Chapter 19 :

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819972/9781555819965.ch19-1.gif /docserver/preview/fulltext/10.1128/9781555819972/9781555819965.ch19-2.gif


Significant progress has been made in the last few years towards our understanding of the epidemiology, pathogenicity, and control of foodborne disease, including food poisoning, caused by strains. Despite this, a significant burden of food poisoning illnesses still occurs in the United States every year, with nearly a million cases reported. food poisoning commonly occurs as outbreaks in institutions where food is prepared in large quantities. Prophylactic measures to prevent food poisoning should focus on restricting multiplication of vegetative cells in cooked foods. Cooking at the proper temperature and for the right time, along with rapid cooling after cooking with subsequent refrigeration, is the most effective action to control the multiplication of and thus avoid food poisoning outbreaks. Processors can take advantage of multiple food formulation factors or hurdles in foods (e.g., water activity, pH, and added preservatives) to restrict growth from spores in cooked foods. Predictive models have been developed to estimate growth under conditions that are relevant to food processing operations. Recent advances in molecular techniques have enabled researchers to characterize virulence factors, toxins, sporulation, spore heat resistance, to carry out epidemiologic trace-back of foodborne illness and toxigenic typing methods, etc. Future research efforts should be directed towards efficient tracing of strains of public health significance, multiple hurdles in formulated foods, proper processing of ready-to-eat foods, and consumer awareness of handling of such foods.

Citation: García S, Vidal J, Heredia N, Juneja V. 2019. , p 513-540. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch19
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 19.1
Figure 19.1

Electron micrograph of thin sections of FD-1041. Arrows indicate a spore and a CPE containing round inclusion body. Magnification, ×40,000. Bar, 0.5 μ. Reproduced with permission from reference .

Citation: García S, Vidal J, Heredia N, Juneja V. 2019. , p 513-540. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 19.2
Figure 19.2

CpAL regulation of virulence factors ( ). CpAL is encoded by and , whose products are the AgrD signaling peptide (inset) and a transmembrane protein (AgrB) involved in its processing. The AgrD peptide is sensed by the membrane sensor (VirS), which in turn phosphorylates VirR, the response regulator. Upon CpAL activation, VirR directly upregulates transcription of several toxin genes or a small VR-RNA which ultimately activates expression of and . Whether VirR upregulates transcription of the CpAL operon is not clear.

Citation: García S, Vidal J, Heredia N, Juneja V. 2019. , p 513-540. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 19.3
Figure 19.3

Histological damage is induced by lysates. Tissue specimens shown were collected from rabbit ileal loops treated with either concentrated vegetative (FTG) or concentrated sporulating (DS) culture lysates of wild-type, mutant, or complemented strains. Tissue specimens shown were treated with 50-fold-concentrated DS or FTG (as indicated) lysates of wild-type SM101, knockout mutant MRS101, or complemented strain MRS101(pJRC200). Tissue specimens treated with 50-fold-concentrated FTG lysates prepared from either MRS101 or complemented strain MRS101(pJRC200) were indistinguishable from specimens treated with FTG lysates of SM101 (data not shown).

Citation: García S, Vidal J, Heredia N, Juneja V. 2019. , p 513-540. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 19.4
Figure 19.4

Detection of CPA on biofilms. Strain S13Δplc or S13Δplc/plc was inoculated into a four-well chamber slide containing tryptone glucose yeast extract, followed by incubation for 24 h at 37°C. Bacteria were stained with SYTO9, and CPA was detected using rabbit polyclonal anti- CPA antibodies, followed by goat anti-rabbit immunoglobulin secondary antibodies conjugated to Alexa Fluor 555. Optical middle and top sections were obtained with a confocal microscope. Arrows point to areas of colocalization.

Citation: García S, Vidal J, Heredia N, Juneja V. 2019. , p 513-540. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 19.5
Figure 19.5

Pathogenesis of type A food poisoning. Vegetative cells of an enterotoxin (CPE)-producing strain multiply rapidly in contaminated food (usually a meat or poultry product) and, after ingestion, sporulate in the small intestine. Sporulated cells then produce CPE, which is released at the completion of sporulation, when the mother cell lyses to release its endospore. CPE then causes morphologic damage to the small intestine, resulting in diarrhea and abdominal cramps. Modified and reproduced with permission from reference .

Citation: García S, Vidal J, Heredia N, Juneja V. 2019. , p 513-540. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Heredia N, Labbé R., 2013. Clostridium perfringens, p 82 90. In Labbé RG, García S (ed), Guide to Foodborne Pathogens, 2nd ed. Wiley Blackwell, Hoboken, NJ.[CrossRef]
2. García S, Heredia N . 2011. Clostridium perfringens: a dynamic foodborne pathogen. Food Bioprocess Technol 4 : 624 630.[CrossRef].
3. Labbe RG, Juneja VK, . 2013. Clostridium perfringens, p 99 112. In Morris GJ, Potter M (ed), Foodborne Infections and Intoxications, 4th ed. Academic Press, New York, NY.
4. Labbe RG, Huang TH . 1995. Generation times and modeling of enterotoxin-positive and enterotoxin-negative strains of Clostridium perfringens in laboratory media and ground beef. J Food Prot 58 : 1303 1306.[CrossRef].
5. Garcia-Alvarado JS, Labbé RG, Rodriguez MA . 1992. Sporulation and enterotoxin production by Clostridium perfringens type A at 37 and 43°C. Appl Environ Microbiol 58 : 1411 1414.[PubMed]
6. García-Alvarado JS, Rodriguez MA, Labbé RG . 1992. Influence of elevated temperature on starch hydrolysis by enterotoxin-positive and enterotoxin-negative strains of Clostridium perfringens type A. Appl Environ Microbiol 58 : 326 330.[PubMed]
7. Uzal FA, Freedman JC, Shrestha A, Theoret JR, Garcia J, Awad MM, Adams V, Moore RJ, Rood JI, McClane BA . 2014. Towards an understanding of the role of Clostridium perfringens toxins in human and animal disease. Future Microbiol 9 : 361 377.[CrossRef][PubMed]
8. Rood JI, Adams V, Lacey J, Lyras D, McClane BA, Melville SB, Moore RJ, Popoff MR, Sarker MR, Songer JG, Uzal FA, Immerseel FV . 2018. Expansion of the Clostridium perfringens toxin-based typing scheme. Anaerobe 53 : 5 10.
