1887

Chapter 14 : Species

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Species, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819972/9781555819965.ch14-1.gif /docserver/preview/fulltext/10.1128/9781555819972/9781555819965.ch14-2.gif

Abstract:

The genus currently consists of seven species, including , , , , , , and This genus is now regarded as an opportunistic group of pathogenic bacteria with remarkable versatility in their abilities to cause disease in humans. It is now realized that infections due to can affect susceptible individuals, including neonates, infants, and elderly individuals, and it continues to attract attention in national and international media. species are recognized as being considerably more ecologically widespread than was once thought, and they have been found to be associated with many low-water-activity foods and environments, including powdered infant formula (PIF) and follow-up formulas, as well as in filth and stable flies, PIF and milk powder production facilities, household environments, and water. Pathogen-specific virulence factors have been discovered that adversely affect a wide range of eukaryotic cell and host processes, including protein synthesis, cell division, and proinflammatory host responses. A variety of mobile genetic elements, such as plasmids, transposons, and pathogenicity islands, have been identified, and this genomic plasticity implies ongoing microevolution with the possible acquisition of new virulence factors that will undoubtedly complicate efforts to classify these organisms into various subgroups or into sharply delineated genomopathotypes. This chapter describes the dynamic nature of , which is a highly diverse, versatile, opportunistic pathogen that will continue to present challenges for the global food safety and public health communities in terms of diagnosis, treatment, and prevention of infections.

Citation: Tall B, Gopinath G, Gangiredla J, Patel I, Fanning S, Lehner A. 2019. Species, p 389-414. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch14
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 14.1
Figure 14.1

Transmission electron photomicrograph of strain BAA-894 negatively stained with 0.5% sodium phosphotungstate (pH 6.8) showing numerous peritrichous flagella. Bar, 0.5 µm.

Citation: Tall B, Gopinath G, Gangiredla J, Patel I, Fanning S, Lehner A. 2019. Species, p 389-414. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 14.2
Figure 14.2

Revised FDA isolation and detection method, adapted from chapter 29 of the Bacteriological Analytical Manual (https://www.fda.gov/Food/FoodScienceResearch/LaboratoryMethods/ucm289378.htm). BPW, buffered peptone water; PBS, phosphate-buffered saline; R&F, plating medium.

Citation: Tall B, Gopinath G, Gangiredla J, Patel I, Fanning S, Lehner A. 2019. Species, p 389-414. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 14.3
Figure 14.3

Neighbor net (SplitsTree4) analysis of 126 and phylogenetically related strains which were generated from the microarray-based gene differences described by Tall et al. ( ). The phylogenetic tree illustrates that the microarray could clearly separate the seven species of , with each species forming its own distinct cluster. subclades are designated with roman numerals I through VII. The scale bar represents 0.01 base substitution per site. Reprinted from reference with permission.

Citation: Tall B, Gopinath G, Gangiredla J, Patel I, Fanning S, Lehner A. 2019. Species, p 389-414. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 14.4
Figure 14.4

Phylogenetic analysis using the neighbor-joining algorithm of 34 , 10 , and eight -related genomes based on the alignment of SNPs from 300 orthologous genes as described by Stephan et al. ( ). Clades are represented by roman numerals 1 through V. Clade I represents genomes from species. Clade II represents genomes from and strains. Clade III represents genomes from two strains and genomes from , , , and strains. Clade IV represents genomes from strains. Lastly, genomes from two strains are represented in clade V. The scale bar represents 0.05 base substitution per site. Reprinted from reference with permission.

Citation: Tall B, Gopinath G, Gangiredla J, Patel I, Fanning S, Lehner A. 2019. Species, p 389-414. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 14.5
Figure 14.5

Sequence alignment of plasmids pESA3 and pCTU1 produced with the Artemis comparison tool as described by Franco et al. ( ) and showing regions of homology. In the middle section, the red color indicates significant nucleotide homology, as determined by BLASTn analysis, between pESA3 and pCTU1, and the location on each plasmid, for example, , , , and . White areas indicate regions or loci present on one plasmid and absent on the other, e.g., , T6SS genes, and FHA genes. The sequence of pESA3 was modified by rejoining the gene at the 3′ end, which is split in the GenBank sequence (NCBI RefSeq accession no. NC_009780.1). pESA3 and pCTU1 (NCBI RefSeq accession no. NC_009780.1) possess molecular sizes of 131,196 and 138,339 kb and mean G+C contents of 56.85% and 56.05%, respectively. Selected genes or loci are shown in color as follows: , red; , orange; and , purple; integrase genes, black, and associated genes, white; , teal; T6SS genes, blue; and FHA genes, brown. Reproduced from reference with permission.

