1887

Chapter 11 : Shiga Toxin-Producing

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Shiga Toxin-Producing , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819972/9781555819965.ch11-1.gif /docserver/preview/fulltext/10.1128/9781555819972/9781555819965.ch11-2.gif

Abstract:

This chapter summarizes the latest information available for Shiga toxin-producing (STEC). STEC was first recognized as a human pathogen in 1982, when O157:H7 was identified as the cause of two outbreaks of hemorrhagic colitis. Since then, many other serogroups of , such as O26, O111, O145, O45, O113, O121, and sorbitol-fermenting O157:NM, have also been associated with cases of hemorrhagic colitis and have been classified as STEC. However, serotype O157:H7 is the predominant cause of STEC-associated disease in the United States and many other countries. Production of Shiga toxins (Stxs) by O157:H7 was subsequently associated with a severe and sometimes fatal condition, hemolytic-uremic syndrome. organisms of many different serotypes can produce Stxs, with more than 600 serotypes being identified so far, including approximately 160 O serogroups and 50 H types. However, only strains that cause hemorrhagic colitis are considered enterohemorrhagic (EHEC), and there are at least 130 EHEC serotypes that have been recovered from human patients. Major non-O157 EHEC serogroups identified in the United States include O26, O45, O103, O111, O121, and O145. Here, we discuss many aspects of their biology, reservoirs, virulence, genomics, and antimicrobial resistance, as well as some recommendations for reduction of their numbers in different foods. We also present some web tools that could help us identify other uncommon causes or vehicles and track down the source of contamination in the future.

Citation: Gonzalez-Escalona N, Meng J, Doyle M. 2019. Shiga Toxin-Producing , p 289-315. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch11
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 11.1
Figure 11.1

Snapshot of the two freely available databases containing all genomes as well as historical metadata (MLST) available for and and the web tool for determination of virulence genes, serotyping, and MLST for . (A) NCBI pathogen detection; (B) EnteroBase; (C) DTU web tool.

Citation: Gonzalez-Escalona N, Meng J, Doyle M. 2019. Shiga Toxin-Producing , p 289-315. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 11.2
Figure 11.2

Neighbor-joining phylogenetic tree of 59 genomes available at NCBI using a custom-made core genome MLST analysis showing distribution on those genomes. The species-based phylogeny was inferred using 820 conserved core genome loci. The two EHEC lineages are shown as well as strains belonging to the German outbreak of . O104:H4 in 2011 ( EAEC). The colors represent the presence and type of gene.

Citation: Gonzalez-Escalona N, Meng J, Doyle M. 2019. Shiga Toxin-Producing , p 289-315. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 11.3
Figure 11.3

Number of cases of STEC disease in the United States by year, 2010 to 2014 (https://www.cdc.gov/ecoli/surveillance.html). Unk, unknown.

Citation: Gonzalez-Escalona N, Meng J, Doyle M. 2019. Shiga Toxin-Producing , p 289-315. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 11.4
Figure 11.4

Electron microscopy image of an A/E lesion and schematic illustration of A/E lesion formation in EHEC. Effector proteins undergo A/E translocation through the T3SS, which forms a pore through the membranes of EHEC. EHEC translocates a number of proteins: EspB and EspD, which form a translocon in the plasma membrane; the cytoplasmic proteins EspF, EspG, and Map; the translocated intimin receptor Tir, which inserts into the plasma membrane; and other unidentified effectors. Formation of the EHEC pedestal is also shown. EHEC intimately attaches to the host cell through intimin-Tir binding. The binding triggers the formation of actin-rich pedestals beneath adherent bacteria after Wiskott-Aldrich syndrome protein and the heptameric actin-related protein Arp2/3 are recruited to the pedestal tip. Reproduced from reference with permission.

Citation: Gonzalez-Escalona N, Meng J, Doyle M. 2019. Shiga Toxin-Producing , p 289-315. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 11.5
Figure 11.5

Genetic organization of the EHEC LEE and EHEC prophages CP-933U, CP-933K, and CP-933P. Reproduced from reference .

Citation: Gonzalez-Escalona N, Meng J, Doyle M. 2019. Shiga Toxin-Producing , p 289-315. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 11.6
Figure 11.6

T3SS apparatus of EHEC. The basal body of the T3SS is composed of the secretin EscC, the inner membrane proteins EscR, EscS, EscT, EscU, and EscV, and the EscJ lipoprotein, which connects the inner and outer membrane ring structures. EscF constitutes the needle structure, whereas EspA subunits polymerize to form the EspA filament. EspB and EspD form the translocation pore in the host cell plasma membrane, connecting the bacteria with the eukaryotic cell via EspA filaments. The cytoplasmic ATPase EscN provides the energy to the system by hydrolyzing ATP molecules into ADP. SepD and SepL are represented as cytoplasmic components of the T3SS. Reproduced from reference .