9. Kiu R, Caim S, Alexander S, Pachori P, Hall LJ . 2017. Probing genomic aspects of the multi-host pathogen Clostridium perfringens reveals significant pangenome diversity, and a diverse array of virulence factors. Front Microbiol 8 : 2485.[CrossRef][PubMed]
10. Allaart JG, van Asten AJ, Gröne A . 2013. Predisposing factors and prevention of Clostridium perfringens-associated enteritis. Comp Immunol Microbiol Infect Dis 36 : 449 464.[CrossRef][PubMed]
11. Bezirtzoglou E . 1997. The intestinal microflora during the first weeks of life. Anaerobe 3 : 173 177.[CrossRef][PubMed]
12. Voidarou C, Bezirtzoglou E, Alexopoulos A, Plessas S, Stefanis C, Papadopoulos I, Vavias S, Stavropoulou E, Fotou K, Tzora A, Skoufos I . 2011. Occurrence of Clostridium perfringens from different cultivated soils. Anaerobe 17 : 320 324.[CrossRef][PubMed]
13. Vidal JE, Chen J, Li J, McClane BA . 2009. Use of an EZ-Tn5-based random mutagenesis system to identify a novel toxin regulatory locus in Clostridium perfringens strain 13. PLoS One 4 : e6232.[CrossRef][PubMed]
14. Ohtani K, Yuan Y, Hassan S, Wang R, Wang Y, Shimizu T . 2009. Virulence gene regulation by the agr system in Clostridium perfringens. J Bacteriol 191 : 3919 3927.[CrossRef][PubMed]
15. Yu Q, Lepp D, Mehdizadeh Gohari I, Wu T, Zhou H, Yin X, Yu H, Prescott JF, Nie SP, Xie MY, Gong J . 2017. The Agr-like quorum sensing system is required for pathogenesis of necrotic enteritis caused by Clostridium perfringens in poultry. Infect Immun 85 : e00975-16.[CrossRef][PubMed]
16. Li J, Chen J, Vidal JE, McClane BA . 2011. The Agr-like quorum-sensing system regulates sporulation and production of enterotoxin and beta2 toxin by Clostridium perfringens type A non-food-borne human gastrointestinal disease strain F5603. Infect Immun 79 : 2451 2459.[CrossRef][PubMed]
17. Vidal JE, Shak JR, Canizalez-Roman A . 2015. The CpAL quorum sensing system regulates production of hemolysins CPA and PFO to build Clostridium perfringens biofilms. Infect Immun 83 : 2430 2442.[CrossRef][PubMed]
18. Ohtani K, Hirakawa H, Tashiro K, Yoshizawa S, Kuhara S, Shimizu T . 2010. Identification of a two-component VirR/VirS regulon in Clostridium perfringens. Anaerobe 16 : 258 264.[CrossRef][PubMed]
19. Novick RP, Geisinger E . 2008. Quorum sensing in staphylococci. Annu Rev Genet 42 : 541 564.[CrossRef][PubMed]
20. Ohtani K, Shimizu T . 2016. Regulation of toxin production in Clostridium perfringens. Toxins (Basel) 8 : 207.[CrossRef][PubMed]
21. Vidal JE, Ma M, Saputo J, Garcia J, Uzal FA, McClane BA . 2012. Evidence that the Agr-like quorum sensing system regulates the toxin production, cytotoxicity and pathogenicity of Clostridium perfringens type C isolate CN3685. Mol Microbiol 83 : 179 194.[CrossRef][PubMed]
22. Ma M, Li J, McClane BA . 2015. Structure-function analysis of peptide signaling in the Clostridium perfringens Agr-like quorum sensing system. J Bacteriol 197 : 1807 1818.[CrossRef][PubMed]
23. Chen J, McClane BA . 2012. Role of the Agr-like quorum-sensing system in regulating toxin production by Clostridium perfringens type B strains CN1793 and CN1795. Infect Immun 80 : 3008 3017.[CrossRef][PubMed]
24. Ohtani K . 2016. Gene regulation by the VirS/VirR system in Clostridium perfringens. Anaerobe 41 : 5 9.[CrossRef][PubMed]
25. Rood JI, Lyristis M . 1995. Regulation of extracellular toxin production in Clostridium perfringens. Trends Microbiol 3 : 192 196.[CrossRef][PubMed]
26. Rood JI . 1998. Virulence genes of Clostridium perfringens. Annu Rev Microbiol 52 : 333 360.[CrossRef][PubMed]
27. Lyristis M, Bryant AE, Sloan J, Awad MM, Nisbet IT, Stevens DL, Rood JI . 1994. Identification and molecular analysis of a locus that regulates extracellular toxin production in Clostridium perfringens. Mol Microbiol 12 : 761 777.[CrossRef][PubMed]
28. Shimizu T, Ba-Thein W, Tamaki M, Hayashi H . 1994. The virR gene, a member of a class of two-component response regulators, regulates the production of perfringolysin O, collagenase, and hemagglutinin in Clostridium perfringens. J Bacteriol 176 : 1616 1623.[CrossRef][PubMed]
29. Ohtani K, Kawsar HI, Okumura K, Hayashi H, Shimizu T . 2003. The VirR/VirS regulatory cascade affects transcription of plasmid-encoded putative virulence genes in Clostridium perfringens strain 13. FEMS Microbiol Lett 222 : 137 141.[CrossRef][PubMed]
30. Cheung JK, Keyburn AL, Carter GP, Lanckriet AL, Van Immerseel F, Moore RJ, Rood JI . 2010. The VirSR two-component signal transduction system regulates NetB toxin production in Clostridium perfringens. Infect Immun 78 : 3064 3072.[CrossRef][PubMed]
