1887

Chapter 21 :

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819972/9781555819965.ch21-1.gif /docserver/preview/fulltext/10.1128/9781555819972/9781555819965.ch21-2.gif

Abstract:

Staphylococcal enterotoxins (SEs) are causative agents of staphylococcal food poisoning (SFP). Advances in genome sequencing and recent monkey feeding assays have continuously expanded the list of SEs expressed by and other staphylococci. Although the implementation of Hazard Analysis and Critical Control Points systems and active foodborne illness outbreak surveillance programs have greatly reduced SFP, most instances of SFP are attributable to improper food handling practices in the retail industry. Additional knowledge of the molecular aspects of staphylococcal survival and growth, SE production in food, and the molecular mechanism of emesis caused by SEs will enable further development of effective ways to prevent SFP. In addition to emetic activity, all SEs have superantigenic properties that modulate host immune responses to cause toxic shock syndrome, as well as causing transient immunosuppression by inducing regulatory T cells. These suggest that the harmful effects of SEs are not merely emesis to allow to exit the host but also immunosuppression to survive in and persistently colonize its many human and animal hosts.

Citation: Park J, Seo K. 2019. , p 555-584. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch21
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 21.1
Figure 21.1

Alignment of primary sequences of mature SEs and SEl proteins in the current literature. Sequence alignment and output were conducted using the ClustalW program ( ). The secondary structure was aligned to SEA ( ).

Citation: Park J, Seo K. 2019. , p 555-584. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 21.2
Figure 21.2

Neighbor-joining tree based on the sequences of currently known SEs, SEl proteins, and TSST-1. This tree was created with the clustering feature of ClustalW using MEGA 4.0.1 software ( ).

Citation: Park J, Seo K. 2019. , p 555-584. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 21.3
Figure 21.3

Interactions between APCs and T cells facilitated by conventional Ags and SAgs. The binding of SAg with TCR-MHCII triggers activation of signaling cascades through Lck-dependent and Lck-independent pathways, leading to the activation of transcriptional factors that induce T-cell proliferation, cytokine production, and proinflammation. TGFβR, transforming growth factor beta receptor; PLCγ, phospholipase Cγ; ERK, extracellular signal-regulated kinase; JNK, Jun N-terminal protein kinase; NFAT, nuclear factor of activated T cells; PI3K, phosphatidylinositol 3-kinase; mTOR, the mechanistic target of rapamycin; AKT, protein kinase B.

Citation: Park J, Seo K. 2019. , p 555-584. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 21.4
Figure 21.4

(A) Schematic diagrams of SEA, SEB, SEC2, and TSST-1 crystal structures. Domain 1 contains highly conserved, low-affinity binding sites for TCR Vβ and MHCII at generic sites. (B) Hypothetical model of the MHCII-SEC3-TCR complex based on modeling predicted from the crystal structures of the SEC3-HLA-DR1 and SEC3-Vβ complexes.

Citation: Park J, Seo K. 2019. , p 555-584. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 21.5
Figure 21.5

Comparison of the cysteine loop and adjacent sequences between highly emetic and weakly emetic SEs in the monkey feeding assay.

Citation: Park J, Seo K. 2019. , p 555-584. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 21.6
Figure 21.6

Regulation of SE expression by the locus and other interacting regulatory genes and gene products (not drawn to scale) in . The blue arrow indicates activation, and the red line indicates inhibition. A letter “P” in a red dot indicates phosphorylation.