Citation: Gonzalez-Escalona N, Meng J, Doyle M. 2019. Shiga Toxin-Producing , p 289-315. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555819972.ch11
1. Donnenberg MS, Whittam TS . 2001. Pathogenesis and evolution of virulence in enteropathogenic and enterohemorrhagic Escherichia coli. J Clin Invest 107 : 539 548[CrossRef].[PubMed]
2. Orskov I, Orskov F, Jann B, Jann K . 1977. Serology, chemistry, and genetics of O and K antigens of Escherichia coli. Bacteriol Rev 41 : 667 710.[PubMed]
3. Ballmer K, Korczak BM, Kuhnert P, Slickers P, Ehricht R, Hächler H . 2007. Fast DNA serotyping of Escherichia coli by use of an oligonucleotide microarray. J Clin Microbiol 45 : 370 379[CrossRef].[PubMed]
4. Chaudhuri RR, Loman NJ, Snyder LA, Bailey CM, Stekel DJ, Pallen MJ . 2007. xBASE2: a comprehensive resource for comparative bacterial genomics. Nucleic Acids Res 36( Database) : D543 D546[CrossRef].[PubMed]
5. Kaper JB, Nataro JP, Mobley HL . 2004. Pathogenic Escherichia coli. Nat Rev Microbiol 2 : 123 140[CrossRef].[PubMed]
6. Nataro JP, Kaper JB . 1998. Diarrheagenic Escherichia coli. Clin Microbiol Rev 11 : 142 201.[PubMed]
7. Frank C, Werber D, Cramer JP, Askar M, Faber M, an der Heiden M, Bernard H, Fruth A, Prager R, Spode A, Wadl M, Zoufaly A, Jordan S, Kemper MJ, Follin P, Müller L, King LA, Rosner B, Buchholz U, Stark K, Krause G HUS Investigation Team . 2011. Epidemic profile of Shiga-toxin-producing Escherichia coli O104:H4 outbreak in Germany. N Engl J Med 365 : 1771 1780[CrossRef].[PubMed]
8. Rasko DA, Webster DR, Sahl JW, Bashir A, Boisen N, Scheutz F, Paxinos EE, Sebra R, Chin CS, Iliopoulos D, Klammer A, Peluso P, Lee L, Kislyuk AO, Bullard J, Kasarskis A, Wang S, Eid J, Rank D, Redman JC, Steyert SR, Frimodt-Møller J, Struve C, Petersen AM, Krogfelt KA, Nataro JP, Schadt EE, Waldor MK . 2011. Origins of the E. coli strain causing an outbreak of hemolytic-uremic syndrome in Germany. N Engl J Med 365 : 709 717[CrossRef].[PubMed]
9. Qin J, Cui Y, Zhao X, Rohde H, Liang T, Wolters M, Li D, Belmar Campos C, Christner M, Song Y, Yang R . 2011. Identification of the Shiga toxin-producing Escherichia coli O104:H4 strain responsible for a food poisoning outbreak in Germany by PCR. J Clin Microbiol 49 : 3439 3440[CrossRef].[PubMed]
10. Rohde H, Qin J, Cui Y, Li D, Loman NJ, Hentschke M, Chen W, Pu F, Peng Y, Li J, Xi F, Li S, Li Y, Zhang Z, Yang X, Zhao M, Wang P, Guan Y, Cen Z, Zhao X, Christner M, Kobbe R, Loos S, Oh J, Yang L, Danchin A, Gao GF, Song Y, Li Y, Yang H, Wang J, Xu J, Pallen MJ, Wang J, Aepfelbacher M, Yang R E. coli O104:H4 Genome Analysis Crowd-Sourcing Consortium . 2011. Open-source genomic analysis of Shiga-toxin-producing E. coli O104:H4. N Engl J Med 365 : 718 724[CrossRef].[PubMed]
11. Zhang W, Mellmann A, Sonntag AK, Wieler L, Bielaszewska M, Tschäpe H, Karch H, Friedrich AW . 2007. Structural and functional differences between disease-associated genes of enterohaemorrhagic Escherichia coli O111. Int J Med Microbiol 297 : 17 26[CrossRef].[PubMed]
12. Sonntag AK, Prager R, Bielaszewska M, Zhang W, Fruth A, Tschäpe H, Karch H . 2004. Phenotypic and genotypic analyses of enterohemorrhagic Escherichia coli O145 strains from patients in Germany. J Clin Microbiol 42 : 954 962[CrossRef].[PubMed]
13. Delannoy S, Beutin L, Fach P . 2013. Discrimination of enterohemorrhagic Escherichia coli (EHEC) from non-EHEC strains based on detection of various combinations of type III effector genes. J Clin Microbiol 51 : 3257 3262[CrossRef].[PubMed]
14. O'Brien AD, Tesh VL, Donohue-Rolfe A, Jackson MP, Olsnes S, Sandvig K, Lindberg AA, Keusch GT . 1992. Shiga toxin: biochemistry, genetics, mode of action, and role in pathogenesis. Curr Top Microbiol Immunol 180 : 65 94[CrossRef].[PubMed]
15. Johnson WM, Lior H, Bezanson GS . 1983. Cytotoxic Escherichia coli O157:H7 associated with haemorrhagic colitis in Canada. Lancet i : 76[CrossRef].[PubMed]
16. Karmali MA, Petric M, Lim C, Fleming PC, Arbus GS, Lior H . 1985. The association between idiopathic hemolytic uremic syndrome and infection by verotoxin-producing Escherichia coli. J Infect Dis 151 : 775 782[CrossRef].[PubMed]
17. Bettelheim KA . 2007. The non-O157 Shiga-toxigenic (verocytotoxigenic) Escherichia coli; under-rated pathogens. Crit Rev Microbiol 33 : 67 87[CrossRef].[PubMed]
18. Brooks JT, Sowers EG, Wells JG, Greene KD, Griffin PM, Hoekstra RM, Strockbine NA . 2005. Non-O157 Shiga toxin-producing Escherichia coli infections in the United States, 1983-2002. J Infect Dis 192 : 1422 1429[CrossRef].[PubMed]
19. U.S. Department of Agriculture FSIS . 2012. Shiga toxin-producing Escherichia coli in certain raw beef products. Fed Regist 77 : 3197531981.
20. Griffin PM, Tauxe RV . 1991. The epidemiology of infections caused by Escherichia coli O157:H7, other enterohemorrhagic E. coli, and the associated hemolytic uremic syndrome. Epidemiol Rev 13 : 60 98[CrossRef].[PubMed]
21. McAllister LJ, Bent SJ, Petty NK, Skippington E, Beatson SA, Paton JC, Paton AW . 2016. Genomic comparison of two O111:H– enterohemorrhagic Escherichia coli isolates from a historic hemolytic-uremic syndrome outbreak in Australia. Infect Immun 84 : 775 781[CrossRef].[PubMed]
