1887

Chapter 26 : Novel Physical Methods for Food Preservation

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Novel Physical Methods for Food Preservation, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819972/9781555819965.ch26-1.gif /docserver/preview/fulltext/10.1128/9781555819972/9781555819965.ch26-2.gif

Abstract:

There is a growing consumer demand for safe foods that are free of additives, minimally processed, and fresh-like in appearance and taste. While conventional thermal processing methods can address microbial safety considerations, the severity of processing invariably lowers the quality of food. To address these needs, numerous nonthermal processing methods are under investigation. In this chapter, we highlight some of these physical, nonthermal processing technologies and discuss their mechanisms of action, their benefits over conventional technologies, and their potential limitations.

Citation: Bastarrachea L, Tikekar R. 2019. Novel Physical Methods for Food Preservation, p 695-704. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch26
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 26.1
Figure 26.1

DPCD processing diagram.

Citation: Bastarrachea L, Tikekar R. 2019. Novel Physical Methods for Food Preservation, p 695-704. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 26.2
Figure 26.2

Possible mechanism for the antimicrobial effect of DPCD.

Citation: Bastarrachea L, Tikekar R. 2019. Novel Physical Methods for Food Preservation, p 695-704. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 26.3
Figure 26.3

Capabilities for removal of different substances by different types of filtration ( ).

Citation: Bastarrachea L, Tikekar R. 2019. Novel Physical Methods for Food Preservation, p 695-704. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 26.4
Figure 26.4

Antimicrobial effect of plasma.

Citation: Bastarrachea L, Tikekar R. 2019. Novel Physical Methods for Food Preservation, p 695-704. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 26.5
Figure 26.5

Application of a functional compound to an inert surface.

Citation: Bastarrachea L, Tikekar R. 2019. Novel Physical Methods for Food Preservation, p 695-704. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 26.6
Figure 26.6

Effect of suspended particles and solutes on the antimicrobial activity of UV irradiation.

