1887

Chapter 20 :

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819972/9781555819965.ch20-1.gif /docserver/preview/fulltext/10.1128/9781555819972/9781555819965.ch20-2.gif

Abstract:

The group currently consists of nine species, i.e., , , , , , , , , and the most recent member of the group, . The species within the group are very closely related, and their toxicity ranges from avirulent strains used as probiotics to highly toxic strains responsible for severe illness and fatalities. causes two different types of foodborne illness: the diarrheal type caused by enterotoxins and the emetic type caused by a small heat-stable emetic toxin. For both these types of foodborne illness, the food involved has usually been heat treated, and surviving spores are the source of the food poisoning. The members of the group are common soil saprophytes and are easily spread to many types of foods, especially those of plant origin (rice and pasta), but are also frequently isolated from dairy products. Some strains of the group are able to grow at refrigeration temperature. These variants raise concerns regarding the safety of cooked, refrigerated foods with extended shelf lives. Foodborne illness is probably greatly underreported, as both types of illness are usually mild and last for less than 24 hours. However, more severe forms of foodborne illness, including fatalities, are reported occasionally.

Citation: Lindbäck T, Granum P. 2019. , p 541-554. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch20
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 20.1
Figure 20.1

Types of foods involved in food poisoning in Europe (European Food Safety Authority) ( ).

Citation: Lindbäck T, Granum P. 2019. , p 541-554. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 20.2
Figure 20.2

Schematic overview of the promoter regions of the three major enterotoxin operons in ( ). The −35 and −10 regions and transcriptional start sites (bent arrows) ( ), CodY binding sites ( ), catabolite-responsive element (Cre) ( ), PlcR binding sites ( ), SinR binding sites ( ), and ribosomal binding sites (RBS) are indicated. The inverted repeat possibly involved in regulation of translation of is indicated between and ( ).