22. Reeves PR, Hobbs M, Valvano MA, Skurnik M, Whitfield C, Coplin D, Kido N, Klena J, Maskell D, Raetz CR, Rick PD . 1996. Bacterial polysaccharide synthesis and gene nomenclature. Trends Microbiol 4 : 495 503[CrossRef].[PubMed]
23. Foster JW . 2004. Escherichia coli acid resistance: tales of an amateur acidophile. Nat Rev Microbiol 2 : 898 907[CrossRef].[PubMed]
24. Brackett R, Hao Y, Doyle M . 1994. Ineffectiveness of hot acid sprays to decontaminate Escherichia coli O157:H7 on beef. J Food Prot 57 : 198 203[CrossRef].
25. Glass KA, Loeffelholz JM, Ford JP, Doyle MP . 1992. Fate of Escherichia coli O157:H7 as affected by pH or sodium chloride and in fermented, dry sausage. Appl Environ Microbiol 58 : 2513 2516.[PubMed]
26. Zhao T, Doyle M . 1994. Fate of enterohemorrhagic Escherichia coli O157:H7 in commercial mayonnaise. J Food Prot 57 : 780 783[CrossRef].
27. Zhao T, Doyle MP, Besser RE . 1993. Fate of enterohemorrhagic Escherichia coli O157:H7 in apple cider with and without preservatives. Appl Environ Microbiol 59 : 2526 2530.[PubMed]
28. Baylis CL, MacPhee S, Robinson AJ, Griffiths R, Lilley K, Betts RP . 2004. Survival of Escherichia coli O157:H7, O111:H- and O26:H11 in artificially contaminated chocolate and confectionery products. Int J Food Microbiol 96 : 35 48[CrossRef].[PubMed]
29. Hiramatsu R, Matsumoto M, Sakae K, Miyazaki Y . 2005. Ability of Shiga toxin-producing Escherichia coli and Salmonella spp. to survive in a desiccation model system and in dry foods. Appl Environ Microbiol 71 : 6657 6663[CrossRef].[PubMed]
30. Kim HH, Samadpour M, Grimm L, Clausen CR, Besser TE, Baylor M, Kobayashi JM, Neill MA, Schoenknecht FD, Tarr PI . 1994. Characteristics of antibiotic-resistant Escherichia coli O157:H7 in Washington State, 1984-1991. J Infect Dis 170 : 1606 1609[CrossRef].[PubMed]
31. Meng J, Zhao S, Doyle MP, Joseph SW . 1998. Antibiotic resistance of Escherichia coli O157:H7 and O157:NM isolated from animals, food, and humans. J Food Prot 61 : 1511 1514[CrossRef].[PubMed]
32. Sekse C, O'Sullivan K, Granum PE, Rørvik LM, Wasteson Y, Jørgensen HJ . 2009. An outbreak of Escherichia coli O103:H25—bacteriological investigations and genotyping of isolates from food. Int J Food Microbiol 133 : 259 264[CrossRef].[PubMed]
33. Schroeder CM, Meng J, Zhao S, DebRoy C, Torcolini J, Zhao C, McDermott PF, Wagner DD, Walker RD, White DG . 2002. Antimicrobial resistance of Escherichia coli O26, O103, O111, O128, and O145 from animals and humans. Emerg Infect Dis 8 : 1409 1414[CrossRef].[PubMed]
34. Schroeder CM, Zhao C, DebRoy C, Torcolini J, Zhao S, White DG, Wagner DD, McDermott PF, Walker RD, Meng J . 2002. Antimicrobial resistance of Escherichia coli O157 isolated from humans, cattle, swine, and food. Appl Environ Microbiol 68 : 576 581[CrossRef].[PubMed]
35. Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, Doi Y, Tian G, Dong B, Huang X, Yu LF, Gu D, Ren H, Chen X, Lv L, He D, Zhou H, Liang Z, Liu JH, Shen J . 2016. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 16 : 161 168[CrossRef].[PubMed]
36. Tada T, Nhung PH, Shimada K, Tsuchiya M, Phuong DM, Anh NQ, Ohmagari N, Kirikae T . 2017. Emergence of colistin-resistant Escherichia coli clinical isolates harboring mcr-1 in Vietnam. Int J Infect Dis 63 : 72 73.
37. Curcio L, Luppi A, Bonilauri P, Gherpelli Y, Pezzotti G, Pesciaroli M, Magistrali CF . 2017. Detection of the colistin resistance gene mcr-1 in pathogenic Escherichia coli from pigs affected by post-weaning diarrhoea in Italy. J Glob Antimicrob Resist 10 : 80 83.
38. Doyle MP, Schoeni JL . 1984. Survival and growth characteristics of Escherichia coli associated with hemorrhagic colitis. Appl Environ Microbiol 48 : 855 856.[PubMed]
39. Line J, Fain A Jr, Moran A, Martin L, Lechowich R, Carosella J, Brown W . 1991. Lethality of heat to Escherichia coli O157:H7: D-value and z-value determinations in ground beef. J Food Prot 54 : 762 766[CrossRef].
40. D'Aoust JY, Park CE, Szabo RA, Todd EC, Emmons DB, McKellar RC . 1988. Thermal inactivation of Campylobacter species, Yersinia enterocolitica, and hemorrhagic Escherichia coli i O157:H7 in fluid milk. J Dairy Sci 71 : 3230 3236[CrossRef].[PubMed]
41. Clavero MR, Monk JD, Beuchat LR, Doyle MP, Brackett RE . 1994. Inactivation of Escherichia coli O157:H7, salmonellae, and Campylobacter jejuni in raw ground beef by gamma irradiation. Appl Environ Microbiol 60 : 2069 2075.[PubMed]
42. Weimer BC . 2017. 100K Pathogen Genome Project. Genome Announc 5 : e00594-17[CrossRef].[PubMed]
43. Gonzalez-Escalona N, Toro M, Rump LV, Cao G, Nagaraja TG, Meng J . 2016. Virulence gene profiles and clonal relationships of Escherichia coli O26:H11 isolates from feedlot cattle as determined by whole-genome sequencing. Appl Environ Microbiol 82 : 3900 3912[CrossRef].[PubMed]