Citation: Tall B, Gopinath G, Gangiredla J, Patel I, Fanning S, Lehner A. 2019. Species, p 389-414. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555819972.ch14
1. Farmer JJ III, Asbury MA, Hickman FW, Brenner DJ Enterobacteriaceae Study Group. 1980. Enterobacter sakazakii: a new species of “ Enterobacteriaceae” isolated from clinical specimens. Int J Syst Bacteriol 30 : 569 584 [CrossRef].
2. Iversen C, Waddington M, Farmer JJ III, Forsythe SJ. 2006. The biochemical differentiation of Enterobacter sakazakii genotypes. BMC Microbiol 6 : 94[CrossRef].[PubMed]
3. Iversen C, Lehner A, Mullane N, Bidlas E, Cleenwerck I, Marugg J, Fanning S, Stephan R, Joosten H. 2007. The taxonomy of Enterobacter sakazakii: proposal of a new genus Cronobacter gen. nov. and descriptions of Cronobacter sakazakii comb. nov. Cronobacter sakazakii subsp. sakazakii, comb. nov., Cronobacter sakazakii subsp. malonaticus subsp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov. and Cronobacter genomospecies 1. BMC Evol Biol 7 : 64[CrossRef].[PubMed]
4. Iversen C, Mullane N, McCardell B, Tall BD, Lehner A, Fanning S, Stephan R, Joosten H. 2008. Cronobacter gen. nov., a new genus to accommodate the biogroups of Enterobacter sakazakii, and proposal of Cronobacter sakazakii gen. nov., comb. nov., Cronobacter malonaticus sp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov., Cronobacter genomospecies 1, and of three subspecies, Cronobacter dublinensis subsp. dublinensis subsp. nov., Cronobacter dublinensis subsp. lausannensis subsp. nov. and Cronobacter dublinensis subsp. lactaridi subsp. nov. Int J Syst Evol Microbiol 58 : 1442 1447 [CrossRef].[PubMed]
5. Joseph S, Cetinkaya E, Drahovska H, Levican A, Figueras MJ, Forsythe SJ. 2012. Cronobacter condimenti sp. nov., isolated from spiced meat, and Cronobacter universalis sp. nov., a species designation for Cronobacter sp. genomospecies 1, recovered from a leg infection, water and food ingredients. Int J Syst Evol Microbiol 62 : 1277 1283 [CrossRef].[PubMed]
6. Himelright I, Harris E, Lorch V, Anderson M, Jones T, Craig A, Kuehnert M, Forster T, Arduino M, Jensen B, Jernigan D Centers for Disease Control and Prevention. 2002. Enterobacter sakazakii infections associated with the use of powdered infant formula—Tennessee, 2001. MMWR Morb Mortal Wkly Rep 51 : 297 300.[PubMed]
7. Jason J. 2012. Prevention of invasive Cronobacter infections in young infants fed powdered infant formulas. Pediatrics 130 : e1076 e1084 [CrossRef].[PubMed]
8. Bowen A, Wiesenfeld HC, Kloesz JL, Pasculle AW, Nowalk AJ, Brink L, Elliot E, Martin H, Tarr CL. 2017. Notes from the field: Cronobacter sakazakii infection associated with feeding extrinsically contaminated expressed human milk to a premature infant—Pennsylvania, 2016. MMWR Morb Mortal Wkly Rep 66 : 761 762 [CrossRef].[PubMed]
9. Bowen AB, Braden CR. 2006. Invasive Enterobacter sakazakii disease in infants. Emerg Infect Dis 12 : 1185 1189 [CrossRef].[PubMed]
10. Hunter CJ, Petrosyan M, Ford HR, Prasadarao NV. 2008. Enterobacter sakazakii: an emerging pathogen in infants and neonates. Surg Infect (Larchmt) 9 : 533 539 [CrossRef].[PubMed]
11. Hunter CJ, Podd B, Ford HR, Camerini V. 2008. Evidence vs experience in neonatal practices in necrotizing enterocolitis. J Perinatol 28( Suppl 1) : S9 S13 [CrossRef].[PubMed]
12. Holman RC, Stoll BJ, Clarke MJ, Glass RI. 1997. The epidemiology of necrotizing enterocolitis infant mortality in the United States. Am J Public Health 87 : 2026 2031 [CrossRef].[PubMed]
13. Grishin A, Bowling J, Bell B, Wang J, Ford HR. 2016. Roles of nitric oxide and intestinal microbiota in the pathogenesis of necrotizing enterocolitis. J Pediatr Surg 51 : 13 17 [CrossRef].[PubMed]
14. Blackwood BP, Hunter CJ . 2016. Cronobacter spp. Microbiol Spectrum 4:EI10-0002-2015.[CrossRef]
15. Esposito F, Mamone R, Di Serafino M, Mercogliano C, Vitale V, Vallone G, Oresta P. 2017. Diagnostic imaging features of necrotizing enterocolitis: a narrative review. Quant Imaging Med Surg 7 : 336 344 [CrossRef].[PubMed]
16. Hunter CJ, Singamsetty VK, Chokshi NK, Boyle P, Camerini V, Grishin AV, Upperman JS, Ford HR, Prasadarao NV. 2008. Enterobacter sakazakii enhances epithelial cell injury by inducing apoptosis in a rat model of necrotizing enterocolitis. J Infect Dis 198 : 586 593 [CrossRef].[PubMed]
17. Singamsetty VK, Wang Y, Shimada H, Prasadarao NV. 2008. Outer membrane protein A expression in Enterobacter sakazakii is required to induce microtubule condensation in human brain microvascular endothelial cells for invasion. Microb Pathog 45 : 181 191 [CrossRef].[PubMed]
18. Townsend S, Hurrell E, Forsythe S. 2008. Virulence studies of Enterobacter sakazakii isolates associated with a neonatal intensive care unit outbreak. BMC Microbiol 8 : 64[CrossRef].[PubMed]
19. Kim KP, Loessner MJ. 2008. Enterobacter sakazakii invasion in human intestinal Caco-2 cells requires the host cell cytoskeleton and is enhanced by disruption of tight junction. Infect Immun 76 : 562 570 [CrossRef].[PubMed]
