1887

Chapter 2 : Spores and Their Significance

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Spores and Their Significance, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819972/9781555819965.ch2-1.gif /docserver/preview/fulltext/10.1128/9781555819972/9781555819965.ch2-2.gif

Abstract:

Members of the Gram-positive genera and and some closely related genera respond to slowed growth or starvation by initiating the process of sporulation, and the resultant spores can cause practical problems in food microbiology as well as human disease. The molecular biology of sporulation and spore resistance and germination in has been extensively studied for many years, and there is detailed knowledge of these processes and many of the regulatory mechanisms involved. With the recent availability of many genome sequences as well as methods for genetic manipulation of clostridia of industrial and medical importance, a detailed molecular understanding of sporulation and spore germination in clostridia is also being developed. This chapter describes the fundamental bases of sporulation, spore germination, and spore resistance and the problems that spores present to the food industry.

Citation: Setlow P, Johnson E. 2019. Spores and Their Significance, p 23-63. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch2
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 2.1
Figure 2.1

Structure of DPA. Note that at physiological pH, both carboxyl groups are ionized.

Citation: Setlow P, Johnson E. 2019. Spores and Their Significance, p 23-63. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.2
Figure 2.2

Morphological, biochemical, and physiological changes during sporulation of a rod-shaped cell. In stage 0, a cell with two nucleoids (N) is shown; in stage IIi, the mother cell and forespore are designated MC and FS, respectively. Note that the forespore nucleoid is more condensed than that in the mother cell. Stage IIii is not shown in this scheme, and the forespore nucleoid is not shown after stage III for clarity. The time of some biochemical and physiological events, such as forespore dehydration and acquisition of types of resistance to different chemicals (all lumped together as “chemical resistance”), stretches over a number of stages.

Citation: Setlow P, Johnson E. 2019. Spores and Their Significance, p 23-63. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.3
Figure 2.3

Some gene products and reactions that affect levels of Spo0A∼P. Spo0E is a phosphatase that acts on Spo0A∼P; RapA and RapB are phosphatases that act on Spo0F∼P ( ).

Citation: Setlow P, Johnson E. 2019. Spores and Their Significance, p 23-63. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.4
Figure 2.4

Regulation of gene expression during sporulation. The effect of Spo0A∼P on repressors is negative; other effects of regulatory molecules on reactions are generally positive, although the effect of signals may be positive or negative. The enclosure of the pro-σ factors and σ factors indicates that at this time, these factors are inactive.

Citation: Setlow P, Johnson E. 2019. Spores and Their Significance, p 23-63. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.5
Figure 2.5

Structure of a dormant spore. The various structures are not drawn precisely to scale, especially the exosporium, whose size varies tremendously between spores of different species. The germ cell wall is also generally smaller than shown. The positions of the inner and outer forespore membranes, between the core and the germ cell wall and between the cortex and coats, respectively, are also noted.

Citation: Setlow P, Johnson E. 2019. Spores and Their Significance, p 23-63. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.6
Figure 2.6

Structure of the cyclobutane-type TT dimer (A) and the 5-thyminyl-5,6-dihydrothymine adduct (spore photoproduct) (B). The positions of the hydrogens noted by the asterisks are the locations of the glycosylic bond in DNA.

Citation: Setlow P, Johnson E. 2019. Spores and Their Significance, p 23-63. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.7
Figure 2.7

Correlation of spore heat resistance and protoplast (core) water content of lysozyme-sensitive spore types from seven species that vary in thermal adaptation and mineralization. The numbers indicate species, as follows: 1, ; 2, “”; 3, ; 4, ; 5, ; 6, ; 7, . The letters denote the sporulation temperature or the mineralization of the spores of various species as described in the original publication. Reprinted from reference with permission.

Citation: Setlow P, Johnson E. 2019. Spores and Their Significance, p 23-63. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.8
Figure 2.8

Spore activation, germination, and outgrowth. The events in activation are not known, hence the question mark. The loss of the spore cortex and the hydration and swelling of the core are shown in the germinated spore. Adapted from Fig. 3 in reference .

Citation: Setlow P, Johnson E. 2019. Spores and Their Significance, p 23-63. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.9
Figure 2.9

Transmission electron micrograph (magnification, ×50,000) of a longitudinal section through a spore and sporangium of type A, showing the characteristic club shape.

Citation: Setlow P, Johnson E. 2019. Spores and Their Significance, p 23-63. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.10
Figure 2.10

Electron micrographs of type B (A) and E (B) spores, showing characteristic exosporium in types B and E and appendages in type E. Courtesy of Philipp Gerhardt from spores produced in E.A.J.'s laboratory.