31. Ba-Thein W, Lyristis M, Ohtani K, Nisbet IT, Hayashi H, Rood JI, Shimizu T . 1996. The virR/ virS locus regulates the transcription of genes encoding extracellular toxin production in Clostridium perfringens. J Bacteriol 178 : 2514 2520.[CrossRef][PubMed]
32. Shimizu T, Ohtani K, Hirakawa H, Ohshima K, Yamashita A, Shiba T, Ogasawara N, Hattori M, Kuhara S, Hayashi H . 2002. Complete genome sequence of Clostridium perfringens, an anaerobic flesh-eater. Proc Natl Acad Sci USA 99 : 996 1001.[CrossRef][PubMed]
33. Myers GS, Rasko DA, Cheung JK, Ravel J, Seshadri R, DeBoy RT, Ren Q, Varga J, Awad MM, Brinkac LM, Daugherty SC, Haft DH, Dodson RJ, Madupu R, Nelson WC, Rosovitz MJ, Sullivan SA, Khouri H, Dimitrov GI, Watkins KL, Mulligan S, Benton J, Radune D, Fisher DJ, Atkins HS, Hiscox T, Jost BH, Billington SJ, Songer JG, McClane BA, Titball RW, Rood JI, Melville SB, Paulsen IT . 2006. Skewed genomic variability in strains of the toxigenic bacterial pathogen, Clostridium perfringens. Genome Res 16 : 1031 1040.[CrossRef][PubMed]
34. McGowan S, O'Connor JR, Cheung JK, Rood JI . 2003. The SKHR motif is required for biological function of the VirR response regulator from Clostridium perfringens. J Bacteriol 185 : 6205 6208.[CrossRef][PubMed]
35. McGowan S, Lucet IS, Cheung JK, Awad MM, Whisstock JC, Rood JI . 2002. The FxRxHrS motif: a conserved region essential for DNA binding of the VirR response regulator from Clostridium perfringens. J Mol Biol 322 : 997 1011.[CrossRef][PubMed]
36. Okumura K, Ohtani K, Hayashi H, Shimizu T . 2008. Characterization of genes regulated directly by the VirR/VirS system in Clostridium perfringens. J Bacteriol 190 : 7719 7727.[CrossRef][PubMed]
37. Banu S, Ohtani K, Yaguchi H, Swe T, Cole ST, Hayashi H, Shimizu T . 2000. Identification of novel VirR/VirS-regulated genes in Clostridium perfringens. Mol Microbiol 35 : 854 864.[CrossRef][PubMed]
38. Shimizu T, Yaguchi H, Ohtani K, Banu S, Hayashi H . 2002. Clostridial VirR/VirS regulon involves a regulatory RNA molecule for expression of toxins. Mol Microbiol 43 : 257 265.[CrossRef][PubMed]
39. Cheung JK, Awad MM, McGowan S, Rood JI . 2009. Functional analysis of the VirSR phosphorelay from Clostridium perfringens. PLoS One 4 : e5849.[CrossRef][PubMed]
40. Cheung JK, Rood JI . 2000. Glutamate residues in the putative transmembrane region are required for the function of the VirS sensor histidine kinase from Clostridium perfringens. Microbiology 146 : 517 525.[CrossRef][PubMed]
41. Ma M, Vidal J, Saputo J, McClane BA, Uzal F . 2011. The VirS/VirR two-component system regulates the anaerobic cytotoxicity, intestinal pathogenicity, and enterotoxemic lethality of Clostridium perfringens type C isolate CN3685. mBio 2 : e00338-10.
42. Freedman JC, Shrestha A, McClane BA . 2016. Clostridium perfringens enterotoxin: action, genetics, and translational applications. Toxins (Basel) 8 : 73.[CrossRef][PubMed]
43. Uzal FA, McClane BA, Cheung JK, Theoret J, Garcia JP, Moore RJ, Rood JI . 2015. Animal models to study the pathogenesis of human and animal Clostridium perfringens infections. Vet Microbiol 179 : 23 33.[CrossRef][PubMed]
44. Fernandez-Miyakawa ME, Fisher DJ, Poon R, Sayeed S, Adams V, Rood JI, McClane BA, Uzal FA . 2007. Both epsilon-toxin and beta-toxin are important for the lethal properties of Clostridium perfringens type B isolates in the mouse intravenous injection model. Infect Immun 75 : 1443 1452.[CrossRef][PubMed]
45. Fisher DJ, Fernandez-Miyakawa ME, Sayeed S, Poon R, Adams V, Rood JI, Uzal FA, McClane BA . 2006. Dissecting the contributions of Clostridium perfringens type C toxins to lethality in the mouse intravenous injection model. Infect Immun 74 : 5200 5210.[CrossRef][PubMed]
46. McClane BA, Uzal FA, Fernandez-Miyakawa M, Lyerly D,, Wilkins TD, . 2004. The enterotoxigenic clostridia, p 698 752. In Dworkin SF, Rosenburg E, Schleifer KF, Stackebrandt E (ed), The Prokaryotes, vol 4. Springer-Verlag, New York, NY.
47. Uzal FA . 2004. Diagnosis of Clostridium perfringens intestinal infections in sheep and goats. Anaerobe 10 : 135 143.[CrossRef][PubMed]
48. Songer JG . 1996. Clostridial enteric diseases of domestic animals. Clin Microbiol Rev 9 : 216 234.[CrossRef][PubMed]
49. Johnson S, Gerding DN, . 1997. Enterotoxemic infections, p 117 140. In Rood JI, McClane BA, Songer JG, Titball RW (ed), The Clostridia. Molecular Biology and Pathogenesis. Academic Press, London, United Kingdom.