Citation: Lindbäck T, Granum P. 2019. , p 541-554. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555819972.ch20
1. Stenfors Arnesen LP, Fagerlund A, Granum PE . 2008. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol Rev 32 : 579 606[CrossRef].[PubMed]
2. Hauge S . 1955. Food poisoning caused by aerobic spore forming bacilli. J Appl Bacteriol 18 : 591 595[CrossRef].
3. Mortimer PR, McCann G . 1974. Food-poisoning episodes associated with Bacillus cereus in fried rice. Lancet i : 1043 1045[CrossRef].[PubMed]
4. Granum PE, Lund T . 1997. Bacillus cereus and its food poisoning toxins. FEMS Microbiol Lett 157 : 223 228[CrossRef].[PubMed]
5. Kramer JM, Gilbert RJ, . 1989. Bacillus cereus and other Bacillus species, p 21 70. In Doyle MP (ed), Foodborne Bacterial Pathogens. Marcel Dekker, New York, NY.
6. Andersen Borge GI, Skeie M, Sørhaug T, Langsrud T, Granum PE . 2001. Growth and toxin profiles of Bacillus cereus isolated from different food sources. Int J Food Microbiol 69 : 237 246[CrossRef].[PubMed]
7. Christiansson A, Naidu AS, Nilsson I, Wadström T, Pettersson HE . 1989. Toxin production by Bacillus cereus dairy isolates in milk at low temperatures. Appl Environ Microbiol 55 : 2595 2600.[PubMed]
8. Granum PE, Brynestad S, Kramer JM . 1993. Analysis of enterotoxin production by Bacillus cereus from dairy products, food poisoning incidents and non-gastrointestinal infections. Int J Food Microbiol 17 : 269 279[CrossRef].[PubMed]
9. Griffiths MW . 1990. Toxin production by psychrotrophic Bacillus spp. present in milk. J Food Prot 53 : 790 792[CrossRef].
10. Lechner S, Mayr R, Francis KP, Prüss BM, Kaplan T, Wiessner-Gunkel E, Stewart GS, Scherer S . 1998. Bacillus weihenstephanensis sp. nov. is a new psychrotolerant species of the Bacillus cereus group. Int J Syst Bacteriol 48 : 1373 1382[CrossRef].[PubMed]
11. van Netten P, van De Moosdijk A, van Hoensel P, Mossel DA, Perales I . 1990. Psychrotrophic strains of Bacillus cereus producing enterotoxin. J Appl Bacteriol 69 : 73 79[CrossRef].[PubMed]
12. Lund T, De Buyser ML, Granum PE . 2000. A new cytotoxin from Bacillus cereus that may cause necrotic enteritis. Mol Microbiol 38 : 254 261[CrossRef].[PubMed]
13. Dierick K, Van Coillie E, Swiecicka I, Meyfroidt G, Devlieger H, Meulemans A, Hoedemaekers G, Fourie L, Heyndrickx M, Mahillon J . 2005. Fatal family outbreak of Bacillus cereus-associated food poisoning. J Clin Microbiol 43 : 4277 4279[CrossRef].[PubMed]
14. Mahler H, Pasi A, Kramer JM, Schulte P, Scoging AC, Bär W, Krähenbühl S . 1997. Fulminant liver failure in association with the emetic toxin of Bacillus cereus. N Engl J Med 336 : 1142 1148[CrossRef].[PubMed]
15. Shiota M, Saitou K, Mizumoto H, Matsusaka M, Agata N, Nakayama M, Kage M, Tatsumi S, Okamoto A, Yamaguchi S, Ohta M, Hata D . 2010. Rapid detoxification of cereulide in Bacillus cereus food poisoning. Pediatrics 125 : e951 e955[CrossRef].[PubMed]
16. Logan N, de Vos P, . 2009. Genus Bacillus, p 21 128. In de Vos P,, Garrity G,, Jones D,, Krieg NR,, Ludwig W,, Rainey FA,, Schleifer KH,, Whitman WB (ed), Bergey's Manual of Systematic Bacteriology, 2nd ed, vol 3. Springer, New York, NY.
17. Ludwig W, Schleifer KH, Whitman WB, . 2009. Revised road map to the phylum Firmicutes, p 1 13. In de Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB (ed), Bergey's Manual of Systematic Bacteriology, vol 3. Springer, New York, NY.[CrossRef]
18. Nakamura LK . 1998. Bacillus pseudomycoides sp. nov. Int J Syst Bacteriol 48 : 1031 1035[CrossRef].[PubMed]
19. Guinebretière MH, Auger S, Galleron N, Contzen M, De Sarrau B, De Buyser ML, Lamberet G, Fagerlund A, Granum PE, Lereclus D, De Vos P, Nguyen-The C, Sorokin A . 2013. Bacillus cytotoxicus sp. nov. is a novel thermotolerant species of the Bacillus cereus group occasionally associated with food poisoning. Int J Syst Evol Microbiol 63 : 31 40[CrossRef].[PubMed]
20. Huang L, Cheng T, Xu P, Cheng D, Fang T, Xia Q . 2009. A genome-wide survey for host response of silkworm, Bombyx mori during pathogen Bacillus bombyseptieus infection. PLoS One 4 : e8098[CrossRef].[PubMed]