20. Giri CP, Shima K, Tall BD, Curtis S, Sathyamoorthy V, Hanisch B, Kim KS, Kopecko DJ. 2012. Cronobacter spp. (previously Enterobacter sakazakii) invade and translocate across both cultured human intestinal epithelial cells and human brain microvascular endothelial cells. Microb Pathog 52 : 140 147 [CrossRef].[PubMed]
21. Mittal R, Bulgheresi S, Emami C, Prasadarao NV. 2009. Enterobacter sakazakii targets DC-SIGN to induce immunosuppressive responses in dendritic cells by modulating MAPKs. J Immunol 183 : 6588 6599 [CrossRef].[PubMed]
22. Li Q, Zhao WD, Zhang K, Fang WG, Hu Y, Wu SH, Chen YH. 2010. PI3K-dependent host cell actin rearrangements are required for Cronobacter sakazakii invasion of human brain microvascular endothelial cells. Med Microbiol Immunol (Berl) 199 : 333 340 [CrossRef].[PubMed]
23. Liu Q, Mittal R, Emami CN, Iversen C, Ford HR, Prasadarao NV. 2012. Human isolates of Cronobacter sakazakii bind efficiently to intestinal epithelial cells in vitro to induce monolayer permeability and apoptosis. J Surg Res 176 : 437 447 [CrossRef].[PubMed]
24. Liu DX, Zhao WD, Fang WG, Chen YH. 2012. cPLA2α-mediated actin rearrangements downstream of the Akt signaling is required for Cronobacter sakazakii invasion into brain endothelial cells. Biochem Biophys Res Commun 417 : 925 930 [CrossRef].[PubMed]
25. Lai KK. 2001. Enterobacter sakazakii infections among neonates, infants, children, and adults. Case reports and a review of the literature. Medicine (Baltimore) 80 : 113 122. https://www.foodprotection.org/upl/downloads/meeting/archive/55df7a3303c5313c4be6f.pdf
26. Holý O, Forsythe S. 2014. Cronobacter spp. as emerging causes of healthcare-associated infection. J Hosp Infect 86 : 169 177 [CrossRef].[PubMed]
27. Clark NC, Hill BC, O'Hara CM, Steingrimsson O, Cooksey RC. 1990. Epidemiologic typing of Enterobacter sakazakii in two neonatal nosocomial outbreaks. Diagn Microbiol Infect Dis 13 : 467 472 [CrossRef].[PubMed]
28. Friedemann M. 2007. Enterobacter sakazakii in food and beverages (other than infant formula and milk powder). Int J Food Microbiol 116 : 1 10 [CrossRef].[PubMed]
29. Townsend SM, Hurrell E, Gonzalez-Gomez I, Lowe J, Frye JG, Forsythe S, Badger JL. 2007. Enterobacter sakazakii invades brain capillary endothelial cells, persists in human macrophages influencing cytokine secretion and induces severe brain pathology in the neonatal rat. Microbiology 153 : 3538 3547 [CrossRef].[PubMed]
30. Emami CN, Mittal R, Wang L, Ford HR, Prasadarao NV. 2011. Recruitment of dendritic cells is responsible for intestinal epithelial damage in the pathogenesis of necrotizing enterocolitis by Cronobacter sakazakii. J Immunol 186 : 7067 7079 [CrossRef].[PubMed]
31. Patrick ME, Mahon BE, Greene SA, Rounds J, Cronquist A, Wymore K, Boothe E, Lathrop S, Palmer A, Bowen A. 2014. Incidence of Cronobacter spp. infections, United States, 2003–2009. Emerg Infect Dis 20 : 1520 1523 [CrossRef].[PubMed]
32. Gosney MA, Martin MV, Wright AE, Gallagher M. 2006. Enterobacter sakazakii in the mouths of stroke patients and its association with aspiration pneumonia. Eur J Intern Med 17 : 185 188 [CrossRef].[PubMed]
33. Holý O, Petrželová J, Hanulík V, Chromá M, Matoušková I, Forsythe SJ. 2014. Epidemiology of Cronobacter spp. isolates from patients admitted to the Olomouc University Hospital (Czech Republic). Epidemiol Mikrobiol Imunol 63 : 69 72.[PubMed]
34. Alsonosi A, Hariri S, Kajsík M, Oriešková M, Hanulík V, Röderová M, Petrželová J, Kollárová H, Drahovská H, Forsythe S, Holý O. 2015. The speciation and genotyping of Cronobacter isolates from hospitalised patients. Eur J Clin Microbiol Infect Dis 34 : 1979 1988 [CrossRef].[PubMed]
35. El-Sharoud WM, El-Din MZ, Ziada DM, Ahmed SF, Klena JD . 2008. Surveillance and genotyping of Enterobacter sakazakii suggest its potential transmission from milk powder into imitation recombined soft cheese. J Appl Microbiol 105: 559 566.
36. Osaili TM, Shaker RR, Al-Haddaq MS, Al-Nabulsi AA, Holley RA. 2009. Heat resistance of Cronobacter species ( Enterobacter sakazakii) in milk and special feeding formula. J Appl Microbiol 107 : 928 935 [CrossRef].[PubMed]
37. Sani NA, Odeyemi OA. 2015. Occurrence and prevalence of Cronobacter spp. in plant and animal derived food sources: a systematic review and meta-analysis. Springerplus 4 : 545[CrossRef].[PubMed]
38. Yan Q, Fanning S. 2015. Strategies for the identification and tracking of Cronobacter species: an opportunistic pathogen of concern to neonatal health. Front Pediatr 3 : 38[CrossRef].[PubMed]
39. Edelson-Mammel SG, Porteous MK, Buchanan RL. 2005. Survival of Enterobacter sakazakii in a dehydrated powdered infant formula. J Food Prot 68 : 1900 1902 [CrossRef].[PubMed]
40. Feeney A, Sleator RD. 2011. An in silico analysis of osmotolerance in the emerging gastrointestinal pathogen Cronobacter sakazakii. Bioeng Bugs 2 : 260 270 [CrossRef].[PubMed]
41. Liu H, Cui JH, Cui ZG, Hu GC, Yang YL, Li J, Shi YW. 2013. Cronobacter carriage in neonate and adult intestinal tracts. Biomed Environ Sci 26 : 861 864.[PubMed]
42. Zogaj X, Bokranz W, Nimtz M, Römling U. 2003. Production of cellulose and curli fimbriae by members of the family Enterobacteriaceae isolated from the human gastrointestinal tract. Infect Immun 71 : 4151 4158 [CrossRef].[PubMed]