Citation: Setlow P, Johnson E. 2019. Spores and Their Significance, p 23-63. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555819972.ch2
1. Mirouze N, Dubnau D, . 2016. Chance and necessity in Bacillus subtilis development, p 105 127. In Eichenberger P, Driks A (ed), The Bacterial Spore: From Molecules to Systems. ASM Press, Washington, DC.
2. Bate AR, Bonneau R, Eichenberger P, . 2016. Bacillus subtilis systems biology: applications of -omics techniques to the study of endospore formation, p 129 144. In Eichenberger P, Driks A (ed), The Bacterial Spore: From Molecules to Systems. ASM Press, Washington, DC.
3. Dworkin J, . 2016. Protein targeting during Bacillus subtilis sporulation, p 145 156. In Eichenberger P, Driks A (ed), The Bacterial Spore: From Molecules to Systems. ASM Press, Washington, DC.
4. Setlow P, Wang S, Li Y-Q . 2017. Germination of spores of the orders Bacillales and Clostridiales. Annu Rev Microbiol 71 : 459 477.[CrossRef][PubMed]
5. Tan IS, Ramamurthi KS . 2014. Spore formation in Bacillus subtilis. Environ Microbiol Rep 6 : 212 225.[CrossRef][PubMed]
6. Setlow P, Johnson EA, . 2013. Spores and their significance, p 45 80. In Doyle MP, Buchanan RL (ed), Food Microbiology: Fundamentals and Frontiers, 4th ed. ASM Press, Washington, DC.
7. Decker AR, Ramamurthi KS . 2017. Cell death pathway that monitors spore morphogenesis. Trends Microbiol 25 : 637 647.[CrossRef][PubMed]
8. Setlow P, . 2016. Spore resistance properties, p 201 216. In Eichenberger P, Driks A (ed), The Bacterial Spore: From Molecules to Systems. ASM Press, Washington, DC.
9. Moir A, Cooper G, . 2016. Spore germination, p 217 238. In Eichenberger P, Driks A (ed), The Bacterial Spore: From Molecules to Systems. ASM Press, Washington, DC.
10. Setlow P . 2003. Spore germination. Curr Opin Microbiol 6 : 550 556.[CrossRef][PubMed]
11. Paidhungat M, Setlow P, . 2002. Spore germination and outgrowth, p 537 548. In Sonenshein AL, Hoch JA, Losick R (ed), Bacillus subtilis and Its Closest Relatives: From Genes to Cells. ASM Press, Washington, DC.[CrossRef]
12. Setlow P . 2006. Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. J Appl Microbiol 101 : 514 525.[CrossRef][PubMed]
13. Dürre P, . 2016. Physiology and sporulation in Clostridium, p 315 330. In Eichenberger P, Driks A (ed), The Bacterial Spore: From Molecules to Systems. ASM Press, Washington, DC.
14. Li J, Paredes-Sabja D, Sarker MR, McClane BA, . 2016. Clostridium perfringens sporulation and sporulation-associated toxin production, p 331 350. In Eichenberger P, Driks A (ed), The Bacterial Spore: From Molecules to Systems. ASM Press, Washington, DC.[CrossRef]
15. Gil F, Lagos-Moraga S, Calderón-Romero P, Pizarro-Guajardo M, Paredes-Sabja D . 2017. Updates on Clostridium difficile spore biology. Anaerobe 45 : 3 9.[CrossRef][PubMed]
16. Fimlaid KA, Shen A . 2015. Diverse mechanisms regulate sporulation sigma factor activity in the Firmicutes. Curr Opin Microbiol 24 : 88 95.[CrossRef][PubMed]
17. Galperin MY, . 2016. Genome diversity of spore-forming firmicutes, p 3 19. In Eichenberger P, Driks A (ed), The Bacterial Spore: From Molecules to Systems. ASM Press, Washington, DC.
18. Hutchinson EA, Miller DA, Angert ER, . 2016. Sporulation in bacteria: beyond the standard model, p 87 102. In Eichenberger P, Driks A (ed), The Bacterial Spore: From Molecules to Systems. ASM Press, Washington, DC.
19. Fajardo-Cavazos P, Maugham H, Nicholson WL, . 2016. Evolution in the Bacillaceae, p 21 58. In Eichenberger P, Driks A (ed), The Bacterial Spore: From Molecules to Systems. ASM Press, Washington, DC.
20. De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey EA, Schleifer KH, Whitman WB (ed). 2009. Bergey's Manual of Systematic Bacteriology, 2nd ed, vol 3. The Firmicutes. Springer, Dordrecht, The Netherlands.
21. Maughan H . 2007. Rates of molecular evolution in bacteria are relatively constant despite spore dormancy. Evolution 61 : 280 288.[CrossRef][PubMed]
22. Narula J, Fujita M, Igoshin OA . 2016. Functional requirements of cellular differentiation: lessons from Bacillus subtilis. Curr Opin Microbiol 34 : 38 46.[CrossRef][PubMed]
23. Driks A, Eichenberger P, . 2016. The spore coat, p 179 200. In Eichenberger P, Driks A (ed), The Bacterial Spore: From Molecules to Systems. ASM Press, Washington, DC.
24. Bozue JA, Welkos S, Cote CK, . 2016. The Bacillus anthracis exosporium: what's the big “hairy” deal? p 253 268. In Eichenberger P, Driks A (ed), The Bacterial Spore: From Molecules to Systems. ASM Press, Washington, DC.
25. Gerhardt P, Marquis RE, . 1989. Spore thermoresistance mechanisms, p 17 63. In Smith I, Slepecky R, Setlow P (ed), Mechanisms of Procaryotic Development. American Society for Microbiology, Washington, DC.
26. Dawes IW, Mandelstam J . 1970. Sporulation of Bacillus subtilis in continuous culture. J Bacteriol 103 : 529 535.[PubMed]
27. Schultz D . 2016. Coordination of cell decisions and promotion of phenotypic diversity in B. subtilis via pulsed behavior of the phosphorelay. BioEssays 38 : 440 445.[CrossRef][PubMed]
28. López D, Kolter R . 2010. Extracellular signals that define distinct and coexisting cell fates in Bacillus subtilis. FEMS Microbiol Rev 34 : 134 149.[CrossRef][PubMed]
29. Popham DL, Bernhards CB, . 2016. Spore peptidoglycan, p 157 178. In Eichenberger P, Driks A (ed), The Bacterial Spore: From Molecules to Systems. ASM Press, Washington, DC.