21. Jiménez G, Urdiain M, Cifuentes A, López-López A, Blanch AR, Tamames J, Kämpfer P, Kolstø AB, Ramón D, Martínez JF, Codoñer FM, Rosselló-Móra R . 2013. Description of Bacillus toyonensis sp. nov., a novel species of the Bacillus cereus group, and pairwise genome comparisons of the species of the group by means of ANI calculations. Syst Appl Microbiol 36 : 383 391[CrossRef].[PubMed]
22. Ash C, Farrow JA, Dorsch M, Stackebrandt E, Collins MD . 1991. Comparative analysis of Bacillus anthracis, Bacillus cereus, and related species on the basis of reverse transcriptase sequencing of 16S rRNA. Int J Syst Bacteriol 41 : 343 346[CrossRef].[PubMed]
23. Ash C, Collins MD . 1992. Comparative analysis of 23S ribosomal RNA gene sequences of Bacillus anthracis and emetic Bacillus cereus determined by PCR-direct sequencing. FEMS Microbiol Lett 73 : 75 80[CrossRef].[PubMed]
24. Helgason E, Okstad OA, Caugant DA, Johansen HA, Fouet A, Mock M, Hegna I, Kolstø AB . 2000. Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis—one species on the basis of genetic evidence. Appl Environ Microbiol 66 : 2627 2630[CrossRef].[PubMed]
25. Priest FG, Barker M, Baillie LW, Holmes EC, Maiden MC . 2004. Population structure and evolution of the Bacillus cereus group. J Bacteriol 186 : 7959 7970[CrossRef].[PubMed]
26. Hoffmaster AR, Ravel J, Rasko DA, Chapman GD, Chute MD, Marston CK, De BK, Sacchi CT, Fitzgerald C, Mayer LW, Maiden MC, Priest FG, Barker M, Jiang L, Cer RZ, Rilstone J, Peterson SN, Weyant RS, Galloway DR, Read TD, Popovic T, Fraser CM . 2004. Identification of anthrax toxin genes in a Bacillus cereus associated with an illness resembling inhalation anthrax. Proc Natl Acad Sci USA 101 : 8449 8454[CrossRef].[PubMed]
27. Klee SR, Ozel M, Appel B, Boesch C, Ellerbrok H, Jacob D, Holland G, Leendertz FH, Pauli G, Grunow R, Nattermann H . 2006. Characterization of Bacillus anthracis-like bacteria isolated from wild great apes from Cote d'Ivoire and Cameroon. J Bacteriol 188 : 5333 5344[CrossRef].[PubMed]
28. Pena-Gonzalez A, Marston CK, Rodriguez-R LM, Kolton CB, Garcia-Diaz J, Theppote A, Frace M, Konstantinidis KT, Hoffmaster AR . 2017. Draft genome sequence of Bacillus cereus LA2007, a human-pathogenic isolate harboring anthrax-like plasmids. Genome Announc 5 : e00181-17[CrossRef].[PubMed]
29. Marston CK, Ibrahim H, Lee P, Churchwell G, Gumke M, Stanek D, Gee JE, Boyer AE, Gallegos-Candela M, Barr JR, Li H, Boulay D, Cronin L, Quinn CP, Hoffmaster AR . 2016. Anthrax toxin-expressing Bacillus cereus isolated from an anthrax-like eschar. PLoS One 11 : e0156987[CrossRef].[PubMed]
30. Cheng T, Lin P, Jin S, Wu Y, Fu B, Long R, Liu D, Guo Y, Peng L, Xia Q . 2014. Complete genome sequence of Bacillus bombysepticus, a pathogen leading to Bombyx mori black chest septicemia. Genome Announc 2 : e00312-14[CrossRef].[PubMed]
31. Andersson A, Ronner U, Granum PE . 1995. What problems does the food industry have with the spore-forming pathogens Bacillus cereus and Clostridium perfringens? Int J Food Microbiol 28 : 145 155[CrossRef].[PubMed]
32. Yokoyama K, Ito M, Agata N, Isobe M, Shibayama K, Horii T, Ohta M . 1999. Pathological effect of synthetic cereulide, an emetic toxin of Bacillus cereus, is reversible in mice. FEMS Immunol Med Microbiol 24 : 115 120[CrossRef].[PubMed]
33. Stenfors LP, Mayr R, Scherer S, Granum PE . 2002. Pathogenic potential of fifty Bacillus weihenstephanensis strains. FEMS Microbiol Lett 215 : 47 51[CrossRef].[PubMed]
34. Thorsen L, Budde BB, Henrichsen L, Martinussen T, Jakobsen M . 2009. Cereulide formation by Bacillus weihenstephanensis and mesophilic emetic Bacillus cereus at temperature abuse depends on pre-incubation conditions. Int J Food Microbiol 134 : 133 139[CrossRef].[PubMed]
35. Guérin A, Rønning HT, Dargaignaratz C, Clavel T, Broussolle V, Mahillon J, Granum PE, Nguyen-The C . 2017. Cereulide production by Bacillus weihenstephanensis strains during growth at different pH values and temperatures. Food Microbiol 65 : 130 135[CrossRef].[PubMed]