44. Ogura Y, Ooka T, , Asadulghani, Terajima J, Nougayrède JP, Kurokawa K, Tashiro K, Tobe T, Nakayama K, Kuhara S, Oswald E, Watanabe H, Hayashi T . 2007. Extensive genomic diversity and selective conservation of virulence-determinants in enterohemorrhagic Escherichia coli strains of O157 and non-O157 serotypes. Genome Biol 8 : R138[CrossRef].[PubMed]
45. Ogura Y, Ooka T, Iguchi A, Toh H, Asadulghani M, Oshima K, Kodama T, Abe H, Nakayama K, Kurokawa K, Tobe T, Hattori M, Hayashi T . 2009. Comparative genomics reveal the mechanism of the parallel evolution of O157 and non-O157 enterohemorrhagic Escherichia coli. Proc Natl Acad Sci USA 106 : 17939 17944[CrossRef].[PubMed]
46. Cooper KK, Mandrell RE, Louie JW, Korlach J, Clark TA, Parker CT, Huynh S, Chain PS, Ahmed S, Carter MQ . 2014. Comparative genomics of enterohemorrhagic Escherichia coli O145:H28 demonstrates a common evolutionary lineage with Escherichia coli O157:H7. BMC Genomics 15 : 17[CrossRef].[PubMed]
47. Abu-Ali GS, Lacher DW, Wick LM, Qi W, Whittam TS . 2009. Genomic diversity of pathogenic Escherichia coli of the EHEC 2 clonal complex. BMC Genomics 10 : 296[CrossRef].[PubMed]
48. Ferdous M, Zhou K, Mellmann A, Morabito S, Croughs PD, de Boer RF, Kooistra-Smid AM, Rossen JW, Friedrich AW . 2015. Is Shiga toxin-negative Escherichia coli O157:H7 enteropathogenic or enterohemorrhagic Escherichia coli? comprehensive molecular analysis using whole-genome sequencing. J Clin Microbiol 53 : 3530 3538[CrossRef].[PubMed]
49. Franz E, Delaquis P, Morabito S, Beutin L, Gobius K, Rasko DA, Bono J, French N, Osek J, Lindstedt BA, Muniesa M, Manning S, LeJeune J, Callaway T, Beatson S, Eppinger M, Dallman T, Forbes KJ, Aarts H, Pearl DL, Gannon VP, Laing CR, Strachan NJ . 2014. Exploiting the explosion of information associated with whole genome sequencing to tackle Shiga toxin-producing Escherichia coli (STEC) in global food production systems. Int J Food Microbiol 187 : 57 72. CORRIGENDUM Int J Food Microbiol 193 : 159.[CrossRef][PubMed]
50. David ST, MacDougall L, Louie K, McIntyre L, Paccagnella AM, Schleicher S, Hamade A . 2004. Petting zoo-associated Escherichia coli O157:H7—secondary transmission, asymptomatic infection, and prolonged shedding in the classroom. Can Commun Dis Rep 30 : 173 180.[PubMed]
51. Licence K, Oates KR, Synge BA, Reid TM . 2001. An outbreak of E. coli O157 infection with evidence of spread from animals to man through contamination of a private water supply. Epidemiol Infect 126 : 135 138.[PubMed]
52. Mathusa EC, Chen Y, Enache E, Hontz L . 2010. Non-O157 Shiga toxin-producing Escherichia coli in foods. J Food Prot 73 : 1721 1736[CrossRef].[PubMed]
53. Espié E, Grimont F, Vaillant V, Montet MP, Carle I, Bavai C, de Valk H, Vernozy-Rozand C . 2006. O148 Shiga toxin-producing Escherichia coli outbreak: microbiological investigation as a useful complement to epidemiological investigation. Clin Microbiol Infect 12 : 992 998[CrossRef].[PubMed]
54. Ethelberg S, Smith B, Torpdahl M, Lisby M, Boel J, Jensen T, Molbak K . 2007. An outbreak of Verocytotoxin-producing Escherichia coli O26:H11 caused by beef sausage, Denmark 2007. Euro Surveill 12: 3208.
55. Ethelberg S, Smith B, Torpdahl M, Lisby M, Boel J, Jensen T, Nielsen EM, Mølbak K . 2009. Outbreak of non-O157 Shiga toxin-producing Escherichia coli infection from consumption of beef sausage. Clin Infect Dis 48 : e78 e81[CrossRef].[PubMed]
56. Orskov F, Orskov I, Villar JA . 1987. Cattle as reservoir of verotoxin-producing Escherichia coli O157:H7. Lancet ii : 276[CrossRef].[PubMed]
57. Beutin L, Geier D, Steinrück H, Zimmermann S, Scheutz F . 1993. Prevalence and some properties of verotoxin (Shiga-like toxin)-producing Escherichia coli in seven different species of healthy domestic animals. J Clin Microbiol 31 : 2483 2488.[PubMed]
58. Meyer-Broseta S, Bastian SN, Arné PD, Cerf O, Sanaa M . 2001. Review of epidemiological surveys on the prevalence of contamination of healthy cattle with Escherichia coli serogroup O157:H7. Int J Hyg Environ Health 203 : 347 361[CrossRef].[PubMed]
59. Rice DH, McMenamin KM, Pritchett LC, Hancock DD, Besser TE . 1999. Genetic subtyping of Escherichia coli O157 isolates from 41 Pacific Northwest USA cattle farms. Epidemiol Infect 122 : 479 484[CrossRef].[PubMed]
60. Besser TE, Hancock DD, Pritchett LC, McRae EM, Rice DH, Tarr PI . 1997. Duration of detection of fecal excretion of Escherichia coli O157:H7 in cattle. J Infect Dis 175 : 726 729[CrossRef].[PubMed]
61. Naylor SW, Low JC, Besser TE, Mahajan A, Gunn GJ, Pearce MC, McKendrick IJ, Smith DG, Gally DL . 2003. Lymphoid follicle-dense mucosa at the terminal rectum is the principal site of colonization of enterohemorrhagic Escherichia coli O157:H7 in the bovine host. Infect Immun 71 : 1505 1512[CrossRef].[PubMed]
62. Cernicchiaro N, Pearl DL, McEwen SA, Zerby HN, Fluharty FL, Loerch SC, Kauffman MD, Bard JL, LeJeune JT . 2010. A randomized controlled trial to assess the impact of dietary energy sources, feed supplements, and the presence of super-shedders on the detection of Escherichia coli O157:H7 in feedlot cattle using different diagnostic procedures. Foodborne Pathog Dis 7 : 1071 1081[CrossRef].[PubMed]