50. Sayeed S, Uzal FA, Fisher DJ, Saputo J, Vidal JE, Chen Y, Gupta P, Rood JI, McClane BA . 2008. Beta toxin is essential for the intestinal virulence of Clostridium perfringens type C disease isolate CN3685 in a rabbit ileal loop model. Mol Microbiol 67 : 15 30.[CrossRef][PubMed]
51. Lawrence G, Cooke R . 1980. Experimental pigbel: the production and pathology of necrotizing enteritis due to Clostridium welchii type C in the guinea-pig. Br J Exp Pathol 61 : 261 271.[PubMed]
52. Niilo L . 1986. Experimental production of hemorrhagic enterotoxemia by Clostridium perfringens type C in maturing lambs. Can J Vet Res 50 : 32 35.[PubMed]
53. Miclard J, van Baarlen J, Wyder M, Grabscheid B, Posthaus H . 2009. Clostridium perfringens beta-toxin binding to vascular endothelial cells in a human case of enteritis necroticans. J Med Microbiol 58 : 826 828.[CrossRef][PubMed]
54. Thiel A, Mogel H, Bruggisser J, Baumann A, Wyder M, Stoffel MH, Summerfield A, Posthaus H . 2017. Effect of Clostridium perfringens β-toxin on platelets. Toxins (Basel) 9 : 336.[CrossRef][PubMed]
55. Murrell TG, Egerton JR, Rampling A, Samels J, Walker PD . 1966. The ecology and epidemiology of the pig-bel syndrome in man in New Guinea. J Hyg (Lond) 64 : 375 396.[CrossRef][PubMed]
56. Duke T . 2004. Slow but steady progress in child health in Papua New Guinea. J Paediatr Child Health 40 : 659 663.[CrossRef][PubMed]
57. Nagahama M, Ochi S, Oda M, Miyamoto K, Takehara M, Kobayashi K . 2015. Recent insights into Clostridium perfringens beta-toxin. Toxins (Basel) 7 : 396 406.[CrossRef][PubMed]
58. Smedley JG III, Fisher DJ, Sayeed S, Chakrabarti G, McClane BA . 2004. The enteric toxins of Clostridium perfringens. Rev Physiol Biochem Pharmacol 152 : 183 204.[CrossRef][PubMed]
59. Skjelkvåle R, Uemura T . 1977. Experimental diarrhoea in human volunteers following oral administration of Clostridium perfringens enterotoxin. J Appl Bacteriol 43 : 281 286.[CrossRef][PubMed]
60. Li J, Miyamoto K, Sayeed S, McClane BA . 2010. Organization of the cpe locus in CPE-positive Clostridium perfringens type C and D isolates. PLoS One 5 : e10932.[CrossRef][PubMed]
61. Miyamoto K, Yumine N, Mimura K, Nagahama M, Li J, McClane BA, Akimoto S . 2011. Identification of novel Clostridium perfringens type E strains that carry an iota toxin plasmid with a functional enterotoxin gene. PLoS One 6 : e20376.[CrossRef][PubMed]
62. Duncan CL . 1973. Time of enterotoxin formation and release during sporulation of Clostridium perfringens type A. J Bacteriol 113 : 932 936.[PubMed]
63. McDonel JL, Asano T . 1975. Analysis of unidirectional fluxes of sodium during diarrhea induced by Clostridium perfringens enterotoxin in the rat terminal ileum. Infect Immun 11 : 526 529.[PubMed]
64. Sherman S, Klein E, McClane BA . 1994. Clostridium perfringens type A enterotoxin induces tissue damage and fluid accumulation in rabbit ileum. J Diarrhoeal Dis Res 12 : 200 207.[PubMed]
65. Sarker MR, Carman RJ, McClane BA . 1999. Inactivation of the gene ( cpe) encoding Clostridium perfringens enterotoxin eliminates the ability of two cpe-positive C. perfringens type A human gastrointestinal disease isolates to affect rabbit ileal loops. Mol Microbiol 33 : 946 958.
66. McClane BA, McDonel JL . 1979. The effects of Clostridium perfringens enterotoxin on morphology, viability, and macromolecular synthesis in Vero cells. J Cell Physiol 99 : 191 199.[CrossRef][PubMed]
67. Matsuda M, Ozutsumi K, Iwahashi H, Sugimoto N . 1986. Primary action of Clostridium perfringens type A enterotoxin on HeLa and Vero cells in the absence of extracellular calcium: rapid and characteristic changes in membrane permeability. Biochem Biophys Res Commun 141 : 704 710.[CrossRef][PubMed]
68. Kokai-Kun JF, McClane BA . 1997. Determination of functional regions of Clostridium perfringens enterotoxin through deletion analysis. Clin Infect Dis 25( Suppl 2) : S165 S167.[CrossRef][PubMed]
69. Kokai-Kun JF, McClane BA . 1997. Deletion analysis of the Clostridium perfringens enterotoxin. Infect Immun 65 : 1014 1022.[PubMed]
70. Shrestha A, Uzal FA, McClane BA . 2016. The interaction of Clostridium perfringens enterotoxin with receptor claudins. Anaerobe 41 : 18 26.[CrossRef][PubMed]
71. Suzuki H, Tani K, Fujiyoshi Y . 2017. Crystal structures of claudins: insights into their intermolecular interactions. Ann N Y Acad Sci 1397 : 25 34.[CrossRef][PubMed]
72. Harada M, Kondoh M, Ebihara C, Takahashi A, Komiya E, Fujii M, Mizuguchi H, Tsunoda S, Horiguchi Y, Yagi K, Watanabe Y . 2007. Role of tyrosine residues in modulation of claudin-4 by the C-terminal fragment of Clostridium perfringens enterotoxin. Biochem Pharmacol 73 : 206 214.[CrossRef][PubMed]
73. Veshnyakova A, Piontek J, Protze J, Waziri N, Heise I, Krause G . 2012. Mechanism of Clostridium perfringens enterotoxin interaction with claudin-3/-4 protein suggests structural modifications of the toxin to target specific claudins. J Biol Chem 287 : 1698 1708.[CrossRef][PubMed]
74. Fujita K, Katahira J, Horiguchi Y, Sonoda N, Furuse M, Tsukita S . 2000. Clostridium perfringens enterotoxin binds to the second extracellular loop of claudin-3, a tight junction integral membrane protein. FEBS Lett 476 : 258 261.[CrossRef][PubMed]
75. Robertson SL, Smedley JG III, McClane BA . 2010. Identification of a claudin-4 residue important for mediating the host cell binding and action of Clostridium perfringens enterotoxin. Infect Immun 78 : 505 517.[CrossRef][PubMed]
76. Robertson SL, Smedley JG III, Singh U, Chakrabarti G, Van Itallie CM, Anderson JM, McClane BA . 2007. Compositional and stoichiometric analysis of Clostridium perfringens enterotoxin complexes in Caco-2 cells and claudin 4 fibroblast transfectants. Cell Microbiol 9 : 2734 2755.[CrossRef][PubMed]