36. Damgaard PH, Larsen HD, Hansen BM, Bresciani J, Jørgensen K . 1996. Enterotoxin-producing strains of Bacillus thuringiensis isolated from food. Lett Appl Microbiol 23 : 146 150[CrossRef].[PubMed]
37. Ray DE, . 1991. Pesticides derived from plants and other organisms, p 585 636. In Hayes WJ, Laws ER Jr (ed), Handbook of Pesticide Toxology. Academic Press, Inc, New York, NY.
38. Gaviria Rivera AM, Granum PE, Priest FG . 2000. Common occurrence of enterotoxin genes and enterotoxicity in Bacillus thuringiensis. FEMS Microbiol Lett 190 : 151 155[CrossRef].[PubMed]
39. Rosenquist H, Smidt L, Andersen SR, Jensen GB, Wilcks A . 2005. Occurrence and significance of Bacillus cereus and Bacillus thuringiensis in ready-to-eat food. FEMS Microbiol Lett 250 : 129 136[CrossRef].[PubMed]
40. Shinagawa K, . 1990. Purification and characterization of Bacillus cereus enterotoxin and its application to diagnosis, p 181 193. In Pohland AE,, Dowell VR Jr,, Richard JL,, Cole RJ,, Eklund MW,, Green SS,, Norred WP,, Potter ME (ed), Microbial Toxins in Foods and Feeds. Springer, Boston, MA.
41. World Health Organization. 2003. WHO surveillance programme for control of foodborne infections and intoxications in Europe: 8th report, 1999–2000. FAO/WHO Collaborating Centre for Research and Training in Food Hygiene and Zoonoses. https://www.bfr.bund.de/internet/8threport/8threpintro.htm.
42. Shinagawa K . 1993. Serology and characterization of Bacillus cereus in relation to toxin production. Bull Int Dairy Fed 287 : 42 49.
43. Jackson SG, Goodbrand RB, Ahmed R, Kasatiya S . 1995. Bacillus cereus and Bacillus thuringiensis isolated in a gastroenteritis outbreak investigation. Lett Appl Microbiol 21 : 103 105[CrossRef].[PubMed]
44. Ehling-Schulz M, Svensson B, Guinebretiere MH, Lindbäck T, Andersson M, Schulz A, Fricker M, Christiansson A, Granum PE, Märtlbauer E, Nguyen-The C, Salkinoja-Salonen M, Scherer S . 2005. Emetic toxin formation of Bacillus cereus is restricted to a single evolutionary lineage of closely related strains. Microbiology 151 : 183 197[CrossRef].[PubMed]
45. Santé publique France . 2015. Données relatives aux toxi-infections alimentaires collectives déclarées en France. http://invs.santepubliquefrance.fr/Dossiers-thematiques/Maladies-infectieuses/Risques-infectieux-d-origine-alimentaire/Toxi-infections-alimentaires-collectives/Donnees-epidemiologiques.
46. Allende A, Bolton D, Chemaly M, Davies R, Escámez PSF, Gironés R, Herman L, Koutsoumanis K, Lindqvist R, Nørrung B, Ricci A, Robertson L, Ru G, Sanaa M, Simmons M, Skandamis P, Snary E, Speybroeck N, ter Kuile B, Threlfall J, Wahlström H . 2016. Risks for public health related to the presence of Bacillus cereus and other Bacillus spp. including Bacillus thuringiensis in foodstuffs. EFSA J 14 : 93.
47. Granum PE . 1994. Bacillus cereus and its toxins. Soc Appl Bacteriol Symp Ser 23 : 61S 66S.[PubMed]
48. Brynestad S, Granum PE . 2002. Clostridium perfringens and foodborne infections. Int J Food Microbiol 74 : 195 202[CrossRef].[PubMed]
49. Naranjo M, Denayer S, Botteldoorn N, Delbrassinne L, Veys J, Waegenaere J, Sirtaine N, Driesen RB, Sipido KR, Mahillon J, Dierick K . 2011. Sudden death of a young adult associated with Bacillus cereus food poisoning. J Clin Microbiol 49 : 4379 4381[CrossRef].[PubMed]
50. Granum PE, Baird-Parker TC, . 2000. Bacillus spp., p 1029 1039. In Lund B,, Baird-Parker TC,, Gould G (ed), The Microbiological Safety and Quality of Food. Aspen Publishers, Gaithersburg, MD.
51. Granum PE, Andersson A, Gayther C, te Giffel M, Larsen H, Lund T, O'Sullivan K . 1996. Evidence for a further enterotoxin complex produced by Bacillus cereus. FEMS Microbiol Lett 141 : 145 149[CrossRef].[PubMed]
52. Agata N, Ohta M, Mori M, Isobe M . 1995. A novel dodecadepsipeptide, cereulide, is an emetic toxin of Bacillus cereus. FEMS Microbiol Lett 129 : 17 20.[PubMed]