43. Edelson-Mammel SG, Buchanan RL. 2004. Thermal inactivation of Enterobacter sakazakii in rehydrated infant formula. J Food Prot 67 : 60 63 [CrossRef].[PubMed]
44. Williams TL, Monday SR, Edelson-Mammel S, Buchanan R, Musser SM. 2005. A top-down proteomics approach for differentiating thermal resistant strains of Enterobacter sakazakii. Proteomics 5 : 4161 4169 [CrossRef].[PubMed]
45. Gajdosova J, Benedikovicova K, Kamodyova N, Tothova L, Kaclikova E, Stuchlik S, Turna J, Drahovska H. 2011. Analysis of the DNA region mediating increased thermotolerance at 58°C in Cronobacter sp. and other enterobacterial strains. Antonie van Leeuwenhoek 100 : 279 289 [CrossRef].[PubMed]
46. Yan Q, Power KA, Cooney S, Fox E, Gopinath GR, Grim CJ, Tall BD, McCusker MP, Fanning S. 2013. Complete genome sequence and phenotype microarray analysis of Cronobacter sakazakii SP291: a persistent isolate cultured from a powdered infant formula production facility. Front Microbiol 4 : 256[CrossRef].[PubMed]
47. Jaradat ZW, Al Mousa W, Elbetieha A, Al Nabulsi A, Tall BD. 2014. Cronobacter spp.—opportunistic food-borne pathogens. A review of their virulence and environmental-adaptive traits. J Med Microbiol 63 : 1023 1037 [CrossRef].[PubMed]
48. Jang HI, Rhee MS. 2009. Inhibitory effect of caprylic acid and mild heat on Cronobacter spp. ( Enterobacter sakazakii) in reconstituted infant formula and determination of injury by flow cytometry. Int J Food Microbiol 133 : 113 120 [CrossRef].[PubMed]
49. Stoop B, Lehner A, Iversen C, Fanning S, Stephan R. 2009. Development and evaluation of rpoB based PCR systems to differentiate the six proposed species within the genus Cronobacter. Int J Food Microbiol 136 : 165 168 [CrossRef].[PubMed]
50. Lehner A, Fricker-Feer C, Stephan R. 2012. Identification of the recently described Cronobacter condimenti by an rpoB-gene-based PCR system. J Med Microbiol 61 : 1034 1035 [CrossRef].[PubMed]
51. Carter L, Lindsey LA, Grim CJ, Sathyamoorthy V, Jarvis KG, Gopinath G, Lee C, Sadowski JA, Trach L, Pava-Ripoll M, McCardell BA, Tall BD, Hu L. 2013. Multiplex PCR assay targeting a diguanylate cyclase-encoding gene, cgcA, to differentiate species within the genus Cronobacter. Appl Environ Microbiol 79 : 734 737 [CrossRef].[PubMed]
52. Baldwin A, Loughlin M, Caubilla-Barron J, Kucerova E, Manning G, Dowson C, Forsythe S. 2009. Multilocus sequence typing of Cronobacter sakazakii and Cronobacter malonaticus reveals stable clonal structures with clinical significance which do not correlate with biotypes. BMC Microbiol 9 : 223[CrossRef].[PubMed]
53. Muytjens HL, Roelofs-Willemse H, Jaspar GH. 1988. Quality of powdered substitutes for breast milk with regard to members of the family Enterobacteriaceae. J Clin Microbiol 26 : 743 746.[PubMed]
54. Iversen C, Druggan P, Schumacher S, Lehner A, Feer C, Gschwend K, Joosten H, Stephan R. 2008. Development of a novel screening method for the isolation of “ Cronobacter” spp. ( Enterobacter sakazakii). Appl Environ Microbiol 74 : 2550 2553 [CrossRef].[PubMed]
55. Iversen C, Druggan P, Forsythe S. 2004. A selective differential medium for Enterobacter sakazakii, a preliminary study. Int J Food Microbiol 96 : 133 139 [CrossRef].[PubMed]
56. Seo KH, Brackett RE. 2005. Rapid, specific detection of Enterobacter sakazakii in infant formula using a real-time PCR assay. J Food Prot 68 : 59 63 [CrossRef].[PubMed]
57. Restaino L, Frampton EW, Lionberg WC, Becker RJ. 2006. A chromogenic plating medium for the isolation and identification of Enterobacter sakazakii from foods, food ingredients, and environmental sources. J Food Prot 69 : 315 322 [CrossRef].[PubMed]
58. Mullane NR, Murray J, Drudy D, Prentice N, Whyte P, Wall PG, Parton A, Fanning S. 2006. Detection of Enterobacter sakazakii in dried infant milk formula by cationic-magnetic-bead capture. Appl Environ Microbiol 72 : 6325 6330 [CrossRef].[PubMed]
59. Song X, Shukla S, Oh S, Kim Y, Kim M. 2015. Development of fluorescence-based liposome immunoassay for detection of Cronobacter muytjensii in pure culture. Curr Microbiol 70 : 246 252 [CrossRef].[PubMed]
60. Song X, Shukla S, Lee G, Park S, Kim M. 2016. Detection of Cronobacter genus in powdered infant formula by enzyme-linked immunosorbent assay using anti- Cronobacter antibody. Front Microbiol 7 : 1124[CrossRef].[PubMed]
61. Shukla S, Lee G, Song X, Park JH, Cho H, Lee EJ, Kim M. 2016. Detection of Cronobacter sakazakii in powdered infant formula using an immunoliposome-based immunomagnetic concentration and separation assay. Sci Rep 6 : 34721[CrossRef].[PubMed]
62. Song X, Shukla S, Lee G, Kim M. 2016. Immunochromatographic strip assay for detection of Cronobacter sakazakii in pure culture. J Microbiol Biotechnol 26 : 1855 1862 [CrossRef].[PubMed]
63. Yan QQ. 2014. Survelliance, survival and adaptation of Cronobacter species in low-moisture environments. Ph.D. thesis. University College Dublin, Dublin, Ireland.
64. Trinh KT, Zhang H, Kang DJ, Kahng SH, Tall BD, Lee NY. 2016. Fabrication of polymerase chain reaction plastic lab-on-a-chip device for rapid molecular diagnoses. Int Neurourol J 20( Suppl 1) : S38 S48 [CrossRef].[PubMed]