63. Davis MA, Rice DH, Sheng H, Hancock DD, Besser TE, Cobbold R, Hovde CJ . 2006. Comparison of cultures from rectoanal-junction mucosal swabs and feces for detection of Escherichia coli O157 in dairy heifers. Appl Environ Microbiol 72 : 3766 3770[CrossRef].[PubMed]
64. Hancock D, Besser T, Lejeune J, Davis M, Rice D . 2001. The control of VTEC in the animal reservoir. Int J Food Microbiol 66 : 71 78[CrossRef].[PubMed]
65. Barkocy-Gallagher GA, Arthur TM, Rivera-Betancourt M, Nou X, Shackelford SD, Wheeler TL, Koohmaraie M . 2003. Seasonal prevalence of Shiga toxin-producing Escherichia coli, including O157:H7 and non-O157 serotypes, and Salmonella in commercial beef processing plants. J Food Prot 66 : 1978 1986[CrossRef].[PubMed]
66. LeJeune JT, Hancock D, Wasteson Y, Skjerve E, Urdahl AM . 2006. Comparison of E. coli O157 and Shiga toxin-encoding genes (stx) prevalence between Ohio, USA and Norwegian dairy cattle. Int J Food Microbiol 109 : 19 24[CrossRef].[PubMed]
67. Renter DG, Bohaychuk V, Van Donkersgoed J, King R . 2007. Presence of non-O157 Shiga toxin-producing Escherichia coli in feces from feedlot cattle in Alberta and absence on corresponding beef carcasses. Can J Vet Res 71 : 230 235.[PubMed]
68. Zweifel C, Giezendanner N, Corti S, Krause G, Beutin L, Danuser J, Stephan R . 2010. Characteristics of shiga toxin-producing Escherichia coli isolated from Swiss raw milk cheese within a 3-year monitoring program. J Food Prot 73 : 88 91[CrossRef].[PubMed]
69. King LA, Filliol-Toutain I, Mariani-Kurkidjian P, Vaillant V, Vernozy-Rozand C, Ganet S, Pihier N, Niaudet P, de Valk H . 2010. Family outbreak of Shiga toxin-producing Escherichia coli O123:H-, France, 2009. Emerg Infect Dis 16 : 1491 1493[CrossRef].[PubMed]
70. Vu-Khac H, Cornick NA . 2008. Prevalence and genetic profiles of Shiga toxin-producing Escherichia coli strains isolated from buffaloes, cattle, and goats in central Vietnam. Vet Microbiol 126 : 356 363[CrossRef].[PubMed]
71. Nielsen EM, Skov MN, Madsen JJ, Lodal J, Jespersen JB, Baggesen DL . 2004. Verocytotoxin-producing Escherichia coli in wild birds and rodents in close proximity to farms. Appl Environ Microbiol 70 : 6944 6947[CrossRef].[PubMed]
72. Persad AK, LeJeune JT . 2014. Animal reservoirs of Shiga toxin-producing Escherichia coli. Microbiol Spectr 2 :EHEC -0027 2014.[PubMed]
73. Jacob ME, Fox JT, Drouillard JS, Renter DG, Nagaraja TG . 2008. Effects of dried distillers’ grain on fecal prevalence and growth of Escherichia coli O157 in batch culture fermentations from cattle. Appl Environ Microbiol 74 : 38 43[CrossRef].[PubMed]
74. Jacob ME, Paddock ZD, Renter DG, Lechtenberg KF, Nagaraja TG . 2010. Inclusion of dried or wet distillers’ grains at different levels in diets of feedlot cattle affects fecal shedding of Escherichia coli O157:H7. Appl Environ Microbiol 76 : 7238 7242[CrossRef].[PubMed]
75. Cobbold R, Desmarchelier P . 2000. A longitudinal study of Shiga-toxigenic Escherichia coli (STEC) prevalence in three Australian diary herds. Vet Microbiol 71 : 125 137[CrossRef].[PubMed]
76. Sargeant JM, Sanderson MW, Griffin DD, Smith RA . 2004. Factors associated with the presence of Escherichia coli O157 in feedlot-cattle water and feed in the Midwestern USA. Prev Vet Med 66 : 207 237[CrossRef].[PubMed]
77. Lynn TV, Hancock DD, Besser TE, Harrison JH, Rice DH, Stewart NT, Rowan LL . 1998. The occurrence and replication of Escherichia coli in cattle feeds. J Dairy Sci 81 : 1102 1108[CrossRef].[PubMed]
78. Dodd CC, Sanderson MW, Sargeant JM, Nagaraja TG, Oberst RD, Smith RA, Griffin DD . 2003. Prevalence of Escherichia coli O157 in cattle feeds in Midwestern feedlots. Appl Environ Microbiol 69 : 5243 5247[CrossRef].[PubMed]
79. LeJeune JT, Wetzel AN . 2007. Preharvest control of Escherichia coli O157 in cattle. J Anim Sci 85( Suppl 13) : E73 E80[CrossRef].[PubMed]
80. Callaway TR, Anderson RC, Genovese KJ, Poole TL, Anderson TJ, Byrd JA, Kubena LF, Nisbet DJ . 2002. Sodium chlorate supplementation reduces E. coli O157:H7 populations in cattle. J Anim Sci 80 : 1683 1689[CrossRef].[PubMed]
81. McNeilly TN, Mitchell MC, Nisbet AJ, McAteer S, Erridge C, Inglis NF, Smith DG, Low JC, Gally DL, Huntley JF, Mahajan A . 2010. IgA and IgG antibody responses following systemic immunization of cattle with native H7 flagellin differ in epitope recognition and capacity to neutralise TLR5 signalling. Vaccine 28 : 1412 1421[CrossRef].[PubMed]
82. Smith DR, Moxley RA, Klopfenstein TJ, Erickson GE . 2009. A randomized longitudinal trial to test the effect of regional vaccination within a cattle feedyard on Escherichia coli O157:H7 rectal colonization, fecal shedding, and hide contamination. Foodborne Pathog Dis 6 : 885 892[CrossRef].[PubMed]
83. Elder RO, Keen JE, Siragusa GR, Barkocy-Gallagher GA, Koohmaraie M, Laegreid WW . 2000. Correlation of enterohemorrhagic Escherichia coli O157 prevalence in feces, hides, and carcasses of beef cattle during processing. Proc Natl Acad Sci USA 97 : 2999 3003[CrossRef].[PubMed]