Citation: Park J, Seo K. 2019. , p 555-584. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555819972.ch21
1. Bergdoll MS, . 1985. The staphylococcal enterotoxin—an update, p 247 254. In Jeljaszewicz J (ed), The Staphylococci. Gustav Fischer Verlag, Stuttgart, Germany.
2. Dack GM, Cary WE, Woolper O, Wiggers H . 1930. An outbreak of food poisoning proved to be due to a yellow hemolytic Staphylococcus. J Prev Med 4 : 167 175.
3. Stefani S, Varaldo PE . 2003. Epidemiology of methicillin-resistant staphylococci in Europe. Clin Microbiol Infect 9 : 1179 1186.[PubMed][CrossRef]
4. Schleifer KH, . 1986. Gram positive cocci, p 999 1100. In Sneath PA (ed), Bergey's Manual of Systematic Bacteriology, vol 2. Williams & Wilkins Co, Baltimore, MD.
5. Blaiotta G, Ercolini D, Pennacchia C, Fusco V, Casaburi A, Pepe O, Villani F . 2004. PCR detection of staphylococcal enterotoxin genes in Staphylococcus spp. strains isolated from meat and dairy products. Evidence for new variants of seG and seI in S. aureus AB-8802. J Appl Microbiol 97 : 719 730.[PubMed][CrossRef]
6. Hájek V, Marsálek E . 1973. The occurrence of enterotoxigenic Staphylococcus aureus strains in hosts of different animal species. Zentralbl Bakteriol Orig A 223 : 63 68. Orig A[PubMed]
7. Jay JM, Loessner MJ, Golden DA, . 2005. Staphylococcal gastroenteritis, p 544 566. In Heldman DR (ed), Modern Food Microbiology, 7th ed. Springer Science and Business Inc., New York, NY.
8. Genigeorgis C, Riemann H, Sadler WW . 1969. Production of enterotoxin B in cured meats. J Food Sci 32 : 62 68.
9. Stewart CM, Cole MB, Legan JD, Slade L, Vandeven MH, Schaffner DW . 2002. Staphylococcus aureus growth boundaries: moving towards mechanistic predictive models based on solute-specific effects. Appl Environ Microbiol 68 : 1864 1871.[PubMed][CrossRef]
10. Townsend DE, Wilkinson BJ . 1992. Proline transport in Staphylococcus aureus: a high-affinity system and a low-affinity system involved in osmoregulation. J Bacteriol 174 : 2702 2710.[PubMed][CrossRef]
11. Wengender PA, Miller KJ . 1995. Identification of a PutP proline permease gene homolog from Staphylococcus aureus by expression cloning of the high-affinity proline transport system in Escherichia coli. Appl Environ Microbiol 61 : 252 259.[PubMed]
12. Bryan FL, . 1976. Staphylococcus aureus, p 12 128. In deFigueiredo MP, Splittstoesser DF (ed), Food Microbiology: Public Health and Spoilage Aspects. AVI, Westport, CT.
13. Crago B, Ferrato C, Drews SJ, Svenson LW, Tyrrell G, Louie M . 2012. Prevalence of Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) in food samples associated with foodborne illness in Alberta, Canada from 2007 to 2010. Food Microbiol 32 : 202 205.[PubMed][CrossRef]
14. Wang W, Baloch Z, Jiang T, Zhang C, Peng Z, Li F, Fanning S, Ma A, Xu J . 2017. Enterotoxigenicity and antimicrobial resistance of Staphylococcus aureus isolated from retail food in China. Front Microbiol 8 : 2256.[PubMed][CrossRef]
15. Rodríguez-Lázaro D, Oniciuc EA, García PG, Gallego D, Fernández-Natal I, Dominguez-Gil M, Eiros-Bouza JM, Wagner M, Nicolau AI, Hernández M . 2017. Detection and characterization of Staphylococcus aureus and methicillin-resistant S. aureus in foods confiscated in EU borders. Front Microbiol 8 : 1344.[PubMed][CrossRef]
16. Wieneke AA, Roberts D, Gilbert RJ . 1993. Staphylococcal food poisoning in the United Kingdom, 1969-90. Epidemiol Infect 110 : 519 531.[PubMed][CrossRef]
17. Argudín MA, Mendoza MC, Rodicio MR . 2010. Food poisoning and Staphylococcus aureus enterotoxins. Toxins (Basel) 2 : 1751 1773.[PubMed][CrossRef]
18. Genigeorgis CA . 1989. Present state of knowledge on staphylococcal intoxication. Int J Food Microbiol 9 : 327 360.[PubMed][CrossRef]
19. Bergdoll MS, Surgalla MJ, Dack GM . 1959. Staphylococcal enterotoxin. Identification of a specific precipitating antibody with enterotoxin-neutralizing property. J Immunol 83 : 334 338.[PubMed]
20. Casman EP, Bergdoll MS, Robinson J . 1963. Designation of staphylococcal enterotoxins. J Bacteriol 85 : 715 716.[PubMed]
21. Lina G, Bohach GA, Nair SP, Hiramatsu K, Jouvin-Marche E, Mariuzza R International Nomenclature Committee for Staphylococcal Superantigens . 2004. Standard nomenclature for the superantigens expressed by Staphylococcus. J Infect Dis 189 : 2334 2336.[PubMed][CrossRef]
22. Bergdoll MS, Borja CR, Robbins RN, Weiss KF . 1971. Identification of enterotoxin E. Infect Immun 4 : 593 595.[PubMed]
23. Betley MJ, Schlievert PM, Bergdoll MS, Bohach GA, Iandolo JJ, Khan SA, Pattee PA, Reiser RR . 1990. Staphylococcal gene nomenclature. ASM News 56 : 182.
24. Marr JC, Lyon JD, Roberson JR, Lupher M, Davis WC, Bohach GA . 1993. Characterization of novel type C staphylococcal enterotoxins: biological and evolutionary implications. Infect Immun 61 : 4254 4262.[PubMed]
25. Bayles KW, Iandolo JJ . 1989. Genetic and molecular analyses of the gene encoding staphylococcal enterotoxin D. J Bacteriol 171 : 4799 4806.[PubMed][CrossRef]
26. Couch JL, Soltis MT, Betley MJ . 1988. Cloning and nucleotide sequence of the type E staphylococcal enterotoxin gene. J Bacteriol 170 : 2954 2960.[PubMed][CrossRef]
27. Huang IY, Bergdoll MS . 1970. The primary structure of staphylococcal enterotoxin B. 3. The cyanogen bromide peptides of reduced and aminoethylated enterotoxin B, and the complete amino acid sequence. J Biol Chem 245 : 3518 3525.[PubMed]