53. Agata N, Mori M, Ohta M, Suwan S, Ohtani I, Isobe M . 1994. A novel dodecadepsipeptide, cereulide, isolated from Bacillus cereus causes vacuole formation in HEp-2 cells. FEMS Microbiol Lett 121 : 31 34.[PubMed]
54. Beecher DJ, Macmillan JD . 1991. Characterization of the components of hemolysin BL from Bacillus cereus. Infect Immun 59 : 1778 1784.[PubMed]
55. Lund T, Granum PE . 1996. Characterisation of a non-haemolytic enterotoxin complex from Bacillus cereus isolated after a foodborne outbreak. FEMS Microbiol Lett 141 : 151 156[CrossRef].[PubMed]
56. Hughes S, Bartholomew B, Hardy JC, Kramer JM . 1988. Potential application of a HEp-2 cell assay in the investigation of Bacillus cereus emetic-syndrome food poisoning. FEMS Microbiol Lett 52 : 7 11[CrossRef].
57. Shinagawa K, Konuma H, Sekita H, Sugii S . 1995. Emesis of rhesus monkeys induced by intragastric administration with the HEp-2 vacuolation factor (cereulide) produced by Bacillus cereus. FEMS Microbiol Lett 130 : 87 90.[PubMed]
58. Hoton FM, Andrup L, Swiecicka I, Mahillon J . 2005. The cereulide genetic determinants of emetic Bacillus cereus are plasmid-borne. Microbiology 151 : 2121 2124[CrossRef].[PubMed]
59. Ehling-Schulz M, Vukov N, Schulz A, Shaheen R, Andersson M, Märtlbauer E, Scherer S . 2005. Identification and partial characterization of the nonribosomal peptide synthetase gene responsible for cereulide production in emetic Bacillus cereus. Appl Environ Microbiol 71 : 105 113[CrossRef].[PubMed]
60. Dommel MK, Lücking G, Scherer S, Ehling-Schulz M . 2011. Transcriptional kinetic analyses of cereulide synthetase genes with respect to growth, sporulation and emetic toxin production in Bacillus cereus. Food Microbiol 28 : 284 290[CrossRef].[PubMed]
61. Dommel MK, Frenzel E, Strasser B, Blöchinger C, Scherer S, Ehling-Schulz M . 2010. Identification of the main promoter directing cereulide biosynthesis in emetic Bacillus cereus and its application for real-time monitoring of ces gene expression in foods. Appl Environ Microbiol 76 : 1232 1240[CrossRef].[PubMed]
62. Lücking G, Dommel MK, Scherer S, Fouet A, Ehling-Schulz M . 2009. Cereulide synthesis in emetic Bacillus cereus is controlled by the transition state regulator AbrB, but not by the virulence regulator PlcR. Microbiology 155 : 922 931[CrossRef].[PubMed]
63. Thorsen L, Hansen BM, Nielsen KF, Hendriksen NB, Phipps RK, Budde BB . 2006. Characterization of emetic Bacillus weihenstephanensis, a new cereulide-producing bacterium. Appl Environ Microbiol 72 : 5118 5121[CrossRef].[PubMed]
64. Marxen S, Stark TD, Frenzel E, Rütschle A, Lücking G, Pürstinger G, Pohl EE, Scherer S, Ehling-Schulz M, Hofmann T . 2015. Chemodiversity of cereulide, the emetic toxin of Bacillus cereus. Anal Bioanal Chem 407 : 2439 2453[CrossRef].[PubMed]
65. Marxen S, Stark TD, Rütschle A, Lücking G, Frenzel E, Scherer S, Ehling-Schulz M, Hofmann T . 2015. Multiparametric quantitation of the Bacillus cereus toxins cereulide and isocereulides A-G in foods. J Agric Food Chem 63 : 8307 8313[CrossRef].[PubMed]
66. Kranzler M, Stollewerk K, Rouzeau-Szynalski K, Blayo L, Sulyok M, Ehling-Schulz M . 2016. Temperature exerts control of Bacillus cereus emetic toxin production on post-transcriptional levels. Front Microbiol 7 : 1640[CrossRef].[PubMed]
67. Ehling-Schulz M, Frenzel E, Gohar M . 2015. Food-bacteria interplay: pathometabolism of emetic Bacillus cereus. Front Microbiol 6 : 704[CrossRef].[PubMed]
68. Beecher DJ, Schoeni JL, Wong AC . 1995. Enterotoxic activity of hemolysin BL from Bacillus cereus. Infect Immun 63 : 4423 4428.[PubMed]
69. Beecher DJ, Wong AC . 1997. Tripartite hemolysin BL from Bacillus cereus. Hemolytic analysis of component interactions and a model for its characteristic paradoxical zone phenomenon. J Biol Chem 272 : 233 239[CrossRef].[PubMed]
70. Sastalla I, Fattah R, Coppage N, Nandy P, Crown D, Pomerantsev AP, Leppla SH . 2013. The Bacillus cereus Hbl and Nhe tripartite enterotoxin components assemble sequentially on the surface of target cells and are not interchangeable. PLoS One 8 : e76955[CrossRef].[PubMed]