84. Karch H, Rüssmann H, Schmidt H, Schwarzkopf A, Heesemann J . 1995. Long-term shedding and clonal turnover of enterohemorrhagic Escherichia coli O157 in diarrheal diseases. J Clin Microbiol 33 : 1602 1605.[PubMed]
85. Orr P, Milley D, Colby D, Fast M . 1994. Prolonged fecal excretion of verotoxin-producing Escherichia coli following diarrheal illness. Clin Infect Dis 19 : 796 797[CrossRef].[PubMed]
86. Beutin L, Martin A . 2012. Outbreak of Shiga toxin-producing Escherichia coli (STEC) O104:H4 infection in Germany causes a paradigm shift with regard to human pathogenicity of STEC strains. J Food Prot 75 : 408 418[CrossRef].[PubMed]
87. Wilson JB, Clarke RC, Renwick SA, Rahn K, Johnson RP, Karmali MA, Lior H, Alves D, Gyles CL, Sandhu KS, McEwen SA, Spika JS . 1996. Vero cytotoxigenic Escherichia coli infection in dairy farm families. J Infect Dis 174 : 1021 1027[CrossRef].[PubMed]
88. Money P, Kelly AF, Gould SW, Denholm-Price J, Threlfall EJ, Fielder MD . 2010. Cattle, weather and water: mapping Escherichia coli O157:H7 infections in humans in England and Scotland. Environ Microbiol 12 : 2633 2644.[PubMed]
89. Stephan R, Untermann F . 1999. Virulence factors and phenotypical traits of verotoxin-producing Escherichia coli strains isolated from asymptomatic human carriers. J Clin Microbiol 37 : 1570 1572.[PubMed]
90. Hong S, Oh KH, Cho SH, Kim JC, Park MS, Lim HS, Lee BK . 2009. Asymptomatic healthy slaughterhouse workers in South Korea carrying Shiga toxin-producing Escherichia coli. FEMS Immunol Med Microbiol 56 : 41 47[CrossRef].[PubMed]
91. Teunis P, Takumi K, Shinagawa K . 2004. Dose response for infection by Escherichia coli O157:H7 from outbreak data. Risk Anal 24 : 401 407[CrossRef].[PubMed]
92. Gould LH, Mody RK, Ong KL, Clogher P, Cronquist AB, Garman KN, Lathrop S, Medus C, Spina NL, Webb TH, White PL, Wymore K, Gierke RE, Mahon BE, Griffin PM Emerging Infections Program Foodnet Working Group . 2013. Increased recognition of non-O157 Shiga toxin-producing Escherichia coli infections in the United States during 2000-2010: epidemiologic features and comparison with E. coli O157 infections. Foodborne Pathog Dis 10 : 453 460[CrossRef].[PubMed]
93. Davis TK, Van De Kar NC, Tarr PI . 2014. Shiga toxin/verocytotoxin-producing Escherichia coli infections: practical clinical perspectives. Microbiol Spectr 2 : EHEC-0025-2014.
94. Besser RE, Griffin PM, Slutsker L . 1999. Escherichia coli O157:H7 gastroenteritis and the hemolytic uremic syndrome: an emerging infectious disease. Annu Rev Med 50 : 355 367[CrossRef].[PubMed]
95. Tarr PI, Gordon CA, Chandler WL . 2005. Shiga-toxin-producing Escherichia coli and haemolytic uraemic syndrome. Lancet 365 : 1073 1086.[PubMed]
96. Mead PS, Griffin PM . 1998. Escherichia coli O157:H7. Lancet 352 : 1207 1212[CrossRef].[PubMed]
97. Tuttle J, Gomez T, Doyle MP, Wells JG, Zhao T, Tauxe RV, Griffin PM . 1999. Lessons from a large outbreak of Escherichia coli O157:H7 infections: insights into the infectious dose and method of widespread contamination of hamburger patties. Epidemiol Infect 122 : 185 192[CrossRef].[PubMed]
98. Tilden J Jr, Young W, McNamara AM, Custer C, Boesel B, Lambert-Fair MA, Majkowski J, Vugia D, Werner SB, Hollingsworth J, Morris JG Jr . 1996. A new route of transmission for Escherichia coli: infection from dry fermented salami. Am J Public Health 86 : 1142 1145[CrossRef].[PubMed]
99. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Jones JL, Griffin PM . 2011. Foodborne illness acquired in the United States—major pathogens. Emerg Infect Dis 17 : 7 15[CrossRef].[PubMed]
100. Michino H, Araki K, Minami S, Takaya S, Sakai N, Miyazaki M, Ono A, Yanagawa H . 1999. Massive outbreak of Escherichia coli O157:H7 infection in schoolchildren in Sakai City, Japan, associated with consumption of white radish sprouts. Am J Epidemiol 150 : 787 796[CrossRef].[PubMed]
101. Pennington TH . 2014. E. coli O157 outbreaks in the United Kingdom: past, present, and future. Infect Drug Resist 7 : 211 222[CrossRef].[PubMed]
102. Rangel JM, Sparling PH, Crowe C, Griffin PM, Swerdlow DL . 2005. Epidemiology of Escherichia coli O157:H7 outbreaks, United States, 1982-2002. Emerg Infect Dis 11 : 603 609[CrossRef].[PubMed]
103. Williams MS, Withee JL, Ebel ED, Bauer NE Jr, Schlosser WD, Disney WT, Smith DR, Moxley RA . 2010. Determining relationships between the seasonal occurrence of Escherichia coli O157:H7 in live cattle, ground beef, and humans. Foodborne Pathog Dis 7 : 1247 1254[CrossRef].[PubMed]
104. Koehler KM, Lasky T, Fein SB, Delong SM, Hawkins MA, Rabatsky-Ehr T, Ray SM, Shiferaw B, Swanson E, Vugia DJ . 2006. Population-based incidence of infection with selected bacterial enteric pathogens in children younger than five years of age, 1996-1998. Pediatr Infect Dis J 25 : 129 134[CrossRef].[PubMed]
105. Meng J, Doyle MP, . 1998. Microbiology of Shiga toxin-producing Escherichia coli in foods, p 92 111. In Kaper J,, O'Brien A (ed), Escherichia coli O157:H7 and Other Shiga Toxin-Producing E. coli Strains. ASM Press, Washington, DC.