28. Jones CL, Khan SA . 1986. Nucleotide sequence of the enterotoxin B gene from Staphylococcus aureus. J Bacteriol 166 : 29 33.[PubMed][CrossRef]
29. Schmidt JJ, Spero L . 1983. The complete amino acid sequence of staphylococcal enterotoxin C1. J Biol Chem 258 : 6300 6306.[PubMed]
30. Betley MJ, Borst DW, Regassa LB . 1992. Staphylococcal enterotoxins, toxic shock syndrome toxin and streptococcal pyrogenic exotoxins: a comparative study of their molecular biology. Chem Immunol 55 : 1 35.[PubMed]
31. Ren K, Bannan JD, Pancholi V, Cheung AL, Robbins JC, Fischetti VA, Zabriskie JB . 1994. Characterization and biological properties of a new staphylococcal exotoxin. J Exp Med 180 : 1675 1683.[PubMed][CrossRef]
32. Su YC, Wong AC . 1995. Identification and purification of a new staphylococcal enterotoxin, H. Appl Environ Microbiol 61 : 1438 1443.[PubMed]
33. Thomas DY, Jarraud S, Lemercier B, Cozon G, Echasserieau K, Etienne J, Gougeon ML, Lina G, Vandenesch F . 2006. Staphylococcal enterotoxin-like toxins U2 and V, two new staphylococcal superantigens arising from recombination within the enterotoxin gene cluster. Infect Immun 74 : 4724 4734.[PubMed][CrossRef]
34. Ono HK, Omoe K, Imanishi K, Iwakabe Y, Hu DL, Kato H, Saito N, Nakane A, Uchiyama T, Shinagawa K . 2008. Identification and characterization of two novel staphylococcal enterotoxins, types S and T. Infect Immun 76 : 4999 5005.[PubMed][CrossRef]
35. Hoffmann ML, Jablonski LM, Crum KK, Hackett SP, Chi YI, Stauffacher CV, Stevens DL, Bohach GA . 1994. Predictions of T-cell receptor- and major histocompatibility complex-binding sites on staphylococcal enterotoxin C1. Infect Immun 62 : 3396 3407.[PubMed]
36. Lindsay JA, Ruzin A, Ross HF, Kurepina N, Novick RP . 1998. The gene for toxic shock toxin is carried by a family of mobile pathogenicity islands in Staphylococcus aureus. Mol Microbiol 29 : 527 543.[PubMed][CrossRef]
37. Tallent SM, Langston TB, Moran RG, Christie GE . 2007. Transducing particles of Staphylococcus aureus pathogenicity island SaPI1 are comprised of helper phage-encoded proteins. J Bacteriol 189 : 7520 7524.[PubMed][CrossRef]
38. Goerke C, Pantucek R, Holtfreter S, Schulte B, Zink M, Grumann D, Bröker BM, Doskar J, Wolz C . 2009. Diversity of prophages in dominant Staphylococcus aureus clonal lineages. J Bacteriol 191 : 3462 3468.[PubMed][CrossRef]
39. Zhang S, Iandolo JJ, Stewart GC . 1998. The enterotoxin D plasmid of Staphylococcus aureus encodes a second enterotoxin determinant ( sej). FEMS Microbiol Lett 168 : 227 233.[PubMed][CrossRef]
40. Omoe K, Hu DL, Takahashi-Omoe H, Nakane A, Shinagawa K . 2003. Identification and characterization of a new staphylococcal enterotoxin-related putative toxin encoded by two kinds of plasmids. Infect Immun 71 : 6088 6094.[PubMed][CrossRef]
41. Novick RP . 2003. Mobile genetic elements and bacterial toxinoses: the superantigen-encoding pathogenicity islands of Staphylococcus aureus. Plasmid 49 : 93 105.[PubMed][CrossRef]
42. Johns MB Jr, Khan SA . 1988. Staphylococcal enterotoxin B gene is associated with a discrete genetic element. J Bacteriol 170 : 4033 4039.[PubMed][CrossRef]
43. Fitzgerald JR, Monday SR, Foster TJ, Bohach GA, Hartigan PJ, Meaney WJ, Smyth CJ . 2001. Characterization of a putative pathogenicity island from bovine Staphylococcus aureus encoding multiple superantigens. J Bacteriol 183 : 63 70.[PubMed][CrossRef]
44. Baba T, Takeuchi F, Kuroda M, Yuzawa H, Aoki K, Oguchi A, Nagai Y, Iwama N, Asano K, Naimi T, Kuroda H, Cui L, Yamamoto K, Hiramatsu K . 2002. Genome and virulence determinants of high virulence community-acquired MRSA. Lancet 359 : 1819 1827.[PubMed][CrossRef]
45. Baba T, Bae T, Schneewind O, Takeuchi F, Hiramatsu K . 2008. Genome sequence of Staphylococcus aureus strain Newman and comparative analysis of staphylococcal genomes: polymorphism and evolution of two major pathogenicity islands. J Bacteriol 190 : 300 310.[PubMed][CrossRef]
46. Fitzgerald JR, Reid SD, Ruotsalainen E, Tripp TJ, Liu M, Cole R, Kuusela P, Schlievert PM, Järvinen A, Musser JM . 2003. Genome diversification in Staphylococcus aureus: molecular evolution of a highly variable chromosomal region encoding the staphylococcal exotoxin-like family of proteins. Infect Immun 71 : 2827 2838.[PubMed][CrossRef]
47. Bestebroer J, Poppelier MJ, Ulfman LH, Lenting PJ, Denis CV, van Kessel KP, van Strijp JA, de Haas CJ . 2007. Staphylococcal superantigen-like 5 binds PSGL-1 and inhibits P-selectin-mediated neutrophil rolling. Blood 109 : 2936 2943.[PubMed]
48. Jarraud S, Peyrat MA, Lim A, Tristan A, Bes M, Mougel C, Etienne J, Vandenesch F, Bonneville M, Lina G . 2001. egc, a highly prevalent operon of enterotoxin gene, forms a putative nursery of superantigens in Staphylococcus aureus. J Immunol 166 : 669 677.[PubMed][CrossRef]
49. Collery MM, Smyth CJ . 2007. Rapid differentiation of Staphylococcus aureus isolates harbouring egc loci with pseudogenes ψ ent1 and ψ ent2 and the selu or selu v gene using PCR-RFLP. J Med Microbiol 56 : 208 216.[PubMed][CrossRef]
50. Moon BY, Park JY, Hwang SY, Robinson DA, Thomas JC, Fitzgerald JR, Park YH, Seo KS . 2015. Phage-mediated horizontal transfer of a Staphylococcus aureus virulence-associated genomic island. Sci Rep 5 : 9784.[PubMed][CrossRef]