65. Joseph S, Forsythe SJ. 2011. Predominance of Cronobacter sakazakii sequence type 4 in neonatal infections. Emerg Infect Dis 17 : 1713 1715 [CrossRef].[PubMed]
66. Joseph S, Sonbol H, Hariri S, Desai P, McClelland M, Forsythe SJ. 2012. Diversity of the Cronobacter genus as revealed by multilocus sequence typing. J Clin Microbiol 50 : 3031 3039 [CrossRef].[PubMed]
67. Yan QQ, Condell O, Power K, Butler F, Tall BD, Fanning S. 2012. Cronobacter species (formerly known as Enterobacter sakazakii) in powdered infant formula: a review of our current understanding of the biology of this bacterium. J Appl Microbiol 113 : 1 15 [CrossRef].[PubMed]
68. Ye Y, Wu Q, Yao L, Dong X, Wu K, Zhang J. 2009. A comparison of polymerase chain reaction and international organization for standardization methods for determination of Enterobacter sakazakii contamination of infant formulas from Chinese mainland markets. Foodborne Pathog Dis 6 : 1229 1234 [CrossRef].[PubMed]
69. Jaradat ZW, Ababneh QO, Saadoun IM, Samara NA, Rashdan AM. 2009. Isolation of Cronobacter spp. (formerly Enterobacter sakazakii) from infant food, herbs and environmental samples and the subsequent identification and confirmation of the isolates using biochemical, chromogenic assays, PCR, and 16S rRNA sequencing. BMC Microbiol 9 : 225 235 [CrossRef].[PubMed]
70. Li Y, Chen Q, Jiang H, Jiao Y, Lu F, Bie X, Lu Z. 2016. Novel development of a qPCR assay based on the rpoB gene for rapid detection of Cronobacter spp. Curr Microbiol 72 : 436 443 [CrossRef].[PubMed]
71. Kothary MH, McCardell BA, Frazar CD, Deer D, Tall BD. 2007. Characterization of the zinc-containing metalloprotease encoded by zpx and development of a species-specific detection method for Enterobacter sakazakii . Appl Environ Microbiol 73 : 4142 4151 [CrossRef].[PubMed]
72. Stephan R, Grim CJ, Gopinath GR, Mammel MK, Sathyamoorthy V, Trach LH, Chase HR, Fanning S, Tall BD. 2014. Re-examination of the taxonomic status of Enterobacter helveticus, Enterobacter pulveris, and Enterobacter turicensis as members of the genus Cronobacter and their reclassification in the genera Franconibacter gen. nov. and Siccibacter gen. nov. as Franconibacter helveticus comb. nov., Franconibacter pulveris comb. nov. and Siccibacter turicensis comb. nov., respectively. Int J Syst Evol Microbiol 64 : 3402 3410 [CrossRef].[PubMed]
73. Qiming C, Tingting T, Xiaomei B, Yingjian L, Fengxia L, Ligong Z, Zhaoxin L. 2015. Mining for sensitive and reliable species-specific primers for PCR for detection of Cronobacter sakazakii by a bioinformatics approach. J Dairy Sci 98 : 5091 5101 [CrossRef].[PubMed]
74. Yan Q, Jarvis KG, Chase HR, Hébert K, Trach LH, Lee C, Sadowski J, Lee B, Hwang S, Sathyamoorthy V, Mullane N, Pava-Ripoll M, Iversen C, Pagotto F, Fanning S, Tall BD. 2015. A proposed harmonized LPS molecular-subtyping scheme for Cronobacter species. Food Microbiol 50 : 38 43 [CrossRef].[PubMed]
75. Mullane N, O'Gaora P, Nally JE, Iversen C, Whyte P, Wall PG, Fanning S. 2008. Molecular analysis of the Enterobacter sakazakii O-antigen gene locus. Appl Environ Microbiol 74 : 3783 3794 [CrossRef].[PubMed]
76. Jarvis KG, Grim CJ, Franco AA, Gopinath G, Sathyamoorthy V, Hu L, Sadowski JA, Lee CS, Tall BD. 2011. Molecular characterization of Cronobacter lipopolysaccharide O-antigen gene clusters and development of serotype-specific PCR assays. Appl Environ Microbiol 77 : 4017 4026 [CrossRef].[PubMed]
77. Jarvis KG, Yan QQ, Grim CJ, Power KA, Franco AA, Hu L, Gopinath G, Sathyamoorthy V, Kotewicz ML, Kothary MH, Lee C, Sadowski J, Fanning S, Tall BD. 2013. Identification and characterization of five new molecular serogroups of Cronobacter spp. Foodborne Pathog Dis 10 : 343 352 [CrossRef].[PubMed]
78. Sun Y, Wang M, Liu H, Wang J, He X, Zeng J, Guo X, Li K, Cao B, Wang L. 2011. Development of an O-antigen serotyping scheme for Cronobacter sakazakii. Appl Environ Microbiol 77 : 2209 2214 [CrossRef].[PubMed]
79. Franco AA, Hu L, Grim CJ, Gopinath G, Sathyamoorthy V, Jarvis KG, Lee C, Sadowski J, Kim J, Kothary MH, McCardell BA, Tall BD. 2011. Characterization of putative virulence genes on the related RepFIB plasmids harbored by Cronobacter spp. Appl Environ Microbiol 77 : 3255 3267 [CrossRef].[PubMed]
80. Franco AA, Kothary MH, Gopinath G, Jarvis KG, Grim CJ, Hu L, Datta AR, McCardell BA, Tall BD. 2011. Cpa, the outer membrane protease of Cronobacter sakazakii, activates plasminogen and mediates resistance to serum bactericidal activity. Infect Immun 79 : 1578 1587 [CrossRef].[PubMed]
81. Grim CJ, Kothary MH, Gopinath G, Jarvis KG, Beaubrun JJ, McClelland M, Tall BD, Franco AA. 2012. Identification and characterization of Cronobacter iron acquisition systems. Appl Environ Microbiol 78 : 6035 6050 [CrossRef].[PubMed]
82. Yan Q, Wang J, Gangiredla J, Cao Y, Martins M, Gopinath GR, Stephan R, Lampel K, Tall BD, Fanning S. 2015. Comparative genotypic and phenotypic analysis of Cronobacter species cultured from four powdered infant formula production facilities: indication of pathoadaptation along the food chain. Appl Environ Microbiol 81 : 4388 4402 [CrossRef].[PubMed]