30. Kim EY, Tyndall ER, Huang KC, Tian F, Ramamurthi KS . 2017. Dash-and-recruit mechanism drives membrane curvature recognition by the small bacterial protein SpoVM. Cell Syst 5 : 518 526.e3.[CrossRef][PubMed]
31. Ramírez-Guadiana FH, Meeske AJ, Rodrigues CDA, Barajas-Ornelas RDC, Kruse AC, Rudner DZ . 2017. A two-step transport pathway allows the mother cell to nurture the developing spore in Bacillus subtilis. PLoS Genet 13 : e1007015.[CrossRef][PubMed]
32. Leuschner RGK, Lillford PJ . 2003. Thermal properties of bacterial spores and biopolymers. Int J Food Microbiol 80 : 131 143.[CrossRef][PubMed]
33. Sunde EP, Setlow P, Hederstedt L, Halle B . 2009. The physical state of water in bacterial spores. Proc Natl Acad Sci USA 106 : 19334 19339.[CrossRef][PubMed]
34. Tros M, Zheng L, Hunger J, Bonn M, Bonn D, Smits GJ, Woutersen S . 2017. Picosecond orientational dynamics of water in living cells. Nat Commun 8 : 904.[CrossRef][PubMed]
35. Pompeo F, Foulquier E, Galinier A . 2016. Impact of serine/threonine protein kinases on the regulation of sporulation in Bacillus subtilis. Front Microbiol 7 : 568.[CrossRef][PubMed]
36. Sonenshein AL . 2007. Control of key metabolic intersections in Bacillus subtilis. Nat Rev Microbiol 5 : 917 927.[CrossRef][PubMed]
37. Crawshaw AD, Serrano M, Stanley WA, Henriques AO, Salgado PS . 2014. A mother cell-to-forespore channel: current understanding and future challenges. FEMS Microbiol Lett 358 : 129 136.[CrossRef][PubMed]
38. Knudsen SM, Cermak N, Delgado FF, Setlow B, Setlow P, Manalis SR . 2016. Water and small-molecule permeation of dormant Bacillus subtilis spores. J Bacteriol 198 : 168 177.[CrossRef][PubMed]
39. Cowan AE, Olivastro EM, Koppel DE, Loshon CA, Setlow B, Setlow P . 2004. Lipids in the inner membrane of dormant spores of Bacillus species are largely immobile. Proc Natl Acad Sci USA 101 : 7733 7738.[CrossRef][PubMed]
40. Cowan AE, Koppel DE, Setlow B, Setlow P . 2003. A soluble protein is immobile in dormant spores of Bacillus subtilis but is mobile in germinated spores: implications for spore dormancy. Proc Natl Acad Sci USA 100 : 4209 4214.[CrossRef][PubMed]
41. Vyas J, Cox J, Setlow B, Coleman WH, Setlow P . 2011. Extremely variable conservation of γ-type small, acid-soluble proteins from spores of some species in the bacterial order Bacillales. J Bacteriol 193 : 1884 1892.[CrossRef][PubMed]
42. Bettegowda C, Huang X, Lin J, Cheong I, Kohli M, Szabo SA, Zhang X, Diaz LA Jr, Velculescu VE, Parmigiani G, Kinzler KW, Vogelstein B, Zhou S . 2006. The genome and transcriptomes of the anti-tumor agent Clostridium novyi-NT. Nat Biotechnol 24 : 1573 1580.[CrossRef][PubMed]
43. Keijser BJ, Ter Beek A, Rauwerda H, Schuren F, Montijn R, van der Spek H, Brul S . 2007. Analysis of temporal gene expression during Bacillus subtilis spore germination and outgrowth. J Bacteriol 189 : 3624 3634.[CrossRef][PubMed]
44. Segev E, Smith Y, Ben-Yehuda S . 2012. RNA dynamics in aging bacterial spores. Cell 148 : 139 149.[CrossRef][PubMed]
45. Korza G, Setlow B, Rao L, Li Q, Setlow P . 2016. Changes in Bacillus spore small molecules, rRNA, germination and outgrowth after extended sublethal exposure to various temperatures: evidence that protein synthesis is not essential for spore germination. J Bacteriol 198 : 3254 3264.[CrossRef][PubMed]
46. Ghosh S, Korza G, Maciejewski M, Setlow P . 2015. Analysis of metabolism in dormant spores of Bacillus species by 31P-nuclear magnetic resonance of low-molecular-weight compounds. J Bacteriol 197 : 992 1001.[CrossRef].
47. Setlow B, Atluri S, Kitchel R, Koziol-Dube K, Setlow P . 2006. Role of dipicolinic acid in resistance and stability of spores of Bacillus subtilis with or without DNA-protective α/β-type small acid-soluble proteins. J Bacteriol 188 : 3740 3747.[CrossRef][PubMed]
48. Setlow P, . 2008. Effects of high pressure on spores, p 35 52. In Michiels C, Bartlett DH, Aertsen A (ed), High-Pressure Microbiology. ASM Press, Washington, DC.[CrossRef]
49. Moeller R, Setlow P, Horneck G, Berger T, Reitz G, Rettberg P, Doherty AJ, Okayasu R, Nicholson WL . 2008. Roles of the major, small, acid-soluble spore proteins and spore-specific and universal DNA repair mechanisms in resistance of Bacillus subtilis spores to ionizing radiation from X rays and high-energy charged-particle bombardment. J Bacteriol 190 : 1134 1140.[CrossRef][PubMed]
50. Moeller R, Raguse M, Reitz G, Okayasu R, Li Z, Klein S, Setlow P, Nicholson WL . 2014. Resistance of Bacillus subtilis spore DNA to lethal ionizing radiation damage relies primarily on spore core components and DNA repair, with minor effects of oxygen radical detoxification. Appl Environ Microbiol 80 : 104 109.[CrossRef][PubMed]
51. Wells-Bennik MH, Eijlander RT, den Besten HM, Berendsen EM, Warda AK, Krawczyk AO, Nierop Groot MN, Xiao Y, Zwietering MH, Kuipers OP, Abee T . 2016. Bacterial spores in food: Survival, emergence, and outgrowth. Annu Rev Food Sci Technol 7 : 457 482.[CrossRef][PubMed]
52. Hurst A, . 1983. Injury, p 255 274. In Hurst A, Gould GW (ed), The Bacterial Spore, vol 2. Academic Press, London, England.
53. Zhang P, Kong L, Setlow P, Li YQ . 2010. Characterization of wet-heat inactivation of single spores of bacillus species by dual-trap Raman spectroscopy and elastic light scattering. Appl Environ Microbiol 76 : 1796 1805.[CrossRef][PubMed]
54. Beaman TC, Gerhardt P . 1986. Heat resistance of bacterial spores correlated with protoplast dehydration, mineralization, and thermal adaptation. Appl Environ Microbiol 52 : 1242 1246.[PubMed]