71. Böhm ME, Huptas C, Krey VM, Scherer S . 2015. Massive horizontal gene transfer, strictly vertical inheritance and ancient duplications differentially shape the evolution of Bacillus cereus enterotoxin operons hbl, cytK and nhe. BMC Evol Biol 15 : 246[CrossRef].[PubMed]
72. Guinebretière MH, Broussolle V, Nguyen-The C . 2002. Enterotoxigenic profiles of food-poisoning and food-borne Bacillus cereus strains. J Clin Microbiol 40 : 3053 3056[CrossRef].[PubMed]
73. Swiecicka I, Van der Auwera GA, Mahillon J . 2006. Hemolytic and nonhemolytic enterotoxin genes are broadly distributed among Bacillus thuringiensis isolated from wild mammals. Microb Ecol 52 : 544 551[CrossRef].[PubMed]
74. Beecher DJ, Wong AC . 2000. Tripartite haemolysin BL: isolation and characterization of two distinct homologous sets of components from a single Bacillus cereus isolate. Microbiology 146 : 1371 1380[CrossRef].[PubMed]
75. Lund T, Granum PE . 1997. Comparison of biological effect of the two different enterotoxin complexes isolated from three different strains of Bacillus cereus. Microbiology 143 : 3329 3336[CrossRef].[PubMed]
76. Fagerlund A, Lindbäck T, Storset AK, Granum PE, Hardy SP . 2008. Bacillus cereus Nhe is a pore-forming toxin with structural and functional properties similar to the ClyA (HlyE, SheA) family of haemolysins, able to induce osmotic lysis in epithelia. Microbiology 154 : 693 704[CrossRef].[PubMed]
77. Fagerlund A, Lindbäck T, Granum PE . 2010. Bacillus cereus cytotoxins Hbl, Nhe and CytK are secreted via the Sec translocation pathway. BMC Microbiol 10 : 304[CrossRef].[PubMed]
78. Lindbäck T, Fagerlund A, Rødland MS, Granum PE . 2004. Characterization of the Bacillus cereus Nhe enterotoxin. Microbiology 150 : 3959 3967[CrossRef].[PubMed]
79. Dietrich R, Moravek M, Bürk C, Granum PE, Märtlbauer E . 2005. Production and characterization of antibodies against each of the three subunits of the Bacillus cereus nonhemolytic enterotoxin complex. Appl Environ Microbiol 71 : 8214 8220[CrossRef].[PubMed]
80. Gohar M, Økstad OA, Gilois N, Sanchis V, Kolstø AB, Lereclus D . 2002. Two-dimensional electrophoresis analysis of the extracellular proteome of Bacillus cereus reveals the importance of the PlcR regulon. Proteomics 2 : 784 791[CrossRef].[PubMed]
81. Lindbäck T, Hardy SP, Dietrich R, Sødring M, Didier A, Moravek M, Fagerlund A, Bock S, Nielsen C, Casteel M, Granum PE, Märtlbauer E . 2010. Cytotoxicity of the Bacillus cereus Nhe enterotoxin requires specific binding order of its three exoprotein components. Infect Immun 78 : 3813 3821[CrossRef].[PubMed]
82. Heilkenbrinker U, Dietrich R, Didier A, Zhu K, Lindbäck T, Granum PE, Märtlbauer E . 2013. Complex formation between NheB and NheC is necessary to induce cytotoxic activity by the three-component Bacillus cereus Nhe enterotoxin. PLoS One 8 : e63104[CrossRef].[PubMed]
83. Phung D, Granum PE, Dietrich R, Märtlbauer E, Hardy SP . 2012. Inhibition of cytotoxicity by the Nhe cytotoxin of Bacillus cereus through the interaction of dodecyl maltoside with the NheB component. FEMS Microbiol Lett 330 : 98 104[CrossRef].[PubMed]
84. Didier A, Dietrich R, Märtlbauer E . 2016. Antibody binding studies reveal conformational flexibility of the Bacillus cereus non-hemolytic enterotoxin (Nhe) A-component. PLoS One 11 : e0165135[CrossRef].[PubMed]
85. Ganash M, Phung D, Sedelnikova SE, Lindbäck T, Granum PE, Artymiuk PJ . 2013. Structure of the NheA component of the Nhe toxin from Bacillus cereus: implications for function. PLoS One 8 : e74748[CrossRef].[PubMed]
86. Madegowda M, Eswaramoorthy S, Burley SK, Swaminathan S . 2008. X-ray crystal structure of the B component of hemolysin BL from Bacillus cereus. Proteins 71 : 534 540[CrossRef].[PubMed]
87. Hardy SP, Lund T, Granum PE . 2001. CytK toxin of Bacillus cereus forms pores in planar lipid bilayers and is cytotoxic to intestinal epithelia. FEMS Microbiol Lett 197 : 47 51[CrossRef].[PubMed]
88. Fagerlund A, Ween O, Lund T, Hardy SP, Granum PE . 2004. Genetic and functional analysis of the cytK family of genes in Bacillus cereus. Microbiology 150 : 2689 2697[CrossRef].[PubMed]