83. Tall BD, Gangiredla J, Gopinath GR, Yan Q, Chase HR, Lee B, Hwang S, Trach L, Park E, Yoo Y, Chung T, Jackson SA, Patel IR, Sathyamoorthy V, Pava-Ripoll M, Kotewicz ML, Carter L, Iversen C, Pagotto F, Stephan R, Lehner A, Fanning S, Grim CJ. 2015. Development of a custom-designed, pan genomic DNA microarray to characterize strain-level diversity among Cronobacter spp. Front Pediatr 3 : 36[CrossRef].[PubMed]
84. Hu L, Grim CJ, Franco AA, Jarvis KG, Sathyamoorthy V, Kothary MH, McCardell BA, Tall BD. 2015. Analysis of the cellulose synthase operon genes, bcsA, bcsB, and bcsC in Cronobacter species: prevalence among species and their roles in biofilm formation and cell-cell aggregation. Food Microbiol 52 : 97 105 [CrossRef].[PubMed]
85. Eshwar AK, Tall BD, Gangiredla J, Gopinath GR, Patel IR, Neuhauss SCF, Stephan R, Lehner A. 2016. Linking genomo- and pathotype: exploiting the zebrafish embryo model to investigate the divergent virulence potential among Cronobacter spp. PLoS One 11 : e0158428[CrossRef].[PubMed]
86. Kothary MH, Gopinath GR, Gangiredla J, Rallabhandi PV, Harrison LM, Yan QQ, Chase HR, Lee B, Park E, Yoo Y, Chung T, Finkelstein SB, Negrete FJ, Patel IR, Carter L, Sathyamoorthy V, Fanning S, Tall BD. 2017. Analysis and characterization of proteins associated with outer membrane vesicles secreted by Cronobacter spp. Front Microbiol 8 : 134[CrossRef].[PubMed]
87. Chase HR, Gopinath GR, Eshwar AK, Stoller A, Fricker-Feer C, Gangiredla J, Patel IR, Cinar HN, Jeong H, Lee C, Negrete F, Finkelstein S, Stephan R, Tall BD, Lehner A. 2017. Comparative genomic characterization of the highly persistent and potentially virulent Cronobacter sakazakii ST83, CC65 strain H322 and other ST83 strains. Front Microbiol 8 : 1136[CrossRef].[PubMed]
88. Mullane NR, Whyte P, Wall PG, Quinn T, Fanning S. 2007. Application of pulsed-field gel electrophoresis to characterise and trace the prevalence of Enterobacter sakazakii in an infant formula processing facility. Int J Food Microbiol 116 : 73 81 [CrossRef].[PubMed]
89. Yan Q, Fanning S. 2015. Pulsed-field gel electrophoresis (PFGE) for pathogenic Cronobacter species. Methods Mol Biol 1301 : 55 69 [CrossRef].[PubMed]
90. Brengi SP, O'Brien SB, Pichel M, Iversen C, Arduino M, Binsztein N, Jensen B, Pagotto F, Ribot EM, Stephan R, Cernela N, Cooper K, Fanning S. 2012. Development and validation of a PulseNet standardized protocol for subtyping isolates of Cronobacter species. Foodborne Pathog Dis 9 : 861 867 [CrossRef].[PubMed]
91. Swaminathan B, Barrett TJ, Hunter SB, Tauxe RV CDC PulseNet Task Force. 2001. PulseNet: the molecular subtyping network for foodborne bacterial disease surveillance, United States. Emerg Infect Dis 7 : 382 389 [CrossRef].[PubMed]
92. Yachison CA, Yoshida C, Robertson J, Nash JHE, Kruczkiewicz P, Taboada EN, Walker M, Reimer A, Christianson S, Nichani A, Nadon C PulseNet Canada Steering Committee. 2017. The validation and implications of using whole genome sequencing as a replacement for traditional serotyping for a national Salmonella reference laboratory. Front Microbiol 8 : 1044[CrossRef].[PubMed]
93. Kucerova E, Clifton SW, Xia XQ, Long F, Porwollik S, Fulton L, Fronick C, Minx P, Kyung K, Warren W, Fulton R, Feng D, Wollam A, Shah N, Bhonagiri V, Nash WE, Hallsworth-Pepin K, Wilson RK, McClelland M, Forsythe SJ. 2010. Genome sequence of Cronobacter sakazakii BAA-894 and comparative genomic hybridization analysis with other Cronobacter species. PLoS One 5 : e9556[CrossRef].[PubMed]
94. Grim CJ, Kotewicz ML, Power KA, Gopinath G, Franco AA, Jarvis KG, Yan QQ, Jackson SA, Sathyamoorthy V, Hu L, Pagotto F, Iversen C, Lehner A, Stephan R, Fanning S, Tall BD. 2013. Pan-genome analysis of the emerging foodborne pathogen Cronobacter spp. suggests a species-level bidirectional divergence driven by niche adaptation. BMC Genomics 14 : 366[CrossRef].[PubMed]
95. Moine D, Kassam M, Baert L, Tang Y, Barretto C, Ngom Bru C, Klijn A, Descombes P. 2016. Fully closed genome sequences of five type strains of the genus Cronobacter and one Cronobacter sakazakii strain. Genome Announc 4 : e00142-16[CrossRef].[PubMed]
96. Jolley KA, Maiden MC. 2010. BIGSdb: scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 11 : 595[CrossRef].[PubMed]
97. Müller A, Stephan R, Fricker-Feer C, Lehner A. 2013. Genetic diversity of Cronobacter sakazakii isolates collected from a Swiss infant formula production facility. J Food Prot 76 : 883 887 [CrossRef].[PubMed]
98. Zhang H, Hou P, Lv H, Chen Y, Li X, Ren Y, Wang M, Tan H, Bi Z. 2017. Surveillance and molecular typing of Cronobacter spp. in commercial powdered infant formula and follow-up formula from 2011 to 2013 in Shandong Province, China. J Sci Food Agric 97 : 2141 2146 [CrossRef].[PubMed]
99. Fei P, Man C, Lou B, Forsythe SJ, Chai Y, Li R, Niu J, Jiang Y. 2015. Genotyping and source tracking of Cronobacter sakazakii and C. malonaticus isolates from powdered infant formula and an infant formula production factory in China. Appl Environ Microbiol 81 : 5430 5439 [CrossRef].[PubMed]
100. Pan Z, Cui J, Lyu G, Du X, Qin L, Guo Y, Xu B, Li W, Cui Z, Zhao C . 2014. Isolation and molecular typing of Cronobacter spp. in commercial powdered infant formula and follow-up formula. Foodborne Pathog Dis 11: 456 461. doi: 10.1089/fpd.2013.1691. http://dx.doi.org/10.1089/fpd.2013.1691