51. Moon BY, Park JY, Robinson DA, Thomas JC, Park YH, Thornton JA, Seo KS . 2016. Mobilization of genomic islands of Staphylococcus aureus by temperate bacteriophage. PLoS One 11 : e0151409.[PubMed][CrossRef]
52. Spero L, Griffin BY, Middlebrook JL, Metzger JF . 1976. Effect of single and double peptide bond scission by trypsin on the structure and activity of staphylococcal enterotoxin C. J Biol Chem 251 : 5580 5588.[PubMed]
53. Warren JR . 1977. Comparative kinetic stabilities of staphylococcal enterotoxin types A, B, and C1. J Biol Chem 252 : 6831 6834.[PubMed]
54. Hovde CJ, Marr JC, Hoffmann ML, Hackett SP, Chi YI, Crum KK, Stevens DL, Stauffacher CV, Bohach GA . 1994. Investigation of the role of the disulphide bond in the activity and structure of staphylococcal enterotoxin C1. Mol Microbiol 13 : 897 909.[PubMed][CrossRef]
55. Bohach GA, Fast DJ, Nelson RD, Schlievert PM . 1990. Staphylococcal and streptococcal pyrogenic toxins involved in toxic shock syndrome and related illnesses. Crit Rev Microbiol 17 : 251 272.[PubMed][CrossRef]
56. Marrack P, Kappler J . 1990. The staphylococcal enterotoxins and their relatives. Science 248 : 1066.[PubMed][CrossRef]
57. Cantrell DA . 2002. T-cell antigen receptor signal transduction. Immunology 105 : 369 374.[PubMed][CrossRef]
58. Smith-Garvin JE, Koretzky GA, Jordan MS . 2009. T cell activation. Annu Rev Immunol 27 : 591 619.[PubMed][CrossRef]
59. DiDonato JA, Mercurio F, Karin M . 2012. NF-κB and the link between inflammation and cancer. Immunol Rev 246 : 379 400.[PubMed][CrossRef]
60. Kaempfer R, Arad G, Levy R, Hillman D, Nasie I, Rotfogel Z . 2013. CD28: direct and critical receptor for superantigen toxins. Toxins (Basel) 5 : 1531 1542.[PubMed][CrossRef]
61. Levy R, Rotfogel Z, Hillman D, Popugailo A, Arad G, Supper E, Osman F, Kaempfer R . 2016. Superantigens hyperinduce inflammatory cytokines by enhancing the B7-2/CD28 costimulatory receptor interaction. Proc Natl Acad Sci USA 113 : E6437 E6446.[PubMed][CrossRef]
62. Arad G, Levy R, Nasie I, Hillman D, Rotfogel Z, Barash U, Supper E, Shpilka T, Minis A, Kaempfer R. 2011. Binding of superantigen toxins into the CD28 homodimer interface is essential for induction of cytokine genes that mediate lethal shock. PLoS Biol 9 ( 9 ): e1001149. CORRECTION PLoS Biol 13:e1002237.
63. Swaminathan S, Furey W, Pletcher J, Sax M . 1992. Crystal structure of staphylococcal enterotoxin B, a superantigen. Nature 359 : 801 806.[PubMed][CrossRef]
64. Merritt EA, Hol WG . 1995. AB5 toxins. Curr Opin Struct Biol 5 : 165 171.[PubMed][CrossRef]
65. Bohach GA, Stauffacher CV, Ohlendorf DH, Chi YI, Vath GM, Schlievert PM, . 1996. The staphylococcal and streptococcal pyrogenic toxin family, p 131 154. In Singh BR, Tu AT (ed), Natural Toxins II. Plenum Publishing Corporation, New York, NY.[CrossRef]
66. Schad EM, Zaitseva I, Zaitsev VN, Dohlsten M, Kalland T, Schlievert PM, Ohlendorf DH, Svensson LA . 1995. Crystal structure of the superantigen staphylococcal enterotoxin type A. EMBO J 14 : 3292 3301.[PubMed][CrossRef]
67. Gronenborn AM, Filpula DR, Essig NZ, Achari A, Whitlow M, Wingfield PT, Clore GM . 1991. A novel, highly stable fold of the immunoglobulin binding domain of streptococcal protein G. Science 253 : 657 661.[PubMed][CrossRef]
68. Wikström M, Drakenberg T, Forsén S, Sjöbring U, Björck L . 1994. Three-dimensional solution structure of an immunoglobulin light chain-binding domain of protein L. Comparison with the IgG-binding domains of protein G. Biochemistry 33 : 14011 14017.[PubMed][CrossRef]
69. Mitchell DT, Levitt DG, Schlievert PM, Ohlendorf DH . 2000. Structural evidence for the evolution of pyrogenic toxin superantigens. J Mol Evol 51 : 520 531.[PubMed][CrossRef]
70. Fraser JD, Lowe S, Irwin MJ, Gascoigne NR, Hudson KR, . 1993. Structural model of staphylococcal enterotoxin A interaction with MHC class II antigens, p 7 30. In Huber BT, Palmer E (ed), Superantigens: a Pathogens's View of the Immune System. Cold Spring Harbor Laboratory Press, Plainview, NY.
71. Schad EM, Papageorgiou AC, Svensson LA, Acharya KR . 1997. A structural and functional comparison of staphylococcal enterotoxins A and C2 reveals remarkable similarity and dissimilarity. J Mol Biol 269 : 270 280.[PubMed][CrossRef]
72. Bohach GA, Jablonski LM, Deobald CF, Chi YI, Stauffacher CV, . 1995. Functional domains of staphylococcal enterotoxin, p 339 356. In Ecklund M, Richard JL, Mise M (ed), Molecular Approaches to Food Safety; Issues Involving Toxic Microorganisms. Alaken Inc, Fort Collins, CO.
73. Häse CC, Finkelstein RA . 1993. Bacterial extracellular zinc-containing metalloproteases. Microbiol Rev 57 : 823 837.[PubMed]
74. Klimpel KR, Arora N, Leppla SH . 1994. Anthrax toxin lethal factor contains a zinc metalloprotease consensus sequence which is required for lethal toxin activity. Mol Microbiol 13 : 1093 1100.[PubMed][CrossRef]
75. Sundström M, Abrahmsén L, Antonsson P, Mehindate K, Mourad W, Dohlsten M . 1996. The crystal structure of staphylococcal enterotoxin type D reveals Zn2+-mediated homodimerization. EMBO J 15 : 6832 6840.[PubMed][CrossRef]
76. Jardetzky TS, Brown JH, Gorga JC, Stern LJ, Urban RG, Chi YI, Stauffacher C, Strominger JL, Wiley DC . 1994. Three-dimensional structure of a human class II histocompatibility molecule complexed with superantigen. Nature 368 : 711 718.[PubMed][CrossRef]