55. Berendsen EM, Boekhorst J, Kuipers OP, Wells-Bennik MH . 2016. A mobile genetic element profoundly increases heat resistance of bacterial spores. ISME J 10 : 2633 2642.[CrossRef][PubMed]
56. Krawczyk AO, de Jong A, Omony J, Holsappel S, Wells-Bennik MH, Kuipers OP, Eijlander RT . 2017. Spore heat activation requirements and germination responses correlate with sequences of germinant receptors and with the presence of a specific spoVA2 mob operon in foodborne strains of Bacillus subtilis. Appl Environ Microbiol 83 : e03122-16.[CrossRef][PubMed]
57. Berendsen EM, Koning RA, Boekhorst J, de Jong A, Kuipers OP, Wells-Bennik MH . 2016. High-level heat resistance of spores of Bacillus amyloliquefaciens and Bacillus licheniformis results from the presence of a spoVA operon in a Tn1546 transposon. Front Microbiol 7 : 1912.[CrossRef][PubMed]
58. Krawczyk AO, Berendsen EM, de Jong A, Boekhorst J, Wells-Bennik MH, Kuipers OP, Eijlander RT . 2016. A transposon present in specific strains of Bacillus subtilis negatively affects nutrient- and dodecylamine-induced spore germination. Environ Microbiol 18 : 4830 4846.[CrossRef][PubMed]
59. Luu S, Cruz-Mora J, Setlow B, Feeherry FE, Doona CJ, Setlow P . 2015. The effects of heat activation on Bacillus spore germination with nutrients or under high pressure, with or without various germination proteins. Appl Environ Microbiol 81 : 2927 2938.[CrossRef][PubMed]
60. Sinai L, Rosenberg A, Smith Y, Segev E, Ben-Yehuda S . 2015. The molecular timeline of a reviving bacterial spore. Mol Cell 57 : 695 707.[CrossRef][PubMed]
61. Wang S, Shen A, Setlow P, Li Y-Q . 2015. Characterization of the dynamic germination of individual Clostridium difficile spores using Raman spectroscopy and differential interference contrast microscopy. J Bacteriol 197 : 2361 2373.[CrossRef][PubMed]
62. Chesnokova ON, McPherson SA, Steichen CT, Turnbough CL Jr . 2009. The spore-specific alanine racemase of Bacillus anthracis and its role in suppressing germination during spore development. J Bacteriol 191 : 1303 1310.[CrossRef][PubMed]
63. Griffiths KK, Zhang J, Cowan AE, Yu J, Setlow P . 2011. Germination proteins in the inner membrane of dormant Bacillus subtilis spores colocalize in a discrete cluster. Mol Microbiol 81 : 1061 1077.[CrossRef][PubMed]
64. Wang S, Brunt J, Peck MW, Setlow P, Li Y-Q . 2017. Analysis of the germination of individual Clostridium sporogenes spores with and without germinant receptors and cortex-lytic enzymes. Front Microbiol 8 : 2047.[CrossRef][PubMed]
65. Velásquez J, Schuurman-Wolters G, Birkner JP, Abee T, Poolman B . 2014. Bacillus subtilis spore protein SpoVAC functions as a mechanosensitive channel. Mol Microbiol 92 : 813 823.[CrossRef][PubMed]
66. Francis MB, Sorg JA . 2016. Dipicolinic acid release by germinating Clostridium difficile spores occurs through a mechanosensing mechanism. mSphere 1 : e00306-16.[CrossRef][PubMed]
67. Ingram M, . 1969. Sporeformers as food spoilage organisms, p 549 610. In Gould GW, Hurst A (ed), The Bacterial Spore. Academic Press, London, England.
68. André S, Vallaeys T, Planchon S . 2017. Spore-forming bacteria responsible for food spoilage. Res Microbiol 168 : 379 387.[CrossRef][PubMed]
69. Hatheway CL, Johnson EA, . 1998. Clostridium: the spore-bearing anaerobes, p 732 782. In Hausler WJ, Sussman M (ed), Topley and Wilson's Microbiology and Microbial Infections, 9th ed, vol 3. Edward Arnold, London, England.
70. Maslanka SE, Solomon HM, Sharma S, Johnson EA, . 2015. Clostridium botulinum and its toxins, p 391 402. In Salfinger Y, Tortorello ML (ed), Compendium of Methods for the Microbiological Examination of Foods, 5th ed. APHA Press, Washington, DC.
71. Centers for Disease Control and Prevention . 2018. Select agents and toxins list. www.selectagents.gov. Accessed 13 November 2018.
72. Gustavsson J, Cederberg C, Sonnesson U, van Otterdijk R, Meybeck A . 2011. Global Food Losses and Food Waste: Extent, Causes and Prevention. Food and Agriculture Organization of the United Nations, Rome, Italy.
73. Knorr D, Khoo CSH, Augustin MA . 2018. Food for an urban planet: challenges and research opportunities. Front Nutr 4 : 73.[CrossRef][PubMed]
74. Subramaniam P . 2016. The Stability and Shelf-Life of Food. Elsevier, Boston, MA.
75. Bevilacqua A . 2016. The Microbiological Quality of Food: Foodborne Spoilers. Elsevier, Boston, MA.
76. Sperber WH, Doyle MP (ed). 2009. Compendium of the Microbiological Spoilage of Foods and Beverages. Springer, New York, NY.
77. Grunert KG (ed). 2017. Consumer Trends and New Product Opportunities in the Food Sector. Wageningen Academic Publishers, Wageningen, The Netherlands.[CrossRef]
78. Shavel M, Vanderzeil S, Zheng D . 2016. Food Safety: In a State of Transformation. IRRC Institute, New York, NY.
79. De Filippis F, Parente E, Ercolini D . 2018. Recent past, present, and future of the food microbiome. Annu Rev Food Sci Technol 9 : 589 608.[CrossRef][PubMed]
80. Stumbo C . 1973. Thermobacteriology in Food Processing, 2nd ed. Academic Press, New York, N.Y.
81. Tucker G, Featherstone S . 2011. Essentials of Thermal Processing. Wiley-Blackwell, Chichester, United Kingdom.
82. Holdsworth SD, Simpson R . 2008. Thermal Processing of Packaged Foods, 2nd ed. Springer, New York, NY.
83. Rahman MS (ed). 2007. Handbook of Food Preservation. Marcel Dekker, New York, NY..[CrossRef]