77. McClane BA, McDonel JL . 1980. Characterization of membrane permeability alterations induced in Vero cells by Clostridium perfringens enterotoxin. Biochim Biophys Acta 600 : 974 985.[CrossRef][PubMed]
78. McClane BA, Wnek AP, Hulkower KI, Hanna PC . 1988. Divalent cation involvement in the action of Clostridium perfringens type A enterotoxin. Early events in enterotoxin action are divalent cation-independent. J Biol Chem 263 : 2423 2435.[PubMed]
79. Chakrabarti G, McClane BA . 2005. The importance of calcium influx, calpain and calmodulin for the activation of CaCo-2 cell death pathways by Clostridium perfringens enterotoxin. Cell Microbiol 7 : 129 146.[CrossRef][PubMed]
80. Chakrabarti G, Zhou X, McClane BA . 2003. Death pathways activated in CaCo-2 cells by Clostridium perfringens enterotoxin. Infect Immun 71 : 4260 4270.[CrossRef][PubMed]
81. Fernández Miyakawa ME, Pistone Creydt V, Uzal FA, McClane BA, Ibarra C . 2005. Clostridium perfringens enterotoxin damages the human intestine in vitro. Infect Immun 73 : 8407 8410.[CrossRef][PubMed]
82. Caserta JA, Robertson SL, Saputo J, Shrestha A, McClane BA, Uzal FA . 2011. Development and application of a mouse intestinal loop model to study the in vivo action of Clostridium perfringens enterotoxin. Infect Immun 79 : 3020 3027.[CrossRef][PubMed]
83. Garcia JP, Li J, Shrestha A, Freedman JC, Beingesser J, McClane BA, Uzal FA . 2014. Clostridium perfringens type A enterotoxin damages the rabbit colon. Infect Immun 82 : 2211 2218.[CrossRef][PubMed]
84. Grass JE, Gould LH, Mahon BE . 2013. Epidemiology of foodborne disease outbreaks caused by Clostridium perfringens, United States, 1998-2010. Foodborne Pathog Dis 10 : 131 136.[CrossRef][PubMed]
85. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Jones JL, Griffin PM . 2011. Foodborne illness acquired in the United States—major pathogens. Emerg Infect Dis 17 : 7 15.[CrossRef][PubMed]
86. Czeczulin JR, Hanna PC, McClane BA . 1993. Cloning, nucleotide sequencing, and expression of the Clostridium perfringens enterotoxin gene in Escherichia coli. Infect Immun 61 : 3429 3439.[PubMed]
87. Collie RE, McClane BA . 1998. Evidence that the enterotoxin gene can be episomal in Clostridium perfringens isolates associated with non-food-borne human gastrointestinal diseases. J Clin Microbiol 36 : 30 36.[PubMed]
88. Collie RE, Kokai-Kun JF, McClane BA . 1998. Phenotypic characterization of enterotoxigenic Clostridium perfringens isolates from non-foodborne human gastrointestinal diseases. Anaerobe 4 : 69 79.[CrossRef][PubMed]
89. Brynestad S, Synstad B, Granum PE . 1997. The Clostridium perfringens enterotoxin gene is on a transposable element in type A human food poisoning strains. Microbiology 143 : 2109 2115.[CrossRef][PubMed]
90. Brynestad S, Granum PE . 1999. Evidence that Tn5565, which includes the enterotoxin gene in Clostridium perfringens, can have a circular form which may be a transposition intermediate. FEMS Microbiol Lett 170 : 281 286.[CrossRef][PubMed]
91. Cornillot E, Saint-Joanis B, Daube G, Katayama S, Granum PE, Canard B, Cole ST . 1995. The enterotoxin gene (cpe) of Clostridium perfringens can be chromosomal or plasmid-borne. Mol Microbiol 15 : 639 647.[CrossRef][PubMed]
92. Miyamoto K, Chakrabarti G, Morino Y, McClane BA . 2002. Organization of the plasmid cpe locus in Clostridium perfringens type A isolates. Infect Immun 70 : 4261 4272.[CrossRef][PubMed]
93. Li J, McClane BA . 2010. Evaluating the involvement of alternative sigma factors SigF and SigG in Clostridium perfringens sporulation and enterotoxin synthesis. Infect Immun 78 : 4286 4293.[CrossRef][PubMed]
94. Harry KH, Zhou R, Kroos L, Melville SB . 2009. Sporulation and enterotoxin (CPE) synthesis are controlled by the sporulation-specific sigma factors SigE and SigK in Clostridium perfringens. J Bacteriol 191 : 2728 2742.[CrossRef][PubMed]
95. Zhao Y, Melville SB . 1998. Identification and characterization of sporulation-dependent promoters upstream of the enterotoxin gene ( cpe) of Clostridium perfringens. J Bacteriol 180 : 136 142.[PubMed]
96. Varga J, Stirewalt VL, Melville SB . 2004. The CcpA protein is necessary for efficient sporulation and enterotoxin gene ( cpe) regulation in Clostridium perfringens. J Bacteriol 186 : 5221 5229.[CrossRef][PubMed]
97. Li J, Freedman JC, Evans DR, McClane BA . 2017. CodY promotes sporulation and enterotoxin production by Clostridium perfringens type A strain SM101. Infect Immun 85 : e00855-16.[CrossRef][PubMed]
98. Li J, Ma M, Sarker MR, McClane BA . 2013. CodY is a global regulator of virulence-associated properties for Clostridium perfringens type D strain CN3718. mBio 4 : e00770-13.[CrossRef][PubMed]
99. Paredes-Sabja D, Setlow P, Sarker MR . 2011. Germination of spores of Bacillales and Clostridiales species: mechanisms and proteins involved. Trends Microbiol 19 : 85 94.[CrossRef][PubMed]
100. Al-Hinai MA, Jones SW, Papoutsakis ET . 2015. The Clostridium sporulation programs: diversity and preservation of endospore differentiation. Microbiol Mol Biol Rev 79 : 19 37.[CrossRef][PubMed]
101. Li J, Paredes-Sabja D, Sarker MR, McClane BA . 2016. Clostridium perfringens sporulation and sporulation-associated toxin production. Microbiol Spectr 4 : TBS-0022-2015.[CrossRef][PubMed]
102. Ma M, Li J, McClane BA . 2012. Genotypic and phenotypic characterization of Clostridium perfringens isolates from Darmbrand cases in post-World War II Germany. Infect Immun 80 : 4354 4363.[CrossRef][PubMed]