77. Sundberg EJ, Sawicki MW, Southwood S, Andersen PS, Sette A, Mariuzza RA . 2002. Minor structural changes in a mutated human melanoma antigen correspond to dramatically enhanced stimulation of a CD4+ tumor-infiltrating lymphocyte line. J Mol Biol 319 : 449 461.[PubMed][CrossRef]
78. Petersson K, Håkansson M, Nilsson H, Forsberg G, Svensson LA, Liljas A, Walse B . 2001. Crystal structure of a superantigen bound to MHC class II displays zinc and peptide dependence. EMBO J 20 : 3306 3312.[PubMed][CrossRef]
79. Hudson KR, Tiedemann RE, Urban RG, Lowe SC, Strominger JL, Fraser JD . 1995. Staphylococcal enterotoxin A has two cooperative binding sites on major histocompatibility complex class II. J Exp Med 182 : 711 720.[PubMed][CrossRef]
80. Tiedemann RE, Fraser JD . 1996. Cross-linking of MHC class II molecules by staphylococcal enterotoxin A is essential for antigen-presenting cell and T cell activation. J Immunol 157 : 3958 3966.[PubMed]
81. Al-Daccak R, Mehindate K, Damdoumi F, Etongué-Mayer P, Nilsson H, Antonsson P, Sundström M, Dohlsten M, Sékaly RP, Mourad W . 1998. Staphylococcal enterotoxin D is a promiscuous superantigen offering multiple modes of interactions with the MHC class II receptors. J Immunol 160 : 225 232.[PubMed]
82. Deringer JR, Ely RJ, Monday SR, Stauffacher CV, Bohach GA . 1997. Vβ-dependent stimulation of bovine and human T cells by host-specific staphylococcal enterotoxins. Infect Immun 65 : 4048 4054.[PubMed]
83. Fields BA, Malchiodi EL, Li H, Ysern X, Stauffacher CV, Schlievert PM, Karjalainen K, Mariuzza RA . 1996. Crystal structure of a T-cell receptor beta-chain complexed with a superantigen. Nature 384 : 188 192.[PubMed][CrossRef]
84. Leder L, Llera A, Lavoie PM, Lebedeva MI, Li H, Sékaly RP, Bohach GA, Gahr PJ, Schlievert PM, Karjalainen K, Mariuzza RA . 1998. A mutational analysis of the binding of staphylococcal enterotoxins B and C3 to the T cell receptor beta chain and major histocompatibility complex class II. J Exp Med 187 : 823 833.[PubMed][CrossRef]
85. Petersson K, Pettersson H, Skartved NJ, Walse B, Forsberg G . 2003. Staphylococcal enterotoxin H induces Vα-specific expansion of T cells. J Immunol 170 : 4148 4154.[PubMed][CrossRef]
86. Taylor SL, Schlunz LR, Beery JT, Cliver DO, Bergdoll MS . 1982. Emetic action of staphylococcal enterotoxin A on weanling pigs. Infect Immun 36 : 1263 1266.[PubMed]
87. Bergdoll MS . 1988. Monkey feeding test for staphylococcal enterotoxin. Methods Enzymol 165 : 324 333.[PubMed][CrossRef]
88. Munson SH, Tremaine MT, Betley MJ, Welch RA . 1998. Identification and characterization of staphylococcal enterotoxin types G and I from Staphylococcus aureus. Infect Immun 66 : 3337 3348.[PubMed]
89. Orwin PM, Leung DY, Donahue HL, Novick RP, Schlievert PM . 2001. Biochemical and biological properties of staphylococcal enterotoxin K. Infect Immun 69 : 360 366.[PubMed][CrossRef]
90. Orwin PM, Leung DY, Tripp TJ, Bohach GA, Earhart CA, Ohlendorf DH, Schlievert PM . 2002. Characterization of a novel staphylococcal enterotoxin-like superantigen, a member of the group V subfamily of pyrogenic toxins. Biochemistry 41 : 14033 14040.[PubMed][CrossRef]
91. Orwin PM, Fitzgerald JR, Leung DY, Gutierrez JA, Bohach GA, Schlievert PM . 2003. Characterization of Staphylococcus aureus enterotoxin L. Infect Immun 71 : 2916 2919.[PubMed][CrossRef]
92. Warren JR, Spero L, Metzger JF . 1974. Stabilization of native structure by the closed disulfide loop of staphylococcal enterotoxin B. Biochim Biophys Acta 359 : 351 363.[PubMed][CrossRef]
93. Reda KB, Kapur V, Mollick JA, Lamphear JG, Musser JM, Rich RR . 1994. Molecular characterization and phylogenetic distribution of the streptococcal superantigen gene ( ssa) from Streptococcus pyogenes. Infect Immun 62 : 1867 1874.[PubMed]
94. Harris TO, Betley MJ . 1995. Biological activities of staphylococcal enterotoxin type A mutants with N-terminal substitutions. Infect Immun 63 : 2133 2140.[PubMed]
95. Omoe K, Hu DL, Ono HK, Shimizu S, Takahashi-Omoe H, Nakane A, Uchiyama T, Shinagawa K, Imanishi K . 2013. Emetic potentials of newly identified staphylococcal enterotoxin-like toxins. Infect Immun 81 : 3627 3631.[PubMed][CrossRef]
96. Stiles BG, Bavari S, Krakauer T, Ulrich RG . 1993. Toxicity of staphylococcal enterotoxins potentiated by lipopolysaccharide: major histocompatibility complex class II molecule dependency and cytokine release. Infect Immun 61 : 5333 5338.[PubMed]
97. Adesiyun AA, Tatini SR . 1982. Incidence of ketamine-induced emesis in cynomologus [ sic] monkeys ( Macaca fascicularis) used for staphylococcal enterotoxin bioassay. Br J Exp Pathol 63 : 330 335.[PubMed]
98. Melling J . 1977. Use of anaesthesia with ketamine HCl in assessing the emetic activity of staphylococcal enterotoxin B in the rhesus monkey ( Macacca [ sic] mulatta). Br J Exp Pathol 58 : 40 41.[PubMed]
99. Fries BC, Varshney AK . 2013. Bacterial toxins—staphylococcal enterotoxin B. Microbiol Spectr 1 ( 2 ): AID-0002-2012. [PubMed][PubMed]
100. Beery JT, Taylor SL, Schlunz LR, Freed RC, Bergdoll MS . 1984. Effects of staphylococcal enterotoxin A on the rat gastrointestinal tract. Infect Immun 44 : 234 240.[PubMed]
101. Sugiyama H, Hayama T . 1965. Abdominal viscera as site of emetic action for staphylococcal enterotoxin in the monkey. J Infect Dis 115 : 330 336.[PubMed][CrossRef]
