. Synergistic inactivation of spores of proteolytic Clostridium botulinum strains by high pressure and heat is strain and product dependent. Appl Environ Microbiol 75 : 434 445[CrossRef].[PubMed]
68. Paredes-Sabja D, Gonzalez M, Sarker MR, Torres JA . 2007. Combined effects of hydrostatic pressure, temperature, and pH on the inactivation of spores of Clostridium perfringens type A and Clostridium sporogenes in buffer solutions. J Food Sci 72 : M202 M206[CrossRef].[PubMed]
69. Ishimori T, Takahashi K, Goto M, Nakagawa S, Kasai Y, Konagaya Y, Batori H, Kobayashi A, Urakami H . 2012. Synergistic effects of high hydrostatic pressure, mild heating, and amino acids on germination and inactivation of Clostridium sporogenes spores. Appl Environ Microbiol 78 : 8202 8207[CrossRef].[PubMed]
70. Nerandzic MM, Donskey CJ . 2013. Activate to eradicate: inhibition of Clostridium difficile spore outgrowth by the synergistic effects of osmotic activation and nisin. PLoS One 8 : e54740[CrossRef].[PubMed]
71. Akhtar S, Paredes-Sabja D, Torres JA, Sarker MR . 2009. Strategy to inactivate Clostridium perfringens spores in meat products. Food Microbiol 26 : 272 277[CrossRef].[PubMed]
72. Zhao X, Zhong J, Wei C, Lin CW, Ding T . 2017. Current perspectives on viable but non-culturable state in foodborne pathogens. Front Microbiol 8 : 580.[PubMed]
73. Cappelier JM, Besnard V, Roche SM, Velge P, Federighi M . 2007. Avirulent viable but non culturable cells of Listeria monocytogenes need the presence of an embryo to be recovered in egg yolk and regain virulence after recovery. Vet Res 38 : 573 583[CrossRef].[PubMed]
74. Habimana O, Nesse LL, Møretrø T, Berg K, Heir E, Vestby LK, Langsrud S . 2014. The persistence of Salmonella following desiccation under feed processing environmental conditions: a subject of relevance. Lett Appl Microbiol 59 : 464 470[CrossRef].[PubMed]
75. Pommepuy M, Butin M, Derrien A, Gourmelon M, Colwell RR, Cormier M . 1996. Retention of enteropathogenicity by viable but nonculturable Escherichia coli exposed to seawater and sunlight. Appl Environ Microbiol 62 : 4621 4626.[PubMed]
76. Makino SI, Kii T, Asakura H, Shirahata T, Ikeda T, Takeshi K, Itoh K . 2000. Does enterohemorrhagic Escherichia coli O157:H7 enter the viable but nonculturable state in salted salmon roe? Appl Environ Microbiol 66 : 5536 5539[CrossRef].[PubMed]
77. Asakura H, Makino S, Takagi T, Kuri A, Kurazono T, Watarai M, Shirahata T . 2002. Passage in mice causes a change in the ability of Salmonella enterica serovar Oranienburg to survive NaCl osmotic stress: resuscitation from the viable but non-culturable state. FEMS Microbiol Lett 212 : 87 93[CrossRef].[PubMed]
78. Aurass P, Prager R, Flieger A . 2011. EHEC/EAEC O104:H4 strain linked with the 2011 German outbreak of haemolytic uremic syndrome enters into the viable but non-culturable state in response to various stresses and resuscitates upon stress relief. Environ Microbiol 13 : 3139 3148[CrossRef].[PubMed]
79. Nicolò MS, Gioffrè A, Carnazza S, Platania G, Silvestro ID, Guglielmino SPP . 2011. Viable but nonculturable state of foodborne pathogens in grapefruit juice: a study of laboratory. Foodborne Pathog Dis 8 : 11 17[CrossRef].[PubMed]
80. Dinu LD, Bach S . 2013. Detection of viable but non-culturable Escherichia coli O157: H7 from vegetable samples using quantitative PCR with propidium monoazide and immunological assays. Food Control 31 : 268 273[CrossRef].
81. Barron JC, Forsythe SJ . 2007. Dry stress and survival time of Enterobacter sakazakii and other Enterobacteriaceae in dehydrated powdered infant formula. J Food Prot 70 : 2111 2117[CrossRef].[PubMed]
82. Zhang S, Ye C, Lin H, Lv L, Yu X . 2015. UV disinfection induces a VBNC state in Escherichia coli and Pseudomonas aeruginosa. Environ Sci Technol 49 : 1721 1728[CrossRef].[PubMed]
83. Rowan NJ, Valdramidis VP, Gómez-López VM . 2015. A review of quantitative methods to describe efficacy of pulsed light generated inactivation data that embraces the occurrence of viable but non culturable state microorganisms. Trends Food Sci Technol 44 : 79 92[CrossRef].
84. Food and Drug Administration . 2016. Microbiological surveillance sampling: FY14-16 raw milk cheese aged 60 days. FDA, Washington, DC. https://www.fda.gov/Food/ComplianceEnforcement/Sampling/ucm510799.htm
85. Crow VL, Coolbear T, Gopal PK, Martley FG, McKay LL, Riepe H . 1995. The role of autolysis of lactic acid bacteria in the ripening of cheese. Int Dairy J 5 : 855 875[CrossRef].
86. Yousef AE, Marth EH . 1990. Fate of Listeria monocytogenes during the manufacture and ripening of Parmesan cheese. J Dairy Sci 73 : 3351 3356[CrossRef].[PubMed]
87. García D, Hassani M, Mañas P, Condón S, Pagán R . 2005. Inactivation of Escherichia coli O157:H7 during the storage under refrigeration of apple juice treated by pulsed electric fields. J Food Saf 25 : 30 42[CrossRef].
88. do Nascimento MS, Pena PO, Brum DM, Imazaki FT, Tucci MLSA, Efraim P . 2013. Behavior of Salmonella during fermentation, drying and storage of cocoa beans. Int J Food Microbiol 167 : 363 368[CrossRef].[PubMed]
89. Yeh CH, Chou CC . 1994. Behavior of Campylobacter jejuni during the manufacture and storage of Chinese-style sausage. Food Microbiol 11 : 461 466[CrossRef].
90. Imran M, Bré JM, Guéguen M, Vernoux JP, Desmasures N . 2013. Reduced growth of Listeria monocytogenes in two model cheese microcosms is not associated with individual microbial strains. Food Microbiol 33 : 30 39[CrossRef].[PubMed]
91. Lin J . 2009. Novel approaches for Campylobacter control in poultry. Foodborne Pathog Dis 6 : 755 765[CrossRef].[PubMed]
92. Dunkley KD, Callaway TR, Chalova VI, McReynolds JL, Hume ME, Dunkley CS, Kubena LF, Nisbet DJ, Ricke SC . 2009. Foodborne Salmonella ecology in the avian gastrointestinal tract. Anaerobe 15 : 26 35[CrossRef].[PubMed]
93. Erental A, Sharon I, Engelberg-Kulka H . 2012. Two programmed cell death systems in Escherichia coli: an apoptotic-like death is inhibited by the mazEF-mediated death pathway. PLoS Biol 10 : e1001281[CrossRef].[PubMed]

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error