84. Knorr D, Froehling A, Jaeger H, Reineke K, Schlueter O, Schoessler K . 2011. Emerging technologies in food processing. Annu Rev Food Sci Technol 2 : 203 235.[CrossRef][PubMed]
85. Barba F, Sant'Ana A, Orlien V . 2018. Innovative Technologies for Food Preservation: Inactivation of Spoilage and Pathogenic Microorganisms. Academic Press, London, United Kingdom.
86. Balasubramaniam VM, Barbosa-Cánovas GV, Lelieveld HLM (ed). 2016. High Pressure Processing of Food: Principles, Technology and Applications. Springer, New York, NY.[CrossRef]
87. Knoerzer K . 2016. Nonthermal and innovative food processing technologies. In Reference Module in Food Science. Elsevier, London, United Kingdom.[CrossRef].
88. Brown KL . 2000. Control of bacterial spores. Br Med Bull 56 : 158 171.[CrossRef][PubMed]
89. Moir CJ . 2001. Spoilage of Processed Foods: Cause and Diagnosis. Australian Institute of Food Science and Technology, Waterloo, Australia.
90. Holban AM, Grumezescu AM . 2018. Microbial Contamination and Food Degradation. Academic Press, London, United Kingdom.
91. Sant'Ana ADS (ed). 2017. Quantitative Microbiology in Food Processing: Modeling the Microbial Ecology. Wiley, Chichester, United Kingdom.
92. Deák T . 2008. Handbook of Food Spoilage Yeasts, 2nd ed. CRC Press, Boca Raton, FL.
93. Pitt JI, Hocking AD . 2009. Fungi and Food Spoilage, 3rd ed. Springer, New York, NY.[CrossRef]
94. Tournas V . 1994. Heat-resistant fungi of importance to the food and beverage industry. Crit Rev Microbiol 20 : 243 263.[CrossRef][PubMed]
95. Bulloch W . 1938. The History of Bacteriology. Oxford University Press, Oxford, England.[CrossRef]
96. Popoff MR . 2015. From saprophytic to toxigenic clostridia, a complex evolution based on multiple diverse genetic transfers and/or rearrangements. Res Microbiol 166 : 221 224.[CrossRef][PubMed]
97. Johnson EA, . 2006. Clostridium botulinum and Clostridium tetani, p 1035 1088. In Borriello SP, Murray PR, Funke G (ed), Topley and Wilson's Microbiology and Microbial Infections, 8th ed. Hodder Arnold, London, England.
98. Rainey F, Hollen B, Small A, . 2009. Genus I. Clostridium Prazmowski, p 738 828. In Boone DR, Castenholz RW, Garrity GM (ed), Bergey's Manual of Systematic Bacteriology, 2nd ed, vol 3. Springer, New York, NY.
99. van Ermengem E . 1979. Classics in infectious diseases. A new anaerobic bacillus and its relation to botulism. Rev Infect Dis 1 : 701 719.[CrossRef][PubMed] (Originally published as “Ueber einen neuen anaëroben Bacillus und seine Beziehungen zum Botulismus” in Zeitschrift für Hygiene und Infektionskrankheiten 26:1–56, 1897.)
100. Keynan A, Sandler N, . 1984. Spore research in historical perspective, p 1 49. In Gould GW, Hurst A (ed), The Bacterial Spore, vol 2. Academic Press, London, United Kingdom.
101. Evans AS . 1976. Causation and disease: the Henle-Koch postulates revisited. Yale J Biol Med 49 : 175 195.[PubMed]
102. Cocolin L, Alessandria V, Dolci P, Gorra R, Rantsiou K . 2013. Culture independent methods to assess the diversity and dynamics of microbiota during food fermentation. Int J Food Microbiol 167 : 29 43.[CrossRef][PubMed]
103. Britton RA, Young VB . 2014. Role of the intestinal microbiota in resistance to colonization by Clostridium difficile. Gastroenterology 146 : 1547 1553.[CrossRef][PubMed]
104. Surendran Nair M, Amalaradjou MA, Venkitanarayanan K . 2017. Antivirulence properties of probiotics in combating microbial pathogenesis. Adv Appl Microbiol 98 : 1 29.[CrossRef][PubMed]
105. Glass KG, Johnson EA, . 2001. Formulating low-acid foods for botulinal safety, p 323 350. In Juneja VK, Sofos JN (ed), Control of Foodborne Organisms. Marcel Dekker, New York, NY..[CrossRef]
106. Appert N, . 1961. L'art de conserver pendant plusieurs années toutes les substances animales et végétales par appert, p 1 148. In Goldblith SA, Joslyn MA, Nickerson JTR (ed), Introduction to the Thermal Processing of Foods. AVI Publishing Co., Westport, CT.
107. Goldblith SA, Joslyn MA, Nickerson JTR (ed). 1961. An Anthology of Food Science. Introduction to the Thermal Processing of Foods, vol 1. AVI Publishing, Westport, CT.
108. Prescott SC, Underwood WL . 1897. Micro-organisms and sterilizing processes in the canning industries. Technol Q 10 : 183 199.[CrossRef][PubMed]
109. Russell HL . 1896. Gaseous fermentations in the canning industry, p 227 231. In Twelth Annual Report of the Agricultural Experiment Station of the University of Wisconsin. University of Wisconsin, Madison, WI.
110. National Canners Association . 1971. The Canning Industry: Its History, Importance, Organization, Methods, and the Public Service Values of Its Products, 6th ed. Information Division, National Canners Association, Washington, DC.
111. Judge AI (ed). 1914. Souvenir of the 7th annual convention of the National canners’ and allied associations, Baltimore, Feb'y 2 to 7, 1914, consisting of original articles and statistical data, illustrating the practical development of the various branches of the canning industry and showing the present magnitude of the business; a history of the canning industry, by its most prominent men. Supplement to The Canning Trade, vol 37.
112. Esty JR, Meyer KF . 1922. The heat resistance of the spores of B botulinus and allied anaerobes XI. J Infect Dis 31 : 650 663.[CrossRef].
113. Horowitz BZ . 2011. The ripe olive scare and hotel Loch Maree tragedy: botulism under glass in the 1920's. Clin Toxicol (Phila) 49 : 345 347.[CrossRef][PubMed]