102. Kent TH . 1966. Staphylococcal enterotoxin gastroenteritis in rhesus monkeys. Am J Pathol 48 : 387 407.[PubMed]
103. Jett M, Neill R, Welch C, Boyle T, Bernton E, Hoover D, Lowell G, Hunt RE, Chatterjee S, Gemski P . 1994. Identification of staphylococcal enterotoxin B sequences important for induction of lymphocyte proliferation by using synthetic peptide fragments of the toxin. Infect Immun 62 : 3408 3415.[PubMed]
104. Scheuber PH, Denzlinger C, Wilker D, Beck G, Keppler D, Hammer DK . 1987. Staphylococcal enterotoxin B as a nonimmunological mast cell stimulus in primates: the role of endogenous cysteinyl leukotrienes. Int Arch Allergy Appl Immunol 82 : 289 291.[PubMed][CrossRef]
105. Reck B, Scheuber PH, Londong W, Sailer-Kramer B, Bartsch K, Hammer DK . 1988. Protection against the staphylococcal enterotoxin-induced intestinal disorder in the monkey by anti-idiotypic antibodies. Proc Natl Acad Sci USA 85 : 3170 3174.[PubMed][CrossRef]
106. Komisar J, Rivera J, Vega A, Tseng J . 1992. Effects of staphylococcal enterotoxin B on rodent mast cells. Infect Immun 60 : 2969 2975.[PubMed]
107. Alber G, Scheuber PH, Reck B, Sailer-Kramer B, Hartmann A, Hammer DK . 1989. Role of substance P in immediate-type skin reactions induced by staphylococcal enterotoxin B in unsensitized monkeys. J Allergy Clin Immunol 84 : 880 885.[PubMed][CrossRef]
108. Hu DL, Zhu G, Mori F, Omoe K, Okada M, Wakabayashi K, Kaneko S, Shinagawa K, Nakane A . 2007. Staphylococcal enterotoxin induces emesis through increasing serotonin release in intestine and it is downregulated by cannabinoid receptor 1. Cell Microbiol 9 : 2267 2277.[PubMed][CrossRef]
109. Alber G, Hammer DK, Fleischer B . 1990. Relationship between enterotoxic- and T lymphocyte-stimulating activity of staphylococcal enterotoxin B. J Immunol 144 : 4501 4506.[PubMed]
110. Schlievert PM, Jablonski LM, Roggiani M, Sadler I, Callantine S, Mitchell DT, Ohlendorf DH, Bohach GA . 2000. Pyrogenic toxin superantigen site specificity in toxic shock syndrome and food poisoning in animals. Infect Immun 68 : 3630 3634.[PubMed][CrossRef]
111. Clark WG, Page JS . 1968. Pyrogenic responses to staphylococcal enterotoxins A and B in cats. J Bacteriol 96 : 1940 1946.[PubMed]
112. Hu DL, Omoe K, Shimoda Y, Nakane A, Shinagawa K . 2003. Induction of emetic response to staphylococcal enterotoxins in the house musk shrew ( Suncus murinus). Infect Immun 71 : 567 570.[PubMed][CrossRef]
113. Omoe K, Hu DL, Takahashi-Omoe H, Nakane A, Shinagawa K . 2005. Comprehensive analysis of classical and newly described staphylococcal superantigenic toxin genes in Staphylococcus aureus isolates. FEMS Microbiol Lett 246 : 191 198.[PubMed][CrossRef]
114. Monday SR, Bohach GA . 1999. Use of multiplex PCR to detect classical and newly described pyrogenic toxin genes in staphylococcal isolates. J Clin Microbiol 37 : 3411 3414.[PubMed]
115. Bergdoll MS, . 1989. Staphylococcus aureus, p 463 523. In Doyle MP (ed), Foodborne Bacterial Pathogens. Marcel Dekker, Inc, New York, NY.
116. Bohach GA, Hovde CJ, Handley JP, Schlievert PM . 1988. Cross-neutralization of staphylococcal and streptococcal pyrogenic toxins by monoclonal and polyclonal antibodies. Infect Immun 56 : 400 404.[PubMed]
117. Pontzer CH, Russell JK, Johnson HM . 1989. Localization of an immune functional site on staphylococcal enterotoxin A using the synthetic peptide approach. J Immunol 143 : 280 284.[PubMed]
118. Holmberg SD, Blake PA . 1984. Staphylococcal food poisoning in the United States. New facts and old misconceptions. JAMA 251 : 487 489.[PubMed][CrossRef]
119. Buzby JC, Roberts T, Lin CT, McDonald JM . 1996. Bacterial Foodborne Disease medical costs and productively losses. Agricultural Economic Report no. AER-741. U.S. Department of Agriculture, Washingon, DC.
120. Lima GC, Loiko MR, Casarin LS, Tondo EC . 2013. Assessing the epidemiological data of Staphylococcus aureus food poisoning occurred in the State of Rio Grande do Sul, Southern Brazil. Braz J Microbiol 44 : 759 763.[PubMed][CrossRef]
121. Jay JM . 1986. Modern Food Microbiology, 3rd ed, p 437 458. Van Norstrand Reinhold Company, New York, NY.
122. Do Carmo LS, Cummings C, Linardi VR, Dias RS, De Souza JM, De Sena MJ, Dos Santos DA, Shupp JW, Pereira RK, Jett M . 2004. A case study of a massive staphylococcal food poisoning incident. Foodborne Pathog Dis 1 : 241 246.[PubMed][CrossRef]
123. Ikeda T, Tamate N, Yamaguchi K, Makino S . 2005. Mass outbreak of food poisoning disease caused by small amounts of staphylococcal enterotoxins A and H. Appl Environ Microbiol 71 : 2793 2795.[PubMed][CrossRef]
124. Center for Food Safety and Applied Nutrition . 1992. Bad Bug Book: Foodborne Pathogenic Microorganisms & Natural Toxins Handbook. Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Rockville, MD.
125. Gilbert RJ, Wieneke AA, . 1973. Staphylococcal food poisoning with special reference to the detection of enterotoxin in food, p 273 285. In Hobbs BC, Christian JH (ed), The Microbiological Safety of Food. Academic Press, Inc, New York, NY.
126. Evenson ML, Hinds MW, Bernstein RS, Bergdoll MS . 1988. Estimation of human dose of staphylococcal enterotoxin A from a large outbreak of staphylococcal food poisoning involving chocolate milk. Int J Food Microbiol 7 : 311 316.[PubMed][CrossRef]