106. Wells JG, Davis BR, Wachsmuth IK, Riley LW, Remis RS, Sokolow R, Morris GK . 1983. Laboratory investigation of hemorrhagic colitis outbreaks associated with a rare Escherichia coli serotype. J Clin Microbiol 18 : 512 520.[PubMed]
107. Bell BP . et al. 1994. A multistate outbreak of Escherichia coli O157:H7-associated bloody diarrhea and hemolytic uremic syndrome from hamburgers. The Washington experience. JAMA 272 : 1349 1353[CrossRef].[PubMed]
108. Centers for Disease Control and Prevention . 2006. Importance of culture confirmation of Shiga toxin-producing Escherichia coli infection as illustrated by outbreaks of gastroenteritis—New York and North Carolina, 2005. MMWR Morb Mortal Wkly Rep 55 : 10421045.[PubMed]
109. Besser RE, Lett SM, Weber JT, Doyle MP, Barrett TJ, Wells JG, Griffin PM . 1993. An outbreak of diarrhea and hemolytic uremic syndrome from Escherichia coli O157:H7 in fresh-pressed apple cider. JAMA 269 : 2217 2220[CrossRef].[PubMed]
110. Centers for Disease Control and Prevention . 1996. Lake-associated outbreak of Escherichia coli O157:H7—Illinois, 1995. JAMA 275 : 18721873[CrossRef].
111. Centers for Disease Control and Prevention . 1999. Outbreak of Escherichia coli O157:H7 and Campylobacter among attendees of the Washington County Fair—New York, 1999. MMWR Morb Mortal Wkly Rep 48 : 803805.[PubMed]
112. Denno DM, Keene WE, Hutter CM, Koepsell JK, Patnode M, Flodin-Hursh D, Stewart LK, Duchin JS, Rasmussen L, Jones R, Tarr PI . 2009. Tri-county comprehensive assessment of risk factors for sporadic reportable bacterial enteric infection in children. J Infect Dis 199 : 467 476[CrossRef].[PubMed]
113. Müller EE, Ehlers MM, Grabow WO . 2001. The occurrence of E. coli O157:H7 in South African water sources intended for direct and indirect human consumption. Water Res 35 : 3085 3088[CrossRef].[PubMed]
114. Hrudey SE, Payment P, Huck PM, Gillham RW, Hrudey EJ . 2003. A fatal waterborne disease epidemic in Walkerton, Ontario: comparison with other waterborne outbreaks in the developed world. Water Sci Technol 47 : 7 14[CrossRef].[PubMed]
115. Calderon VE, Chang Q, McDermott M, Lytle MB, McKee G, Rodriguez K, Rasko DA, Sperandio V, Torres AG . 2010. Outbreak caused by cad-negative Shiga toxin-producing Escherichia coli O111, Oklahoma. Foodborne Pathog Dis 7 : 107 109[CrossRef].[PubMed]
116. Piercefield EW, Bradley KK, Coffman RL, Mallonee SM . 2010. Hemolytic rremic syndrome after an Escherichia coli O111 outbreak. Arch Intern Med 170 : 1656 1663[CrossRef].[PubMed]
117. Karama M, Johnson RP, Holtslander R, Gyles CL . 2009. Production of verotoxin and distribution of O islands 122 and 43/48 among verotoxin-producing Escherichia coli O103:H2 isolates from cattle and humans. Appl Environ Microbiol 75 : 268 270[CrossRef].[PubMed]
118. Kaper JB, O'Brien AD . 2014. Overview and historical perspectives. Microbiol Spectr 2 : EHEC-0028-2014.[PubMed]
119. Nguyen Y, Sperandio V . 2012. Enterohemorrhagic E. coli (EHEC) pathogenesis. Front Cell Infect Microbiol 2 : 90[CrossRef].[PubMed]
120. Wong AR, Pearson JS, Bright MD, Munera D, Robinson KS, Lee SF, Frankel G, Hartland EL . 2011. Enteropathogenic and enterohaemorrhagic Escherichia coli: even more subversive elements. Mol Microbiol 80 : 1420 1438[CrossRef].[PubMed]
121. Garmendia J, Frankel G, Crepin VF . 2005. Enteropathogenic and enterohemorrhagic Escherichia coli infections: translocation, translocation, translocation. Infect Immun 73 : 2573 2585[CrossRef].[PubMed]
122. Elliott SJ, Wainwright LA, McDaniel TK, Jarvis KG, Deng YK, Lai LC, McNamara BP, Donnenberg MS, Kaper JB . 1998. The complete sequence of the locus of enterocyte effacement (LEE) from enteropathogenic Escherichia coli E2348/69. Mol Microbiol 28 : 1 4[CrossRef].[PubMed]
123. Schmidt MA . 2010. LEEways: tales of EPEC, ATEC and EHEC. Cell Microbiol 12 : 1544 1552[CrossRef].[PubMed]
124. Oswald E, Schmidt H, Morabito S, Karch H, Marchès O, Caprioli A . 2000. Typing of intimin genes in human and animal enterohemorrhagic and enteropathogenic Escherichia coli: characterization of a new intimin variant. Infect Immun 68 : 64 71[CrossRef].[PubMed]
125. Paton AW, Srimanote P, Woodrow MC, Paton JC . 2001. Characterization of Saa, a novel autoagglutinating adhesin produced by locus of enterocyte effacement-negative Shiga-toxigenic Escherichia coli strains that are virulent for humans. Infect Immun 69 : 6999 7009[CrossRef].[PubMed]
126. Stevens MP, Frankel GM . 2014. The locus of enterocyte effacement and associated virulence factors of enterohemorrhagic Escherichia coli. Microbiol Spectr 2 : EHEC-0007-2013.
127. Burland V, Shao Y, Perna NT, Plunkett G, Sofia HJ, Blattner FR . 1998. The complete DNA sequence and analysis of the large virulence plasmid of Escherichia coli O157:H7. Nucleic Acids Res 26 : 4196 4204[CrossRef].[PubMed]
128. Johnson TJ, Nolan LK . 2009. Pathogenomics of the virulence plasmids of Escherichia coli. Microbiol Mol Biol Rev 73 : 750 774[CrossRef].[PubMed]