114. Young JH . 1976. Botulism and the ripe olive scare of 1919–1920. Bull Hist Med 50 : 372 391.[PubMed]
115. Meyer KF . 1956. The status of botulism as a world health problem. Bull World Health Organ 15 : 281 298.[PubMed]
116. Meyer KF . 1973. The rise and fall of botulism. Calif Med 118 : 63 64.[PubMed]
117. Geiger JC, Dickson EC, Meyer KF . 1922. The Epidemiology of Botulism. California State Board of Health. Government Printing Office, Washington, DC.
118. Juliao PC, Maslanka S, Dykes J, Gaul L, Bagdure S, Granzow-Kibiger L, Salehi E, Zink D, Neligan RP, Barton-Behravesh C, Lúquez C, Biggerstaff M, Lynch M, Olson C, Williams I, Barzilay EJ . 2013. National outbreak of type a foodborne botulism associated with a widely distributed commercially canned hot dog chili sauce. Clin Infect Dis 56 : 376 382.[CrossRef][PubMed]
119. Sobel J, Tucker N, Sulka A, McLaughlin J, Maslanka S . 2004. Foodborne botulism in the United States, 1990–2000. Emerg Infect Dis 10 : 1606 1611.[CrossRef][PubMed]
120. National Center for Infectious Diseases , Division of Bacterial and Mycotic Diseases. 1998. Botulism in the United States, 1899–1996. U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, Atlanta, GA.
121. Gangarosa EJ, Donadio JA, Armstrong RW, Meyer KF, Brachman PS, Dowell VR . 1971. Botulism in the United States, 1899–1969. Am J Epidemiol 93 : 93 101.[CrossRef][PubMed]
122. Lynt RK, Kautter DA, Read RB Jr . 1975. Botulism in commercially canned foods. J Milk Food Technol 38 : 546 550.[CrossRef].
123. ICMSF . 2018. Microorganisms in Foods 7: Microbiological Testing in Food Safety Management, 2nd ed. Springer Science+Business Media, New York, NY.
124. Richardson P . 2004. Improving the Thermal Processing of Foods. CRC Press, Boca Raton FL.
125. Dodds KL, . 1993. Clostridium botulinum in foods, p 53 68. In Hauschild AHW,, Dodds KL (ed), Clostridium botulinum : Ecology and Control in Foods. Marcel Dekker, New York, NY.
126. Slepecky RA, Leadbetter ER, . 1984. On the prevalence and roles of spore-forming bacteria and their spores in nature, p 79 99. In Gould GW, Hurst A (ed), The Bacterial Spore, vol 2. Academic Press, London, United Kingdom.
127. Mandic-Mulec I, Stefanic P, van Elsas J, . 2016. Ecology of Bacillaceae, p 59 85. In Driks A, Eichenberger P (ed), The Bacterial Spore: From Molecules to Systems. ASM Press, Washington, DC.
128. Gould GW . 2006. History of science—spores. J Appl Microbiol 101 : 507 513.[CrossRef][PubMed]
129. Mohapatra BR, La Duc MT . 2013. Detecting the dormant: a review of recent advances in molecular techniques for assessing the viability of bacterial endospores. Appl Microbiol Biotechnol 97 : 7963 7975.[CrossRef][PubMed]
130. Wunderlin T, Junier T, Roussel-Delif L, Jeanneret N, Junier P . 2014. Endospore-enriched sequencing approach reveals unprecedented diversity of Firmicutes in sediments. Environ Microbiol Rep 6 : 631 639.[CrossRef][PubMed]
131. Browne HP, Forster SC, Anonye BO, Kumar N, Neville BA, Stares MD, Goulding D, Lawley TD . 2016. Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature 533 : 543 546.[CrossRef][PubMed]
132. Holdeman LV, Cato EP, Moore WEC (ed). 1979. Anaerobe Laboratory Manual. Virginia Polytechnic Institute and State University, Blacksburg, VA.
133. Deurenberg RH, Bathoorn E, Chlebowicz MA, Couto N, Ferdous M, García-Cobos S, Kooistra-Smid AMD, Raangs EC, Rosema S, Veloo ACM, Zhou K, Friedrich AW, Rossen JWA . 2017. Application of next generation sequencing in clinical microbiology and infection prevention. J Biotechnol 243 : 16 24.[CrossRef][PubMed]
134. McHugh AJ, Feehily C, Hill C, Cotter PD . 2017. Detection and enumeration of spore-forming bacteria in powdered dairy products. Front Microbiol 8 : 109.[CrossRef][PubMed]
135. Weinroth MD, Britton BC, Belk KE . 2018. Genetics and microbiology of meat. Meat Sci 144 : 15 21.[CrossRef][PubMed]
136. Postollec F, Mathot AG, Bernard M, Divanac'h ML, Pavan S, Sohier D . 2012. Tracking spore-forming bacteria in food: from natural biodiversity to selection by processes. Int J Food Microbiol 158 : 1 8.[CrossRef][PubMed]
137. Gauvry E, Mathot AG, Leguérinel I, Couvert O, Postollec F, Broussolle V, Coroller L . 2017. Knowledge of the physiology of spore-forming bacteria can explain the origin of spores in the food environment. Res Microbiol 168 : 369 378.[CrossRef][PubMed]
138. Yang X, Noyes NR, Doster E, Martin JN, Linke LM, Magnuson RJ, Yang H, Geornaras I, Woerner DR, Jones KL, Ruiz J, Boucher C, Morley PS, Belk KE . 2016. Use of metagenomic shotgun sequencing technology to detect foodborne pathogens within the microbiome of the beef production chain. Appl Environ Microbiol 82 : 2433 2443.[CrossRef][PubMed]
139. Johnson E, . 2017. Clostridium botulinum and the most poisonous poison, p 553 601. In Gurtler J, Doyle M, Kornacki J (ed), Foodborne Pathogens—Virulence Factors and Host Susceptibility. Springer International Publishing AG, Cham, Switzerland.[CrossRef]
140. Thirunavukkarasu N, Johnson E, Pillai S, Hodge D, Stanker L, Wentz T, Singh B, Venkateswaran K, McNutt P, Adler M, Brown E, Hammack T, Burr D, Sharma S . 2018. Botulinum neurotoxin detection methods for public health response and surveillance. Front Bioeng Biotechnol 6 : 80.[CrossRef][PubMed]
141. Schmitt HP . 1966. Commercial sterility in canned foods, its meaning and determination. Assoc Food Drug Off U S Q Bull 30 : 141 151.