89. Fagerlund A, Brillard J, Fürst R, Guinebretière MH, Granum PE . 2007. Toxin production in a rare and genetically remote cluster of strains of the Bacillus cereus group. BMC Microbiol 7 : 43[CrossRef].[PubMed]
90. Moravek M, Dietrich R, Buerk C, Broussolle V, Guinebretière MH, Granum PE, Nguyen-The C, Märtlbauer E . 2006. Determination of the toxic potential of Bacillus cereus isolates by quantitative enterotoxin analyses. FEMS Microbiol Lett 257 : 293 298[CrossRef].[PubMed]
91. Ryan PA, Macmillan JD, Zilinskas BA . 1997. Molecular cloning and characterization of the genes encoding the L 1 and L 2 components of hemolysin BL from Bacillus cereus. J Bacteriol 179 : 2551 2556[CrossRef].[PubMed]
92. Agaisse H, Gominet M, Okstad OA, Kolstø AB, Lereclus D . 1999. PlcR is a pleiotropic regulator of extracellular virulence factor gene expression in Bacillus thuringiensis. Mol Microbiol 32 : 1043 1053[CrossRef].[PubMed]
93. Gohar M, Faegri K, Perchat S, Ravnum S, Økstad OA, Gominet M, Kolstø AB, Lereclus D . 2008. The PlcR virulence regulon of Bacillus cereus. PLoS One 3 : e2793[CrossRef].[PubMed]
94. Gominet M, Slamti L, Gilois N, Rose M, Lereclus D . 2001. Oligopeptide permease is required for expression of the Bacillus thuringiensis plcR regulon and for virulence. Mol Microbiol 40 : 963 975[CrossRef].[PubMed]
95. Declerck N, Bouillaut L, Chaix D, Rugani N, Slamti L, Hoh F, Lereclus D, Arold ST . 2007. Structure of PlcR: insights into virulence regulation and evolution of quorum sensing in Gram-positive bacteria. Proc Natl Acad Sci USA 104 : 18490 18495[CrossRef].[PubMed]
96. Blatch GL, Lässle M . 1999. The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. BioEssays 21 : 932 939[CrossRef].[PubMed]
97. Slamti L, Lereclus D . 2005. Specificity and polymorphism of the PlcR-PapR quorum-sensing system in the Bacillus cereus group. J Bacteriol 187 : 1182 1187[CrossRef].[PubMed]
98. Slamti L, Lereclus D . 2002. A cell-cell signaling peptide activates the PlcR virulence regulon in bacteria of the Bacillus cereus group. EMBO J 21 : 4550 4559[CrossRef].[PubMed]
99. Mignot T, Mock M, Robichon D, Landier A, Lereclus D, Fouet A . 2001. The incompatibility between the PlcR- and AtxA-controlled regulons may have selected a nonsense mutation in Bacillus anthracis. Mol Microbiol 42 : 1189 1198[CrossRef].[PubMed]
100. Stenfors Arnesen LP, O'Sullivan K, Granum PE . 2007. Food poisoning potential of Bacillus cereus strains from Norwegian dairies. Int J Food Microbiol 116 : 292 296[CrossRef].[PubMed]
101. Duport C, Thomassin S, Bourel G, Schmitt P . 2004. Anaerobiosis and low specific growth rates enhance hemolysin BL production by Bacillus cereus F4430/73. Arch Microbiol 182 : 90 95[CrossRef].[PubMed]
102. Ouhib O, Clavel T, Schmitt P . 2006. The production of Bacillus cereus enterotoxins is influenced by carbohydrate and growth rate. Curr Microbiol 53 : 222 226[CrossRef].[PubMed]
103. van der Voort M, Kuipers OP, Buist G, de Vos WM, Abee T . 2008. Assessment of CcpA-mediated catabolite control of gene expression in Bacillus cereus ATCC 14579. BMC Microbiol 8 : 62[CrossRef].[PubMed]
104. Fagerlund A, Dubois T, Økstad OA, Verplaetse E, Gilois N, Bennaceur I, Perchat S, Gominet M, Aymerich S, Kolstø AB, Lereclus D, Gohar M . 2014. SinR controls enterotoxin expression in Bacillus thuringiensis biofilms. PLoS One 9 : e87532 CORRECTION PLoS One 9 : e96707[CrossRef].[PubMed]
105. Chu F, Kearns DB, Branda SS, Kolter R, Losick R . 2006. Targets of the master regulator of biofilm formation in Bacillus subtilis. Mol Microbiol 59 : 1216 1228[CrossRef].[PubMed]
106. Kearns DB, Chu F, Branda SS, Kolter R, Losick R . 2005. A master regulator for biofilm formation by Bacillus subtilis. Mol Microbiol 55 : 739 749[CrossRef].[PubMed]
107. Lindbäck T, Mols M, Basset C, Granum PE, Kuipers OP, Kovács AT . 2012. CodY, a pleiotropic regulator, influences multicellular behaviour and efficient production of virulence factors in Bacillus cereus. Environ Microbiol 14 : 2233 2246[CrossRef].[PubMed]