129. Herold S, Paton JC, Paton AW . 2009. Sab, a novel autotransporter of locus of enterocyte effacement-negative Shiga-toxigenic Escherichia coli O113:H21, contributes to adherence and biofilm formation. Infect Immun 77 : 3234 3243[CrossRef].[PubMed]
130. Khaitan A, Jandhyala DM, Thorpe CM, Ritchie JM, Paton AW . 2007. The operon encoding SubAB, a novel cytotoxin, is present in Shiga toxin-producing Escherichia coli isolates from the United States. J Clin Microbiol 45 : 1374 1375[CrossRef].[PubMed]
131. Zhang W, Bielaszewska M, Kuczius T, Karch H . 2002. Identification, characterization, and distribution of a Shiga toxin 1 gene variant ( stx(1c)) in Escherichia coli strains isolated from humans. J Clin Microbiol 40 : 1441 1446[CrossRef].[PubMed]
132. Bürk C, Dietrich R, Açar G, Moravek M, Bülte M, Märtlbauer E . 2003. Identification and characterization of a new variant of Shiga toxin 1 in Escherichia coli ONT:H19 of bovine origin. J Clin Microbiol 41 : 2106 2112[CrossRef].[PubMed]
133. Brett KN, Hornitzky MA, Bettelheim KA, Walker MJ, Djordjevic SP . 2003. Bovine non-O157 Shiga toxin 2-containing Escherichia coli isolates commonly possess stx2-EDL933 and/or stx2vhb subtypes. J Clin Microbiol 41 : 2716 2722[CrossRef].[PubMed]
134. Fuller CA, Pellino CA, Flagler MJ, Strasser JE, Weiss AA . 2011. Shiga toxin subtypes display dramatic differences in potency. Infect Immun 79 : 1329 1337[CrossRef].[PubMed]
135. García-Aljaro C, Muniesa M, Blanco JE, Blanco M, Blanco J, Jofre J, Blanch AR . 2005. Characterization of Shiga toxin-producing Escherichia coli isolated from aquatic environments. FEMS Microbiol Lett 246 : 55 65[CrossRef].[PubMed]
136. Schmidt H, Scheef J, Morabito S, Caprioli A, Wieler LH, Karch H . 2000. A new Shiga toxin 2 variant (Stx2f) from Escherichia coli isolated from pigeons. Appl Environ Microbiol 66 : 1205 1208[CrossRef].[PubMed]
137. Weinstein DL, Jackson MP, Samuel JE, Holmes RK, O'Brien AD . 1988. Cloning and sequencing of a Shiga-like toxin type II variant from Escherichia coli strain responsible for edema disease of swine. J Bacteriol 170 : 4223 4230[CrossRef].[PubMed]
138. Gannon VP, Gyles CL . 1990. Characteristics of the Shiga-like toxin produced by Escherichia coli associated with porcine edema disease. Vet Microbiol 24 : 89 100[CrossRef].[PubMed]
139. Cohen A, Hannigan GE, Williams BR, Lingwood CA . 1987. Roles of globotriosyl- and galabiosylceramide in verotoxin binding and high affinity interferon receptor. J Biol Chem 262 : 17088 17091.[PubMed]
140. Lingwood CA . 1996. Role of verotoxin receptors in pathogenesis. Trends Microbiol 4 : 147 153[CrossRef].[PubMed]
141. Tesh VL, O'Brien AD . 1991. The pathogenic mechanisms of Shiga toxin and the Shiga-like toxins. Mol Microbiol 5 : 1817 1822[CrossRef].[PubMed]
142. Sandvig K, van Deurs B . 1996. Endocytosis, intracellular transport, and cytotoxic action of Shiga toxin and ricin. Physiol Rev 76 : 949 966[CrossRef].[PubMed]
143. Melton-Celsa A, O'Brien A . 1998. Structure, biology, and relative toxicity of Shiga toxin family members for cells and animals, p 121 128. In Kaper J, O'Brien A (ed), Escherichia coli O157:H7 and Other Shiga Toxin-Producing E. coli Strains. ASM Press, Washington, DC.
144. van Setten PA, Monnens LA, Verstraten RG, van den Heuvel LP, van Hinsbergh VW . 1996. Effects of verocytotoxin-1 on nonadherent human monocytes: binding characteristics, protein synthesis, and induction of cytokine release. Blood 88 : 174 183.[PubMed]
145. Obata F, Obrig T . 2014. Role of Shiga/Vero toxins in pathogenesis. Microbiol Spectr 2 : EHEC-0005-2013[CrossRef].[PubMed]
146. Karmali MA . 2009. Host and pathogen determinants of verocytotoxin-producing Escherichia coli-associated hemolytic uremic syndrome. Kidney Int Suppl 75 : S4 S7.
147. Orth D, Grif K, Khan AB, Naim A, Dierich MP, Würzner R . 2007. The Shiga toxin genotype rather than the amount of Shiga toxin or the cytotoxicity of Shiga toxin in vitro correlates with the appearance of the hemolytic uremic syndrome. Diagn Microbiol Infect Dis 59 : 235 242[CrossRef].[PubMed]

Tables

Generic image for table
Table 11.1

Comparison of values for O157:H7 and spp. in ground beef

Citation: Gonzalez-Escalona N, Meng J, Doyle M. 2019. Shiga Toxin-Producing , p 289-315. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch11
Generic image for table
Table 11.2

Vehicles of foodborne outbreaks and associated cases of O157 infections in the United States between 2011 and 2015

Citation: Gonzalez-Escalona N, Meng J, Doyle M. 2019. Shiga Toxin-Producing , p 289-315. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch11
Generic image for table
Table 11.3

Representative foodborne and waterborne outbreaks of O157:H7 and other STEC infections

Citation: Gonzalez-Escalona N, Meng J, Doyle M. 2019. Shiga Toxin-Producing , p 289-315. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch11
Generic image for table
Table 11.4

Nomenclature and biological characteristics of Stxs

Citation: Gonzalez-Escalona N, Meng J, Doyle M. 2019. Shiga Toxin-Producing , p 289-315. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch11

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error