127. Asao T, Kumeda Y, Kawai T, Shibata T, Oda H, Haruki K, Nakazawa H, Kozaki S . 2003. An extensive outbreak of staphylococcal food poisoning due to low-fat milk in Japan: estimation of enterotoxin A in the incriminated milk and powdered skim milk. Epidemiol Infect 130 : 33 40.[PubMed][CrossRef]
128. Noleto AL, Tibana A, Silva CA, Rubin L, Schueller S . 1980. Bacteriological analysis of milk. An Microbiol (Rio J) 25 : 41 51. [In Portuguese.][PubMed]
129. Raj HD, Bergdoll MS . 1969. Effect of enterotoxin B on human volunteers. J Bacteriol 98 : 833 834.[PubMed]
130. Herbert S, Barry P, Novick RP . 2001. Subinhibitory clindamycin differentially inhibits transcription of exoprotein genes in Staphylococcus aureus. Infect Immun 69 : 2996 3003.[PubMed][CrossRef]
131. Bergdoll MS, . 1979. Staphylococcal intoxications, p 443 494. In Riemann H, Bryan FL (ed), Food-Borne Infections and Intoxications. Academic Press, Inc., New York, NY.
132. Noleto AL, Malburg Júnior LM, Bergdoll MS . 1987. Production of staphylococcal enterotoxin in mixed cultures. Appl Environ Microbiol 53 : 2271 2274.[PubMed]
133. Novick RP . 2003. Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol Microbiol 48 : 1429 1449.[PubMed][CrossRef]
134. Stock JB, Ninfa AJ, Stock AM . 1989. Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev 53 : 450 490.[PubMed]
135. Zhang L, Gray L, Novick RP, Ji G . 2002. Transmembrane topology of AgrB, the protein involved in the post-translational modification of AgrD in Staphylococcus aureus. J Biol Chem 277 : 34736 34742.[PubMed][CrossRef]
136. Novick RP, Projan SJ, Kornblum J, Ross HF, Ji G, Kreiswirth B, Vandenesch F, Moghazeh S, Novick RP . 1995. The agr P2 operon: an autocatalytic sensory transduction system in Staphylococcus aureus. Mol Gen Genet 248 : 446 458.[PubMed][CrossRef]
137. Gaskill ME, Khan SA . 1988. Regulation of the enterotoxin B gene in Staphylococcus aureus. J Biol Chem 263 : 6276 6280.[PubMed]
138. Regassa LB, Couch JL, Betley MJ . 1991. Steady-state staphylococcal enterotoxin type C mRNA is affected by a product of the accessory gene regulator (agr) and by glucose. Infect Immun 59 : 955 962.[PubMed]
139. Tremaine MT, Brockman DK, Betley MJ . 1993. Staphylococcal enterotoxin A gene ( sea) expression is not affected by the accessory gene regulator ( agr). Infect Immun 61 : 356 359.[PubMed]
140. Tseng CW, Stewart GC . 2005. Rot repression of enterotoxin B expression in Staphylococcus aureus. J Bacteriol 187 : 5301 5309.[PubMed][CrossRef]
141. Boisset S, Geissmann T, Huntzinger E, Fechter P, Bendridi N, Possedko M, Chevalier C, Helfer AC, Benito Y, Jacquier A, Gaspin C, Vandenesch F, Romby P . 2007. Staphylococcus aureus RNAIII coordinately represses the synthesis of virulence factors and the transcription regulator Rot by an antisense mechanism. Genes Dev 21 : 1353 1366.[PubMed][CrossRef]
142. Cheung AL, Zhang G . 2002. Global regulation of virulence determinants in Staphylococcus aureus by the SarA protein family. Front Biosci 7 : d1825 d1842.[PubMed][CrossRef]
143. Ingavale S, van Wamel W, Luong TT, Lee CY, Cheung AL . 2005. Rat/MgrA, a regulator of autolysis, is a regulator of virulence genes in Staphylococcus aureus. Infect Immun 73 : 1423 1431.[PubMed][CrossRef]
144. Saïd-Salim B, Dunman PM, McAleese FM, Macapagal D, Murphy E, McNamara PJ, Arvidson S, Foster TJ, Projan SJ, Kreiswirth BN . 2003. Global regulation of Staphylococcus aureus genes by Rot. J Bacteriol 185 : 610 619.[PubMed][CrossRef]
145. Liu Y, Manna A, Li R, Martin WE, Murphy RC, Cheung AL, Zhang G . 2001. Crystal structure of the SarR protein from Staphylococcus aureus. Proc Natl Acad Sci USA 98 : 6877 6882.[PubMed][CrossRef]
146. Liu Y, Manna AC, Pan CH, Kriksunov IA, Thiel DJ, Cheung AL, Zhang G . 2006. Structural and function analyses of the global regulatory protein SarA from Staphylococcus aureus. Proc Natl Acad Sci USA 103 : 2392 2397.[PubMed][CrossRef]
147. Li R, Manna AC, Dai S, Cheung AL, Zhang G . 2003. Crystal structure of the SarS protein from Staphylococcus aureus. J Bacteriol 185 : 4219 4225.[PubMed][CrossRef]
148. Chien Y, Cheung AL . 1998. Molecular interactions between two global regulators, sar and agr, in Staphylococcus aureus. J Biol Chem 273 : 2645 2652.[PubMed][CrossRef]
149. Chan PF, Foster SJ . 1998. Role of SarA in virulence determinant production and environmental signal transduction in Staphylococcus aureus. J Bacteriol 180 : 6232 6241.[PubMed]
150. Cheung AL, Chien YT, Bayer AS . 1999. Hyperproduction of alpha-hemolysin in a sigB mutant is associated with elevated SarA expression in Staphylococcus aureus. Infect Immun 67 : 1331 1337.[PubMed]
151. Baroja ML, Herfst CA, Kasper KJ, Xu SX, Gillett DA, Li J, Reid G, McCormick JK . 2016. The SaeRS two-component system is a direct and dominant transcriptional activator of toxic shock syndrome toxin 1 in Staphylococcus aureus. J Bacteriol 198 : 2732 2742.[PubMed][CrossRef]
152. Kullik I, Giachino P . 1997. The alternative sigma factor sigmaB in Staphylococcus aureus: regulation of the sigB operon in response to growth phase and heat shock. Arch Microbiol 167 : 151 159.[PubMed][CrossRef]
153. Miyazaki E, Chen JM, Ko C, Bishai WR . 1999. The Staphylococcus aureus rsbW ( orf159) gene encodes an anti-sigma factor of SigB. J Bacteriol 181 : 2846 2851.[PubMed]