103. Sarker MR, Shivers RP, Sparks SG, Juneja VK, McClane BA . 2000. Comparative experiments to examine the effects of heating on vegetative cells and spores of Clostridium perfringens isolates carrying plasmid genes versus chromosomal enterotoxin genes. Appl Environ Microbiol 66 : 3234 3240.[CrossRef][PubMed]
104. Grant KA, Kenyon S, Nwafor I, Plowman J, Ohai C, Halford-Maw R, Peck MW, McLauchlin J . 2008. The identification and characterization of Clostridium perfringens by real-time PCR, location of enterotoxin gene, and heat resistance. Foodborne Pathog Dis 5 : 629 639.[CrossRef][PubMed]
105. Miki Y, Miyamoto K, Kaneko-Hirano I, Fujiuchi K, Akimoto S . 2008. Prevalence and characterization of enterotoxin gene-carrying Clostridium perfringens isolates from retail meat products in Japan. Appl Environ Microbiol 74 : 5366 5372.[CrossRef][PubMed]
106. Lahti P, Heikinheimo A, Johansson T, Korkeala H . 2008. Clostridium perfringens type A strains carrying a plasmid-borne enterotoxin gene (genotype IS1151-cpe or IS1470-like-cpe) as a common cause of food poisoning. J Clin Microbiol 46 : 371 373.[CrossRef][PubMed]
107. Li J, McClane BA . 2006. Further comparison of temperature effects on growth and survival of Clostridium perfringens type A isolates carrying a chromosomal or plasmid-borne enterotoxin gene. Appl Environ Microbiol 72 : 4561 4568.[CrossRef][PubMed]
108. Li J, McClane BA . 2008. A novel small acid soluble protein variant is important for spore resistance of most Clostridium perfringens food poisoning isolates. PLoS Pathog 4 : e1000056.[CrossRef][PubMed]
109. Li J, Paredes-Sabja D, Sarker MR, McClane BA . 2009. Further characterization of Clostridium perfringens small acid soluble protein-4 (Ssp4) properties and expression. PLoS One 4 : e6249.[CrossRef][PubMed]
110. Flemming HC, Wingender J . 2010. The biofilm matrix. Nat Rev Microbiol 8 : 623 633.[CrossRef][PubMed]
111. Magana M, Sereti C, Ioannidis A, Mitchell CA, Ball AR, Magiorkinis E, Chatzipanagiotou S, Hamblin MR, Hadjifrangiskou M, Tegos GP . 2018. Options and limitations in clinical investigation of bacterial biofilms. Clin Microbiol Rev 31 : e00084-16.[CrossRef][PubMed]
112. Varga JJ, Therit B, Melville SB . 2008. Type IV pili and the CcpA protein are needed for maximal biofilm formation by the gram-positive anaerobic pathogen Clostridium perfringens. Infect Immun 76 : 4944 4951.[CrossRef][PubMed]
113. Charlebois A, Jacques M, Archambault M . 2014. Biofilm formation of Clostridium perfringens and its exposure to low-dose antimicrobials. Front Microbiol 5 : 183.[CrossRef][PubMed]
114. Lin S, Yang L, Chen G, Li B, Chen D, Li L, Xu Z . 2017. Pathogenic features and characteristics of food borne pathogens biofilm: biomass, viability and matrix. Microb Pathog 111 : 285 291.[CrossRef][PubMed]
115. Farkas A, Drăgan-Bularda M, Ciatarâş D, Bocoş B, Tigan S . 2012. Opportunistic pathogens and faecal indicators in drinking water associated biofilms in Cluj, Romania. J Water Health 10 : 471 483.[CrossRef][PubMed]
116. Jiang Y, Kong Q, Roland KL, Wolf A, Curtiss R III . 2014. Multiple effects of Escherichia coli Nissle 1917 on growth, biofilm formation, and inflammation cytokines profile of Clostridium perfringens type A strain CP4. Pathog Dis 70 : 390 400.[CrossRef][PubMed]
117. Jagals P, Jagals C, Bokako TC . 2003. The effect of container-biofilm on the microbiological quality of water used from plastic household containers. J Water Health 1 : 101 108.[CrossRef][PubMed]
118. Woods J, Boegli L, Kirker KR, Agostinho AM, Durch AM, Delancey Pulcini E, Stewart PS, James GA . 2012. Development and application of a polymicrobial, in vitro, wound biofilm model. J Appl Microbiol 112 : 998 1006.[CrossRef][PubMed]
119. Charlebois A, Jacques M, Boulianne M, Archambault M . 2017. Tolerance of Clostridium perfringens biofilms to disinfectants commonly used in the food industry. Food Microbiol 62 : 32 38.[CrossRef][PubMed]
120. Kreske AC, Ryu JH, Beuchat LR . 2006. Evaluation of chlorine, chlorine dioxide, and a peroxyacetic acid-based sanitizer for effectiveness in killing Bacillus cereus and Bacillus thuringiensis spores in suspensions, on the surface of stainless steel, and on apples. J Food Prot 69 : 1892 1903.[CrossRef][PubMed]
121. Wang R, Bono JL, Kalchayanand N, Shackelford S, Harhay DM . 2012. Biofilm formation by Shiga toxin-producing Escherichia coli O157:H7 and non-O157 strains and their tolerance to sanitizers commonly used in the food processing environment. J Food Prot 75 : 1418 1428.[CrossRef][PubMed]
122. Lewis Ivey ML, Xu X, Miller SA . 2014. Leveraging management strategies for seedborne plant diseases to reduce Salmonella enterica serovar Typhimurium incidence on tomato seed and seedlings. J Food Prot 77 : 359 364.[CrossRef][PubMed]
123. Obana N, Nakamura K, Nomura N . 2014. A sporulation factor is involved in the morphological change of Clostridium perfringens biofilms in response to temperature. J Bacteriol 196 : 1540 1550.[CrossRef][PubMed]
124. Charlebois A, Jacques M, Archambault M . 2016. Comparative transcriptomic analysis of Clostridium perfringens biofilms and planktonic cells. Avian Pathol 45 : 593 601.[CrossRef][PubMed]
125. Centers for Disease Control and Prevention . 2006. Multistate outbreak of Salmonella typhimurium infections associated with eating ground beef—United States, 2004. MMWR Morb Mortal Wkly Rep 55 : 180182.[PubMed]
126. Centers for Disease Control and Prevention . 1994. Clostridium perfringens gastroenteritis associated with corned beef served at St. Patrick's Day meals—Ohio and Virginia, 1993. MMWR Morb Mortal Wkly Rep 43 : 137 , 143–144.[PubMed]
127. Centers for Disease Control and Prevention . 2012. Fatal foodborne Clostridium perfringens illness at a state psychiatric hospital—Louisiana, 2010. MMWR Morb Mortal Wkly Rep 61 : 605608.[PubMed]