108. Slamti L, Lemy C, Henry C, Guillot A, Huillet E, Lereclus D . 2016. CodY regulates the activity of the virulence quorum sensor PlcR by controlling the import of the signaling peptide PapR in Bacillus thuringiensis. Front Microbiol 6 : 1501[CrossRef].[PubMed]
109. Böhm ME, Krey VM, Jeßberger N, Frenzel E, Scherer S . 2016. Comparative bioinformatics and experimental analysis of the intergenic regulatory regions of Bacillus cereus hbl and nhe enterotoxin operons and the impact of CodY on virulence heterogeneity. Front Microbiol 7 : 768[CrossRef].[PubMed]
110. Granum PE, O'Sullivan K, Lund T . 1999. The sequence of the non-haemolytic enterotoxin operon from Bacillus cereus. FEMS Microbiol Lett 177 : 225 229[CrossRef].[PubMed]
111. Husmark U . 1993. Adhesion mechanisms of bacterial spores to solid surfaces. PhD thesis. Chalmers University of Technology, Gothenburg, Sweden.
112. Andersson A, Granum PE, Rönner U . 1998. The adhesion of Bacillus cereus spores to epithelial cells might be an additional virulence mechanism. Int J Food Microbiol 39 : 93 99[CrossRef].[PubMed]
113. Kim JB, Kim JM, Park YB, Han JA, Lee SH, Kwak HS, Hwang IG, Yoon MH, Lee JB, Oh DH . 2010. Evaluation of various PCR assays for the detection of emetic toxin producing Bacillus cereus. J Microbiol Biotechnol 20 : 1107 1113[CrossRef].[PubMed]
114. Häggblom MM, Apetroaie C, Andersson MA, Salkinoja-Salonen MS . 2002. Quantitative analysis of cereulide, the emetic toxin of Bacillus cereus, produced under various conditions. Appl Environ Microbiol 68 : 2479 2483[CrossRef].[PubMed]
115. Rønning HT, Asp TN, Granum PE . 2015. Determination and quantification of the emetic toxin cereulide from Bacillus cereus in pasta, rice and cream with liquid chromatography-tandem mass spectrometry. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 32 : 911 921[CrossRef].[PubMed]
116. Beecher DJ, Wong AC . 1994. Identification and analysis of the antigens detected by two commercial Bacillus cereus diarrheal enterotoxin immunoassay kits. Appl Environ Microbiol 60 : 4614 4616.[PubMed]
117. Brillard J, Lereclus D . 2004. Comparison of cytotoxin cytK promoters from Bacillus cereus strain ATCC 14579 and from a B. cereus food-poisoning strain. Microbiology 150 : 2699 2705[CrossRef].[PubMed]
118. Lindbäck T, Økstad OA, Rishovd AL, Kolstø AB . 1999. Insertional inactivation of hblC encoding the L 2 component of Bacillus cereus ATCC 14579 haemolysin BL strongly reduces enterotoxigenic activity, but not the haemolytic activity against human erythrocytes. Microbiology 145 : 3139 3146[CrossRef].[PubMed]
119. Heinrichs JH, Beecher DJ, MacMillan JD, Zilinskas BA . 1993. Molecular cloning and characterization of the hblA gene encoding the B component of hemolysin BL from Bacillus cereus. J Bacteriol 175 : 6760 6766[CrossRef].[PubMed]

Tables

Generic image for table
Table 20.1

Criteria to differentiate members of the group

Citation: Lindbäck T, Granum P. 2019. , p 541-554. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch20
Generic image for table
Table 20.2

Examples of foods involved in food poisoning events

Citation: Lindbäck T, Granum P. 2019. , p 541-554. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch20
Generic image for table
Table 20.3

Characteristics of the two types of illness caused by

Citation: Lindbäck T, Granum P. 2019. , p 541-554. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch20
Generic image for table
Table 20.4

Properties of the emetic toxin cereulide

Citation: Lindbäck T, Granum P. 2019. , p 541-554. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch20
Generic image for table
Table 20.5

Toxins produced by

Citation: Lindbäck T, Granum P. 2019. , p 541-554. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch20
Generic image for table
Table 20.6

Properties of the Nhe proteins

Citation: Lindbäck T, Granum P. 2019. , p 541-554. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch20

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error