101. Brandão MLL, Umeda NS, Jackson E, Forsythe SJ, de Filippis I. 2017. Isolation, molecular and phenotypic characterization, and antibiotic susceptibility of Cronobacter spp. from Brazilian retail foods. Food Microbiol 63 : 129 138 [CrossRef].[PubMed]
102. Vojkovska H, Karpiskova R, Orieskova M, Drahovska H. 2016. Characterization of Cronobacter spp. isolated from food of plant origin and environmental samples collected from farms and from supermarkets in the Czech Republic. Int J Food Microbiol 217 : 130 136 [CrossRef].[PubMed]
103. Akineden Ö, Murata KJ, Gross M, Usleber E. 2015. Microbiological quality of raw dried pasta from the German market, with special emphasis on Cronobacter species. J Food Sci 80 : M2860 M2867 [CrossRef].[PubMed]
104. Killer J, Skřivanová E, Hochel I, Marounek M. 2015. Multilocus sequence typing of Cronobacter strains isolated from retail foods and environmental samples. Foodborne Pathog Dis 12 : 514 521 [CrossRef].[PubMed]
105. Xu X, Li C, Wu Q, Zhang J, Huang J, Yang G. 2015. Prevalence, molecular characterization, and antibiotic susceptibility of Cronobacter spp. in Chinese ready-to-eat foods. Int J Food Microbiol 204 : 17 23 [CrossRef].[PubMed]
106. Cui JH, Du XL, Wei RJ, Zhou HJ, Li W, Forsythe S, Cui ZG. 2015. Multilocus sequence typing analysis of Cronobacter spp. isolated from China. Arch Microbiol 197 : 665 672 [CrossRef].[PubMed]
107. Healy B, Huynh S, Mullane N, O'Brien S, Iversen C, Lehner A, Stephan R, Parker CT, Fanning S . 2009. Microarray-based comparative genomic indexing of the Cronobacter genus ( Enterobacter sakazakii). Int J Food Microbiol 136:159–164. doi:. 2009.07.008.
108. Jackson SA, Patel IR, Barnaba T, LeClerc JE, Cebula TA. 2011. Investigating the global genomic diversity of Escherichia coli using a multi-genome DNA microarray platform with novel gene prediction strategies. BMC Genomics 12 : 349[CrossRef].[PubMed]
109. Stephan R, Lehner A, Tischler P, Rattei T. 2011. Complete genome sequence of Cronobacter turicensis LMG 23827, a food-borne pathogen causing deaths in neonates. J Bacteriol 193 : 309 310 [CrossRef].[PubMed]
110. Nadon C, Van Walle I, Gerner-Smidt P, Campos J, Chinen I, Concepcion-Acevedo J, Gilpin B, Smith AM, Man Kam K, Perez E, Trees E, Kubota K, Takkinen J, Nielsen EM, Carleton H FWD-NEXT Expert Panel. 2017. PulseNet International: vision for the implementation of whole genome sequencing (WGS) for global food-borne disease surveillance. Euro Surveill 22 : 30544[CrossRef].[PubMed]
111. Allard MW, Strain E, Melka D, Bunning K, Musser SM, Brown EW, Timme R. 2016. Practical value of food pathogen traceability through building a whole-genome sequencing network and database. J Clin Microbiol 54 : 1975 1983 [CrossRef].[PubMed]
112. Forbes JD, Knox NC, Ronholm J, Pagotto F, Reimer A. 2017. Metagenomics: the next culture-independent game changer. Front Microbiol 8 : 1069[CrossRef].[PubMed]
113. Schmid M, Iversen C, Gontia I, Stephan R, Hofmann A, Hartmann A, Jha B, Eberl L, Riedel K, Lehner A. 2009. Evidence for a plant-associated natural habitat for Cronobacter spp. Res Microbiol 160 : 608 614 [CrossRef].[PubMed]
114. Ogrodzki P, Forsythe SJ. 2016. CRISPR-cas loci profiling of Cronobacter sakazakii pathovars. Future Microbiol 11 : 1507 1519 [CrossRef].[PubMed]
115. Zeng H, Zhang J, Li C, Xie T, Ling N, Wu Q, Ye Y. 2017. The driving force of prophages and CRISPR-Cas system in the evolution of Cronobacter sakazakii. Sci Rep 7 : 40206 CORRIGENDUM Sci Rep 7 : 46783[CrossRef].[PubMed]
116. Ogrodzki P, Forsythe S. 2015. Capsular profiling of the Cronobacter genus and the association of specific Cronobacter sakazakii and C. malonaticus capsule types with neonatal meningitis and necrotizing enterocolitis. BMC Genomics 16 : 758.
117. Mohan Nair MK, Venkitanarayanan K. 2007. Role of bacterial OmpA and host cytoskeleton in the invasion of human intestinal epithelial cells by Enterobacter sakazakii. Pediatr Res 62 : 664 669 [CrossRef].[PubMed]
118. Nair MK, Venkitanarayanan K, Silbart LK, Kim KS. 2009. Outer membrane protein A (OmpA) of Cronobacter sakazakii binds fibronectin and contributes to invasion of human brain microvascular endothelial cells. Foodborne Pathog Dis 6 : 495 501 [CrossRef].[PubMed]
119. Ye Y, Gao J, Jiao R, Li H, Wu Q, Zhang J, Zhong X. 2015. The membrane proteins involved in virulence of Cronobacter sakazakii virulent G362 and attenuated L3101 isolates. Front Microbiol 6 : 1238[CrossRef].[PubMed]
120. Townsend S, Caubilla Barron J, Loc-Carrillo C, Forsythe S. 2007. The presence of endotoxin in powdered infant formula milk and the influence of endotoxin and Enterobacter sakazakii on bacterial translocation in the infant rat. Food Microbiol 24 : 67 74 [CrossRef].[PubMed]
121. Cruz A, Xicohtencatl-Cortes J, González-Pedrajo B, Bobadilla M, Eslava C, Rosas I. 2011. Virulence traits in Cronobacter species isolated from different sources. Can J Microbiol 57 : 735 744 [CrossRef].[PubMed]