128. Shandera WX, Tacket CO, Blake PA . 1983. Food poisoning due to Clostridium perfringens in the United States. J Infect Dis 147 : 167 170.[CrossRef][PubMed]
129. Bos J, Smithee L, McClane B, Distefano RF, Uzal F, Songer JG, Mallonee S, Crutcher JM . 2005. Fatal necrotizing colitis following a foodborne outbreak of enterotoxigenic Clostridium perfringens type A infection. Clin Infect Dis 40 : e78 e83.[CrossRef][PubMed]
130. Vela M, Heredia NL, Feng P, Santos García-Alvarado J . 1999. DNA probe analysis for the carriage of enterotoxigenic Clostridium perfringens in feces of a Mexican subpopulation. Diagn Microbiol Infect Dis 35 : 101 104.[CrossRef][PubMed]
131. Wrigley DM . 2004. Inhibition of Clostridium perfringens sporulation by Bacteroides fragilis and short-chain fatty acids. Anaerobe 10 : 295 300.[CrossRef][PubMed]
132. Severin WP, de la Fuente AA, Stringer MF . 1984. Clostridium perfringens type C causing necrotising enteritis. J Clin Pathol 37 : 942 944.[CrossRef][PubMed]
133. Clarke LE, Diekmann-Guiroy B, McNamee W, Java DJ Jr, Weiss SM . 1994. Enteritis necroticans with midgut necrosis caused by Clostridium perfringens. Arch Surg 129 : 557 560.[CrossRef][PubMed]
134. Vidal JE, McClane BA, Saputo J, Parker J, Uzal FA . 2008. Effects of Clostridium perfringens beta-toxin on the rabbit small intestine and colon. Infect Immun 76 : 4396 4404.[CrossRef][PubMed]
135. Petrillo TM, Beck-Sagué CM, Songer JG, Abramowsky C, Fortenberry JD, Meacham L, Dean AG, Lee H, Bueschel DM, Nesheim SR . 2000. Enteritis necroticans (pigbel) in a diabetic child. N Engl J Med 342 : 1250 1253.[CrossRef][PubMed]
136. Matsuda T, Okada Y, Inagi E, Tanabe Y, Shimizu Y, Nagashima K, Sakurai J, Nagahama M, Tanaka S . 2007. Enteritis necroticans ‘pigbel’ in a Japanese diabetic adult. Pathol Int 57 : 622 626.[CrossRef][PubMed]
137. Sakurai J, Duncan CL . 1978. Some properties of beta-toxin produced by Clostridium perfringens type C. Infect Immun 21 : 678 680.[PubMed]
138. Gerding DN, Johnson S, . 2012. Clostridial infections, p 137 143. In Goldman L, Schafer AI (ed), Goldman's Cecil Medicine, 24th ed. Elsevier Saunders, Philadelphia, PA.
139. Tonnellier M, Maury E, Guglielminotti J, Offenstadt G . 2001. A fatal sandwich. Lancet Infect Dis 1 : 202.[CrossRef][PubMed]
140. Gui L, Subramony C, Fratkin J, Hughson MD . 2002. Fatal enteritis necroticans (pigbel) in a diabetic adult. Mod Pathol 15 : 66 70.[CrossRef][PubMed]
141. Jeong D, Kim DH, Kang IB, Chon JW, Kim H, Om AS, Lee JY, Moon JS, Oh DH, Seo KH . 2017. Prevalence and toxin type of Clostridium perfringens in beef from four different types of meat markets in Seoul, Korea. Food Sci Biotechnol 26 : 545 548.[CrossRef][PubMed]
142. Aras Z, Hadimli HH . 2015. Detection and molecular typing of Clostridium perfringens isolates from beef, chicken and turkey meats. Anaerobe 32 : 15 17.[CrossRef][PubMed]
143. Shin W-S, Moon G-S, Park J-H . 2014. Growth of Clostridium perfringens spores inoculated in sous-vide processed Korean traditional galbijjim under different storage conditions. Food Sci Biotechnol 23 : 505 509.[CrossRef].
144. Taormina PJ, Bartholomew GW, Dorsa WJ . 2003. Incidence of Clostridium perfringens in commercially produced cured raw meat product mixtures and behavior in cooked products during chilling and refrigerated storage. J Food Prot 66 : 72 81.[CrossRef][PubMed]
145. Guran HS, Oksuztepe G . 2013. Detection and typing of Clostridium perfringens from retail chicken meat parts. Lett Appl Microbiol 57 : 77 82.[CrossRef][PubMed]
146. McLauchlin J, Jørgensen F, Aird H, Charlett A, Elviss N, Fenelon D, Fox A, Willis C, Amar CFL . 2017. An assessment of the microbiological quality of liver-based pâté in England 2012-13: comparison of samples collected at retail and from catering businesses. Epidemiol Infect 145 : 1545 1556.[CrossRef][PubMed]
147. Hanifenezhad A, Göncüoǧlu M, Erol I . 2015. Prevalence and molecular typing of Clostridium perfringens isolates from edible offal of broiler. Ankara Univ Vet Fak Derg 62 : 113 117.[CrossRef].
148. Huss HH, Ababouch L, Gram L . 2003. Assessment and management of seafood safety and quality. FAO Fisheries and Aquaculture paper 574. Food and Agriculture Organization of the United Nations, Rome, Italy.
149. Galaviz-Silva L, Gomez-Anduro G, Molina-Garza ZJ, Ascencio-Valle F, . 2009. Food safety issues and the microbiology of fish and shellfish, p 227 254. In Heredia N, Wesley I, Garcia S (ed), Microbiologically Safe Foods. John Wiley and Sons, Hoboken, NJ.[CrossRef]
150. WHO . 2001. Programme for control of foodborne infections and intoxications in Europe: Seventh report 1993-1998. World Health Organization, Geneva, Switzerland.
151. Rahmati T, Labbe R . 2008. Levels and toxigenicity of Bacillus cereus and Clostridium perfringens from retail seafood. J Food Prot 71 : 1178 1185.[CrossRef][PubMed]
152. Oka S, Ando Y, Oishi K . 1989. Distribution of enterotoxigenic Clostridium perfringens in fish and shellfish. Nippon Suisan Gakkaishi 55 : 79 86.[CrossRef].
153. Herrera FC, Santos JA, Otero A, García-López ML . 2006. Occurrence of foodborne pathogenic bacteria in retail prepackaged portions of marine fish in Spain. J Appl Microbiol 100 : 527 536.[CrossRef][PubMed]
154. Sabry M, Abd El-Moein K, Hamza E, Abdel Kader F . 2016. Occurrence of Clostridium perfringens types A, E, and C in fresh fish and its public health significance. J Food Prot 79 : 994 1000.[CrossRef][PubMed]
155. Kimura B, Kuroda S, Murakami M, Fujii T . 1996. Growth of Clostridium perfringens in fish fillets packaged with a controlled carbon dioxide atmosphere at abuse temperatures. J Food Prot 59 : 704 710.[CrossRef].