142. International Commission on Microbiological Specifications for Foods . 1996. Microorganisms in Foods: Characteristics of Microbial Pathogens. International Thompson Publishing, New York, NY.
143. International Commission on Microbiological Specifications for Foods . 2005. Microbial Ecology of Food Commodities, 2nd ed. Kluwer Academic/Plenum Publishers, New York, NY.
144. International Commission on Microbiological Specifications for Foods . 2011. Use of Data for Assessing Process Control and Product Acceptance. Springer, New York, NY.
145. Lund D, . 1975. Thermal processing, p 31 92. In Karel M, Fennema OR, Lund DB (ed), Principles of Food Science, Part II. Physical Principles of Food Preservation. Marcel Dekker, New York, NY.
146. Pflug IJ . 1987. Factors important in determining the heat process value, FT, for low-acid canned foods. J Food Prot 50 : 528 533.[CrossRef].
147. Pflug IJ . 1987. End point of a preservation process. J Food Prot 50 : 347 351.[CrossRef].
148. Pflug IJ . 1987. Calculating FT values for heat preservation fo shelf-stable, low-acid canned foods using the straight-line semilogarithmic model. J Food Prot 50 : 608 615.[CrossRef].
149. Townsend CT, Esty JR, Baselt FC . 1938. Heat-resistance studies on spores of putrefactive anaerobes in relation to the determination of safe processes for canned foods. Food Res 3 : 323 346.[CrossRef].
150. Brown JL, Tran-Dinh N, Chapman B . 2012. Clostridium sporogenes PA 3679 and its uses in the derivation of thermal processing schedules for low-acid shelf-stable foods and as a research model for proteolytic Clostridium botulinum. J Food Prot 75 : 779 792.[CrossRef][PubMed]
151. Schill KM, Wang Y, Butler RR III, Pombert JF, Reddy NR, Skinner GE, Larkin JW . 2016. Genetic diversity of Clostridium sporogenes PA 3679 isolates obtained from different sources as resolved by pulsed-field gel electrophoresis and high-throughput sequencing. Appl Environ Microbiol 82 : 384 393.[CrossRef][PubMed]
152. Peleg M, Cole MB . 1998. Reinterpretation of microbial survival curves. Crit Rev Food Sci Nutr 38 : 353 380.[CrossRef][PubMed]
153. Peleg M, Cole MB . 2000. Estimating the survival of Clostridium botulinum spores during heat treatments. J Food Prot 63 : 190 195.[CrossRef][PubMed]
154. Chotyakul N, Velazquez G, Torres JA . 2011. Assessment of the uncertainty in thermal food processing decisions based on microbial safety objectives. J Food Eng 102 : 247 256.[CrossRef].
155. Juneja VK, Marks HM . 1999. Proteolytic Clostridium botulinum growth at 12–48°C simulating the cooling of cooked meat: development of a predictive model. Food Microbiol 16 : 583 592.[CrossRef].
156. David JRD, Graves RH, Carlson VR . 1996. Aseptic Processing and Packaging of Food: A Food Industry Perspective. CRC Press, Boca Baton, FL.
157. Deeth H, Lewis MJ . 2017. High Temperature Processing of Milk and Milk Products. John Wiley & Sons, Chichester, United Kingdom.[CrossRef]
158. Odlaug TE, Pflug IJ . 1978. Clostridium botulinum and acid foods. J Food Prot 41 : 566 573.[CrossRef].
159. Townsend CT, Yee L, Mercer WA . 1954. Inhibition of the growth of Clostridium botulinum by acidification. Food Res 19 : 536 542.[CrossRef].
160. Marshall KM, Bradshaw M, Johnson EA . 2010. Conjugative botulinum neurotoxin-encoding plasmids in Clostridium botulinum. PLoS One 5 : e11087.[CrossRef][PubMed]
161. Nawrocki EM, Bradshaw M, Johnson EA . 2018. Botulinum neurotoxin-encoding plasmids can be conjugatively transferred to diverse clostridial strains. Sci Rep 8 : 3100.[CrossRef][PubMed]
162. Dodd CER . 2017. Foodborne Diseases, 3rd ed. Elsevier, London, United Kingdom.
163. Stewart GC . 2015. The exosporium layer of bacterial spores: a connection to the environment and the infected host. Microbiol Mol Biol Rev 79 : 437 457.[CrossRef][PubMed]
164. Smith LDS, Sugiyama H . 1988. Botulism. The Organism, Its Toxins, the Disease, 2nd ed. Charles C Thomas, Springfield, IL.
165. Franciosa G, Aureli P, Schechter R, . 2003. Clostridium botulinum, p 61 89. In Bier MD, Miliotis JW (ed), International Handbook of Foodborne Pathogens. Marcel Dekker, New York, NY.
166. Lynt RK, Kautter DA, Solomon HM . 1982. Differences and similarities among proteolytic and non-proteolytic strains of Clostridium botulinum types A, B, E and F—a review. J Food Prot 45 : 466 474.[CrossRef].
167. Peck MW, Goodburn KE, Betts RP, Stringer SC . 2008. Assessment of the potential for growth and neurotoxin formation by non-proteolytic Clostridium botulinum in short shelf-life commercial foods designed to be stored chilled. Trends Food Sci Technol 19 : 207 216.[CrossRef].
168. Parkinson N, Johnson E, Ito K, . 2017. Botulism, p 381 393. In Dodd C,, Aldsworth T,, Stein R,, Cliver D,, Riemann H (ed), Foodborne Diseases, 3rd ed. Elsevier, London, United Kingdom.
169. Johnson E, Montecucco C, . 2008. Botulism, p 333 368. In Engel A (ed), Handbook of Clinical Neurology, vol 91. Elsevier, New York, NY.
170. Arnon SS, Schechter R, Inglesby TV, Henderson DA, Bartlett JG, Ascher MS, Eitzen E, Fine AD, Hauer J, Layton M, Lillibridge S, Osterholm MT, O'Toole T, Parker G, Perl TM, Russell PK, Swerdlow DL, Tonat K Working Group on Civilian Biodefense . 2001. Botulinum toxin as a biological weapon: medical and public health management. JAMA 285 : 1059 1070.[CrossRef][PubMed]
171. Schantz EJ, Johnson EA . 1992. Properties and use of botulinum toxin and other microbial neurotoxins in medicine. Microbiol Rev 56 : 80 99.[PubMed]