122. Grim CJ, Jarvis KG, Franco AA, Hu L, Gopinath G, Sathyamoorthy V, Kotewicz ML, Kothary MH, Lee C, Sadowski J, Tall BD. 2011. Characterization of the adhesive organelles of the neonatal meningitis bacteria, Cronobacter spp., abstr P2-126. In IAFP Annual Meeting Abstracts. International Association for Food Protection, Des Moines, IA.
123. Pagotto FJ, Nazarowec-White M, Bidawid S, Farber JM. 2003. Enterobacter sakazakii: infectivity and enterotoxin production in vitro and in vivo. J Food Prot 66 : 370 375 [CrossRef].[PubMed]
124. Raghav M, Aggarwal PK. 2007. Purification and characterization of Enterobacter sakazakii enterotoxin. Can J Microbiol 53 : 750 755 [CrossRef].[PubMed]
125. Lee C, Jeong H, Kwon H, Han K, Choi S, Kim S, Lee J, Do JY, Finkelstein S, Negrete F, Chase HR, Patel IR, Gangiredla J, Gopinath GR, Tall BD . 2017. Prevalence, distribution, and comparative genomics of a hemolysin III gene (COG1272) and related hemolysin genes among Cronobacter spp., abstr P2-157, p 86. In IAFP Annual Meeting Abstracts. International Association for Food Protection, Des Moines, IA. https://www.foodprotection.org/upl/downloads/library/2017-program-book.pdf
126. Jing C-E, Du X-J, Li P, Wang S. 2016. Transcriptome analysis of Cronobacter sakazakii ATCC BAA-894 after interaction with human intestinal epithelial cell line HCT-8. Appl Microbiol Biotechnol 100 : 311 322 [CrossRef].[PubMed]
127. Suppiger A, Eshwar AK, Stephan R, Kaever V, Eberl L, Lehner A. 2016. The DSF type quorum sensing signalling system RpfF/R regulates diverse phenotypes in the opportunistic pathogen Cronobacter . Sci Rep 6 : 18753[CrossRef].[PubMed]
128. Pagotto FJ, Farber JM. 2009. Cronobacter spp. ( Enterobacter sakazakii): advice, policy and research in Canada. Int J Food Microbiol 136 : 238 245 [CrossRef].[PubMed]
129. Mittal R, Wang Y, Hunter CJ, Gonzalez-Gomez I, Prasadarao NV. 2009. Brain damage in newborn rat model of meningitis by Enterobacter sakazakii: a role for outer membrane protein A. Lab Invest 89 : 263 277 [CrossRef].[PubMed]
130. Carranza P, Hartmann I, Lehner A, Stephan R, Gehrig P, Grossmann J, Barkow-Oesterreicher S, Roschitzki B, Eberl L, Riedel K. 2009. Proteomic profiling of Cronobacter turicensis 3032, a food-borne opportunistic pathogen. Proteomics 9 : 3564 3579 [CrossRef].[PubMed]
131. Abbasifar R, Kropinski AM, Sabour PM, Chambers JR, MacKinnon J, Malig T, Griffiths MW. 2014. Efficiency of bacteriophage therapy against Cronobacter sakazakii in Galleria mellonella (greater wax moth) larvae. Arch Virol 159 : 2253 2261 [CrossRef].[PubMed]
132. Mellies JL, Lawrence-Pine ER. 2010. Interkingdom signaling between pathogenic bacteria and Caenorhabditis elegans. Trends Microbiol 18 : 448 454 [CrossRef].[PubMed]
133. Sivamaruthi BS, Ganguli A, Kumar M, Bhaviya S, Pandian SK, Balamurugan K. 2011. Caenorhabditis elegans as a model for studying Cronobacter sakazakii ATCC BAA-894 pathogenesis. J Basic Microbiol 51 : 540 549 [CrossRef].[PubMed]
134. Balamurugan K, Sivamaruthi BS . 2012. Changes in innate immune pathway and proteins of Caenorhabditis elegans during Cronobacter sakazakii infection. FASEB J 26: 1156.1
135. Sivamaruthi BS, Prasanth MI, Balamurugan K. 2015. Alterations in Caenorhabditis elegans and Cronobacter sakazakii lipopolysaccharide during interaction. Arch Microbiol 197 : 327 337 [CrossRef].[PubMed]
136. Fehr A, Eshwar AK, Neuhauss SC, Ruetten M, Lehner A, Vaughan L. 2015. Evaluation of zebrafish as a model to study the pathogenesis of the opportunistic pathogen Cronobacter turicensis . Emerg Microbes Infect 4 : e29[CrossRef].[PubMed]
137. Willis J, Robinson JE. 1988. Enterobacter sakazakii meningitis in neonates. Pediatr Infect Dis J 7 : 196 199 [CrossRef].[PubMed]
138. Kilonzo-Nthenge A, Rotich E, Godwin S, Nahashon S, Chen F. 2012. Prevalence and antimicrobial resistance of Cronobacter sakazakii isolated from domestic kitchens in middle Tennessee, United States. J Food Prot 75 : 1512 1517 [CrossRef].[PubMed]
139. Cui JH, Yu B, Xiang Y, Zhang Z, Zhang T, Zeng YC, Cui ZG, Huo XX. 2017. Two cases of multi-antibiotic resistant Cronobacter spp. infections of infants in China. Biomed Environ Sci 30 : 601 605.[PubMed]
140. Shi L, Liang Q, Zhan Z, Feng J, Zhao Y, Chen Y, Huang M, Tong Y, Wu W, Chen W, Li X, Yin Z, Wang J, Zhou D. 2018. Co-occurrence of 3 different resistance plasmids in a multi-drug resistant Cronobacter sakazakii isolate causing neonatal infections. Virulence 9 : 110 120.[PubMed]
141. Farmer JJ III. 2015. My 40-year history with Cronobacter/Enterobacter sakazakii—lessons learned, myths debunked, and recommendations. Front Pediatr 3 : 84 [CrossRef].[PubMed]

Tables

Generic image for table
Table 14.1

Citation: Tall B, Gopinath G, Gangiredla J, Patel I, Fanning S, Lehner A. 2019. Species, p 389-414. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch14
Generic image for table
Table 14.2

Citation: Tall B, Gopinath G, Gangiredla J, Patel I, Fanning S, Lehner A. 2019. Species, p 389-414. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch14
Generic image for table
Table 14.3

Citation: Tall B, Gopinath G, Gangiredla J, Patel I, Fanning S, Lehner A. 2019. Species, p 389-414. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch14

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error