154. Gertz S, Engelmann S, Schmid R, Ziebandt AK, Tischer K, Scharf C, Hacker J, Hecker M . 2000. Characterization of the σ B regulon in Staphylococcus aureus. J Bacteriol 182 : 6983 6991.[PubMed][CrossRef]
155. Schmidt KA, Donegan NP, Kwan WA Jr, Cheung A . 2004. Influences of sigmaB and agr on expression of staphylococcal enterotoxin B ( seb) in Staphylococcus aureus. Can J Microbiol 50 : 351 360.[PubMed][CrossRef]
156. Derzelle S, Dilasser F, Duquenne M, Deperrois V . 2009. Differential temporal expression of the staphylococcal enterotoxins genes during cell growth. Food Microbiol 26 : 896 904.[PubMed][CrossRef]
157. Projan SJ, Brown-Skrobot S, Schlievert PM, Vandenesch F, Novick RP . 1994. Glycerol monolaurate inhibits the production of beta-lactamase, toxic shock toxin-1, and other staphylococcal exoproteins by interfering with signal transduction. J Bacteriol 176 : 4204 4209.[PubMed][CrossRef]
158. Doyle ME, Hartmann FA, Lee Wong AC . 2012. Methicillin-resistant staphylococci: implications for our food supply? Anim Health Res Rev 13 : 157 180.[PubMed][CrossRef]
159. Balaban N, Rasooly A . 2000. Staphylococcal enterotoxins. Int J Food Microbiol 61 : 1 10.[PubMed][CrossRef]
160. Bianchi DM, Gallina S, Bellio A, Chiesa F, Civera T, Decastelli L . 2014. Enterotoxin gene profiles of Staphylococcus aureus isolated from milk and dairy products in Italy. Lett Appl Microbiol 58 : 190 196.[PubMed][CrossRef]
161. Kadariya J, Smith TC, Thapaliya D . 2014. Staphylococcus aureus and staphylococcal food-borne disease: an ongoing challenge in public health. BioMed Res Int 2014 : 827965.[PubMed][CrossRef]
162. Cha JO, Lee JK, Jung YH, Yoo JI, Park YK, Kim BS, Lee YS . 2006. Molecular analysis of Staphylococcus aureus isolates associated with staphylococcal food poisoning in South Korea. J Appl Microbiol 101 : 864 871.[PubMed][CrossRef]
163. Kérouanton A, Hennekinne JA, Letertre C, Petit L, Chesneau O, Brisabois A, De Buyser ML . 2007. Characterization of Staphylococcus aureus strains associated with food poisoning outbreaks in France. Int J Food Microbiol 115 : 369 375.[PubMed][CrossRef]
164. Shimizu A, Fujita M, Igarashi H, Takagi M, Nagase N, Sasaki A, Kawano J . 2000. Characterization of Staphylococcus aureus coagulase type VII isolates from staphylococcal food poisoning outbreaks (1980-1995) in Tokyo, Japan, by pulsed-field gel electrophoresis. J Clin Microbiol 38 : 3746 3749.[PubMed]
165. Fulton F . 1943. Staphylococcal Enterotoxin—with special reference to the kitten test. Br J Exp Pathol 24 : 65 72.
166. Saunders GC, Bartlett ML . 1977. Double-antibody solid-phase enzyme immunoassay for the detection of staphylococcal enterotoxin A. Appl Environ Microbiol 34 : 518 522.[PubMed]
167. Morissette C, Goulet J, Lamoureux G . 1991. Rapid and sensitive sandwich enzyme-linked immunosorbent assay for detection of staphylococcal enterotoxin B in cheese. Appl Environ Microbiol 57 : 836 842.[PubMed]
168. Khan AS, Cao CJ, Thompson RG, Valdes JJ . 2003. A simple and rapid fluorescence-based immunoassay for the detection of staphylococcal enterotoxin B. Mol Cell Probes 17 : 125 126.[PubMed][CrossRef]
169. Vinayaka AC, Thakur MS . 2012. An immunoreactor-based competitive fluoroimmunoassay for monitoring staphylococcal enterotoxin B using bioconjugated quantum dots. Analyst (Lond) 137 : 4343 4348.[PubMed][CrossRef]
170. Vinayaka AC, Thakur MS . 2013. Facile synthesis and photophysical characterization of luminescent CdTe quantum dots for Forster resonance energy transfer based immunosensing of staphylococcal enterotoxin B. Luminescence 28 : 827 835.[PubMed][CrossRef]
171. Rubina AY, Filippova MA, Feizkhanova GU, Shepeliakovskaya AO, Sidina EI, Boziev KM, Laman AG, Brovko FA, Vertiev YV, Zasedatelev AS, Grishin EV . 2010. Simultaneous detection of seven staphylococcal enterotoxins: development of hydrogel biochips for analytical and practical application. Anal Chem 82 : 8881 8889.[PubMed][CrossRef]
172. Liu F, Li Y, Song C, Dong B, Liu Z, Zhang K, Li H, Sun Y, Wei Y, Yang A, Yang K, Jin B . 2010. Highly sensitive microplate chemiluminescence enzyme immunoassay for the determination of staphylococcal enterotoxin B based on a pair of specific monoclonal antibodies and its application to various matrices. Anal Chem 82 : 7758 7765.[PubMed][CrossRef]
173. Szkola A, Linares EM, Worbs S, Dorner BG, Dietrich R, Märtlbauer E, Niessner R, Seidel M . 2014. Rapid and simultaneous detection of ricin, staphylococcal enterotoxin B and saxitoxin by chemiluminescence-based microarray immunoassay. Analyst (Lond) 139 : 5885 5892.[PubMed][CrossRef]
174. Rasooly L, Rasooly A . 1999. Real time biosensor analysis of staphylococcal enterotoxin A in food. Int J Food Microbiol 49 : 119 127.[PubMed][CrossRef]
175. Nimjee SM, Rusconi CP, Sullenger BA . 2005. Aptamers: an emerging class of therapeutics. Annu Rev Med 56 : 555 583.[PubMed][CrossRef]
176. Huang Y, Zhang H, Chen X, Wang X, Duan N, Wu S, Xu B, Wang Z . 2015. A multicolor time-resolved fluorescence aptasensor for the simultaneous detection of multiplex Staphylococcus aureus enterotoxins in the milk. Biosens Bioelectron 74 : 170 176.[PubMed][CrossRef]
177. Thompson JD, Higgins DG, Gibson TJ . 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22 : 4673 4680.[PubMed][CrossRef]