172. Malakar PK, Barker GC, Peck MW . 2011. Quantitative risk assessment for hazards that arise from non-proteolytic Clostridium botulinum in minimally processed chilled dairy-based foods. Food Microbiol 28 : 321 330.[CrossRef][PubMed]
173. Lindström M, Kiviniemi K, Korkeala H . 2006. Hazard and control of group II (non-proteolytic) Clostridium botulinum in modern food processing. Int J Food Microbiol 108 : 92 104.[CrossRef][PubMed]
174. Silva FVM, Gibbs PA . 2010. Non-proteolytic Clostridium botulinum spores in low-acid cold-distributed foods and design of pasteurization processes. Trends Food Sci Technol 21 : 95 105.[CrossRef].
175. Hauschild AHW, . 1993. Epidemiology of foodborne botulism, p 69 104. In Hauschild AHW, Dodds KL (ed), Clostridium botulinum : Ecology and Control in Foods. Marcel Dekker, New York, NY.
176. Sebaihia M, Peck MW, Minton NP, Thomson NR, Holden MTG, Mitchell WJ, Carter AT, Bentley SD, Mason DR, Crossman L, Paul CJ, Ivens A, Wells-Bennik MHJ, Davis IJ, Cerdeño-Tárraga AM, Churcher C, Quail MA, Chillingworth T, Feltwell T, Fraser A, Goodhead I, Hance Z, Jagels K, Larke N, Maddison M, Moule S, Mungall K, Norbertczak H, Rabbinowitsch E, Sanders M, Simmonds M, White B, Whithead S, Parkhill J . 2007. Genome sequence of a proteolytic (Group I) Clostridium botulinum strain Hall A and comparative analysis of the clostridial genomes. Genome Res 17 : 1082 1092.[CrossRef][PubMed]
177. Peck MW . 2009. Biology and genomic analysis of Clostridium botulinum. Adv Microb Physiol 55 : 183 265, 320.[CrossRef]
178. Peck MW, van Vliet AHM . 2016. Impact of Clostridium botulinum genomic diversity on food safety. Curr Opin Food Sci 10 : 52 59.[CrossRef][PubMed]
179. Al-Hinai MA, Jones SW, Papoutsakis ET . 2015. The Clostridium sporulation programs: diversity and preservation of endospore differentiation. Microbiol Mol Biol Rev 79 : 19 37.[CrossRef][PubMed]
180. Dürre P . 2014. Physiology and sporulation in Clostridium. Microbiol Spectr 2 : TBS-0010-2012.[CrossRef][PubMed]
181. Labbe R, Juneja V, . 2017. Clostridium perfringens, p 235 242. In Dodd C,, Aldsworth T,, Stein R,, Cliver D,, Riemann H (ed), Foodborne Diseases, 3rd ed. Elsevier, London, United Kingdom.
182. Li J, Paredes-Sabja D, Sarker MR, McClane BA . 2016. Clostridium perfringens sporulation and sporulation-associated toxin production. Microbiol Spectr 4 : TBS-0022-2015.[CrossRef][PubMed]
183. Morris WE, Goldstein J, Redondo LM, Cangelosi A, Geoghegan P, Brocco M, Loidl FC, Fernandez-Miyakawa ME . 2017. Clostridium perfringens epsilon toxin induces permanent neuronal degeneration and behavioral changes. Toxicon 130 : 19 28.[CrossRef][PubMed]
184. Tewari G, Juneja VJ . 2007. Advances in Thermal and Non-Thermal Food Preservation. Blackwell, Ames, IA.
185. Mohr TB, Juneja VK, Thippareddi HH, Schaffner DW, Bronstein PA, Silverman M, Cook LV Jr . 2015. Assessing the performance of Clostridium perfringens cooling models for cooked, uncured meat and poultry products. J Food Prot 78 : 1512 1526.[CrossRef][PubMed]
186. Griffiths MW, Schraft H, . 2017. Bacillus cereus food poisoning, p 395 405. In Dodd C, Aldsworth T, Stein R, Cliver D, Riemann H (ed), Foodborne Diseases, 3rd ed. Academic Press, London, United Kingdom.[CrossRef]
187. Grutsch A, Nimmer P, Pittsley R, McKillip J, . 2018. Bacillus species as pathogens in the dairy industry, p 193 211. In Holban A, Grumezescu A (ed), Foodborne Diseases, Handbook of Food Bioengineering, vol 15. Academic Press, London, United Kingdom.[CrossRef]
188. Logan NA . 2012. Bacillus and relatives in foodborne illness. J Appl Microbiol 112 : 417 429.[CrossRef][PubMed]
189. Inglesby TV, Henderson DA, Bartlett JG, Ascher MS, Eitzen E, Friedlander AM, Hauer J, McDade J, Osterholm MT, O'Toole T, Parker G, Perl TM, Russell PK, Tonat K Working Group on Civilian Biodefense . 1999. Anthrax as a biological weapon: medical and public health management. JAMA 281 : 1735 1745.[CrossRef][PubMed]
190. Goel AK . 2015. Anthrax: a disease of biowarfare and public health importance. World J Clin Cases 3 : 20 33.[CrossRef][PubMed]
191. Scott VN, Bernard DT . 1982. Heat resistance of spores of non-proteolytic type B Clostridium botulinum. J Food Prot 45 : 909 912.[CrossRef].
192. Lund BM, Peck MW . 1994. Heat resistance and recovery of spores of nonproteolytic Clostridium botulinum in relation to refrigerated, processed foods with extended shelf-life. J Appl Bacteriol 76 : 115S 128S.[CrossRef].
193. Sugiyama H . 1951. Studies on factors affecting heat resistance of spores of Clostridium botulinum. J Bacteriol 62 : 81 96.
194. Sugiyama H . 1951. Studies on factors affecting the heat resistance of spores of Clostridium botulinum. J Bacteriol 62 : 81 96.[PubMed]
195. Trent JD, Gabrielsen M, Jensen B, Neuhard J, Olsen J . 1994. Acquired thermotolerance and heat shock proteins in thermophiles from the three phylogenetic domains. J Bacteriol 176 : 6148 6152.[CrossRef][PubMed]
196. Kihm DJ, Hutton MT, Hanlin JH, Johnson EA . 1988. Zinc stimulates sporulation in Clostridium botulinum 113B. Curr Microbiol 17 : 193 198.[CrossRef].
197. Kihm DJ, Hutton MT, Hanlin JH, Johnson EA . 1990. Influence of transition metals added during sporulation on heat resistance of Clostridium botulinum 113B spores. Appl Environ Microbiol 56 : 681 685.[PubMed]
198. Kihm DJ, Johnson EA . 1990. Hydrogen gas accelerates thermal inactivation of Clostridium botulinum spores. Appl Microbiol Biotechnol 33 : 705 708.[CrossRef].