156. Kimura B, Murakami M . 1993. Fate of pathogens in gas-packed jack mackerel fillets. Nippon Suisan Gakkaishi 59 : 1163 1169.[CrossRef].
157. Bjornsdottir-Butler K, McCarthy S, Burkhardt W III, Benner RA Jr . 2013. Importance of histamine-producing Clostridium perfringens in scombrotoxin-forming fish. J Food Prot 76 : 1283 1287.[CrossRef][PubMed]
158. Lee CA, Labbé R . 2018. Distribution of enterotoxin- and epsilon-positive Clostridium perfringens spores in U.S. retail spices. J Food Prot 81 : 394 399.[CrossRef][PubMed]
159. Ito KA, . 2009. Food safety issues and the microbiology of spices and herbs, p 337 352. In Heredia N, Wesley I, Garcia S (ed), Microbiologically Safe Foods. John Wiley and Sons, Hoboken, NJ.[CrossRef]
160. Rodríguez-Romo LA, Heredia NL, Labbé RG, García-Alvarado JS . 1998. Detection of enterotoxigenic Clostridium perfringens in spices used in Mexico by dot blotting using a DNA probe. J Food Prot 61 : 201 204.[CrossRef][PubMed]
161. Haque S, Sharma RK, Barman NN, Devi LB, Barkalita LM, Hussain I . 2018. Characterization of enterotoxin producing Clostridium perfringens isolated from foods of animal origin. Indian J Anim Res 52 : 111 115.
162. Griffiths MW, . 2009. Food safety issues and the microbiology of milk and dairy products, p 147 167. In Heredia N, Wesley I, Garcia S (ed), Microbiologically Safe Foods. John Wiley and Sons, Hoboken, NJ.[CrossRef]
163. Bullerman LB, Bianchini A, . 2009. Food safety issues and the microbiology of cereals and cereal products, p 315 335. In Heredia N, Wesley I, García S (ed), Microbiologicaly Safe Foods. John Wiley and Sons, Hoboken, NJ.[CrossRef]
164. Gómez-Govea M, Solís-Soto L, Heredia N, Garcia S, Moreno G, Tovar O, Inzunsa G. 2012. Analysis of microbial contamination levels of fruits and vegetables at retail in Monterrey, Mexico. J Food Agric Environ 10 : 152 156.
165. Cevallos-Cevallos JM, Akins ED, Friedrich LM, Danyluk MD, Simonne AH . 2012. Growth of Clostridium perfringens during cooling of refried beans. J Food Prot 75 : 1783 1790.[CrossRef][PubMed]
166. Heredia NL, Labbé RG, García-Alvarado JS . 1998. Alteration in sporulation, enterotoxin production, and protein synthesis by Clostridium perfringens type A following heat shock. J Food Prot 61 : 1143 1147.[CrossRef][PubMed]
167. Xiao Y, Wagendorp A, Abee T, Wells-Bennik MH . 2015. Differential outgrowth potential of Clostridium perfringens food-borne isolates with various cpe-genotypes in vacuum-packed ground beef during storage at 12°C. Int J Food Microbiol 194 : 40 45.[CrossRef][PubMed]
168. Labbé R, Nolan LL, . 2009. Food preservation techniques other than heat and irradiation, p 485 506. In Heredia N, Wesley I, Garcia S (ed), Microbiologically Safe Foods. John Wiley and Sons, Hoboken, NJ.[CrossRef]
169. U.S. Department of Agriculture Food Safety and Inspection Service . 2017. Verifying an establishment's food safety system. FSIS directive 5000.1, rev. 5. Attachment 1. Use of microbial pathogen computer modeling (MPCM) in HACCP plans. http://www.fsis.usda.gov/wps/wcm/connect/e8133c3c-d9b8-4a58-ab14-859e3e9c8a52/5000.1.pdf?MOD=AJPERES. Accessed 23 May 2018.
170. Juneja VK, Snyder OP Jr, Cygnarowicz-Provost M . 1994. Influence of cooling rate on outgrowth of Clostridium perfringens spores in cooked ground beef. J Food Prot 57 : 1063 1067.[CrossRef].
171. Amézquita A, Weller CL, Wang L, Thippareddi H, Burson DE . 2005. Development of an integrated model for heat transfer and dynamic growth of Clostridium perfringens during the cooling of cooked boneless ham. Int J Food Microbiol 101 : 123 144.[CrossRef][PubMed]
172. Huang L . 2003. Dynamic computer simulation of Clostridium perfringens growth in cooked ground beef. Int J Food Microbiol 87 : 217 227.[CrossRef][PubMed]
173. Huang L . 2004. Numerical analysis of the growth of Clostridium perfringens in cooked beef under isothermal and dynamic conditions. J Food Saf 24 : 53 70.[CrossRef].
174. Huang L . 2015. Dynamic determination of kinetic parameters, computer simulation, and probabilistic analysis of growth of Clostridium perfringens in cooked beef during cooling. Int J Food Microbiol 195 : 20 29.[CrossRef][PubMed]
175. Jaloustre S, Cornu M, Morelli E, Noël V, Delignette-Muller ML . 2011. Bayesian modeling of Clostridium perfringens growth in beef-in-sauce products. Food Microbiol 28 : 311 320.[CrossRef][PubMed]
176. Jaloustre S, Guillier L, Morelli E, Noël V, Delignette-Muller ML . 2012. Modeling of Clostridium perfringens vegetative cell inactivation in beef-in-sauce products: a meta-analysis using mixed linear models. Int J Food Microbiol 154 : 44 51.[CrossRef][PubMed]
177. Juneja VK, Whiting RC, Marks HM, Snyder OP . 1999. Predictive model for growth of Clostridium perfringens at temperatures applicable to cooling of cooked meat. Food Microbiol 16 : 335 349.[CrossRef].
178. Juneja VK, Novak JS, Marks HM, Gombas DE . 2001. Growth of Clostridium perfringens from spore inocula in cooked cured beef: development of a predictive model. Innov Food Sci Emerg Technol 2 : 289 301.[CrossRef].
179. Juneja V . 2002. Predictive model for growth of Clostridium perfringens during cooling of c