Citation: Bastarrachea L, Tikekar R. 2019. Novel Physical Methods for Food Preservation, p 695-704. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555819972.ch26
1. Balaban MO, Duong T . 2014. Dense phase carbon dioxide research: current focus and directions. Agric Agric Sci Procedia 2 : 2 9[CrossRef].
2. Levelt Sengers JM, . 2000. Supercritical fluids: Their properties and applications, p 1 29. In Kiran E, Debenedetti PG, Peters CJ (ed), Supercritical Fluids: Fundamentals and Applications. Kluwer Academic Publishers, Boston, MA.[CrossRef]
3. Knez Z, . 2016. Food processing using supercritical fluids, p. 413–442. In Nedović V, Raspor P, Lević J, Šaponjac VT, Barbosa-Cánovas GV (ed), Emerging and Traditional Technologies for Safe, Healthy and Quality Food. Springer International Publisher, New York, NY.
4. Damar S, Balaban MO, Sims CA . 2009. Continuous dense-phase CO 2 processing of a coconut water beverage. Int J Food Sci Technol 44 : 666 673[CrossRef].
5. Yao C, Li X, Bi W, Jiang C . 2014. Relationship between membrane damage, leakage of intracellular compounds, and inactivation of Escherichia coli treated by pressurized CO 2. J Basic Microbiol 54 : 858 865[CrossRef].[PubMed]
6. Yuk HG, Sampedro F, Fan X, Geveke DJ . 2014. Nonthermal processing of orange juice using a pilot-plant scale supercritical carbon dioxide system with a gas-liquid metal contactor. J Food Process Preserv 38 : 630 638[CrossRef].
7. Rodríguez-Hernández J, . 2017. Antibacterial polymeric membranes, p 205 230. In Rodríguez-Hernández J (ed), Polymers against Microorganisms: On the Race to Efficient Antimicrobial Materials. Springer, Cham, Switzerland.[CrossRef]
8. Shi J, Xue SJ, Ye X, Jiang Y, Ma Y, Li Y, Zheng X, . 2012. Separation technology in food processing, p 764 784. In Simpson BK (ed), Food Biochemistry and Food Processing, 2nd ed. John Wiley & Sons, Hoboken, NJ.[CrossRef]
9. Walsh SE, Denyer SP, . 2012. Filtration sterilization, p 343 370. In Fraise AP, Maillard J-Y, Sattar S (ed), Principles and Practice of Disinfection, Preservation, and Sterilization, 5th ed. John Wiley & Sons, Chichester, United Kingdom.
10. Cook C, Gude VG, . 2017. Characteristics of chitosan nanoparticles for water and wastewater treatment: chitosan for water treatment, p 223 261. In Saleh TA (ed), Advanced Nanomaterials for Water Engineering, Treatment, and Hydraulics. IGI Global, Hershey, PA.[CrossRef]
11. Ozay Y, Dizge N, Gulsen HE, Akarsu C, Harputlu E, Ozer E, Unyayar A, Ocakoglu K . 2016. Investigation of electroactive and antibacterial properties of polyethersulfone membranes blended with copper nanoparticles. Clean Soil Air Water 44 : 930 937.
12. Ng LY, Mohammad AW, Leo CP, Hilal N . 2013. Polymeric membranes incorporated with metal / metal oxide nanoparticles: a comprehensive review. Desalination 308 : 15 33[CrossRef].
13. Blel W, Limousy L, Dutournié P, Ponche A, Boucher A, Le Fellic M . 2017. Study of the antimicrobial and antifouling properties of different oxide surfaces. Environ Sci Pollut Res Int 24 : 9847 9858[CrossRef].[PubMed]
14. Niemira BA . 2012. Cold plasma decontamination of foods. Annu Rev Food Sci Technol 3 : 125 142[CrossRef].[PubMed]
15. Lieberman MA, Lichtenberg AJ . 2005. Principles of Plasma Discharges and Materials Processing, 2nd ed. Wiley-Interscience, Hoboken, NJ.[CrossRef]
16. Smeu I, Nicolau AI . 2014. Enhancement of food safety—antimicrobial effectiveness of cold plasma treatments. Ann Univ Dunarea Jos Galati Fascicle VI Food Technol 38 : 9 20.
17. Ehlbeck J, Schnabel U, Andrasch M, Stachowiak J, Stolz N, Fröhling A, Schlüter O, Weltmann K-D . 2015. Plasma treatment of food. Contrib Plasma Phys 55 : 753 757[CrossRef].
18. Ziuzina D, Patil S, Cullen PJ, Keener KM, Bourke P . 2014. Atmospheric cold plasma inactivation of Escherichia coli, Salmonella enterica serovar Typhimurium and Listeria monocytogenes inoculated on fresh produce. Food Microbiol 42 : 109 116[CrossRef].[PubMed]
19. Modic M, McLeod NP, Sutton JM, Walsh JL . 2017. Cold atmospheric pressure plasma elimination of clinically important single- and mixed-species biofilms. Int J Antimicrob Agents 49 : 375 378[CrossRef].[PubMed]
20. Bermúdez-Aguirre D, Wemlinger E, Pedrow P, Barbosa-Cánovas G, Garcia-Pérez M . 2013. Effect of atmospheric pressure cold plasma (APCP) on the inactivation of Escherichia coli in fresh produce. Food Control 34 : 149 157[CrossRef].
21. Ulbin-Figlewicz N, Brychcy E, Jarmoluk A . 2015. Effect of low-pressure cold plasma on surface microflora of meat and quality attributes. J Food Sci Technol 52 : 1228 1232[CrossRef].[PubMed]
22. Rothrock MJ Jr, Zhuang H, Lawrence KC, Bowker BC, Gamble GR, Hiett KL . 2017. In-package inactivation of pathogenic and spoilage bacteria associated with poultry using dielectric barrier discharge-cold plasma treatments. Curr Microbiol 74 : 149 158[CrossRef].[PubMed]
23. Grzegorzewski F, Ehlbeck J, Schlüter O, Kroh LW, Rohn S . 2011. Treating lamb's lettuce with a cold plasma—influence of atmospheric pressure Ar plasma immanent species on the phenolic profile of Valerianella locusta. LWT Food Sci Technol 44 : 2285 2289[CrossRef].
24. Centers for Disease Control and Prevention . 2011. Vital signs: incidence and trends of infection with pathogens transmitted commonly through food—Foodborne Diseases Active Surveillance Network, 10 U.S. sites, 1996-2010. MMWR Morb Mortal Wkly Rep 60 : 749755.[PubMed]
25. Bastarrachea LJ, Denis-Rohr A, Goddard JM . 2015. Antimicrobial food equipment coatings: applications and challenges. Annu Rev Food Sci Technol 6 : 97 118[CrossRef].[PubMed]
26. Ratner BD . 1995. Surface modification of polymers: chemical, biological and surface analytical challenges. Biosens Bioelectron 10 : 797 804[CrossRef].[PubMed]
27. Goddard JM, Hotchkiss JH . 2007. Polymer surface modification for the attachment of bioactive compounds. Prog Polym Sci 32 : 698 725[CrossRef].
28. Barish JA, Goddard JM . 2011. Topographical and chemical characterization of polymer surfaces modified by physical and chemical processes. J Appl Polym Sci 120 : 2863 2871[CrossRef].
29. Bastarrachea LJ, Goddard JM . 2013. Development of antimicrobial stainless steel via surface modification with N-halamines: characterization of surface chemistry and N-halamine chlorination. J Appl Polym Sci 127 : 821 831[CrossRef].
30. Alf ME, Asatekin A, Barr MC, Baxamusa SH, Chelawat H, Ozaydin-Ince G, Petruczok CD, Sreenivasan R, Tenhaeff WE, Trujillo NJ, Vaddiraju S, Xu J, Gleason KK . 2010. Chemical vapor deposition of conformal, functional, and responsive polymer films. Adv Mater 22 : 1993 2027[CrossRef].[PubMed]
31. Bastarrachea LJ, Goddard JM . 2016. Self-healing antimicrobial polymer coating with efficacy in the presence of organic matter. Appl Surf Sci 378 : 479 488[CrossRef].
32. Hermanson GT . 2008. Bioconjugate Techniques, 2nd ed. Academic Press, Boston, MA.
33. Tikekar R V, Laborde LF, Anantheswaran RC,. 2010. Fruit juices: ultraviolet light processing, p 675 680. In Heldman DR, Moraru CI (ed), Encyclopedia of Agricultural, Food, and Biological Engineering. Taylor & Francis Group, London, United Kingdom.
34. Guerrero-Beltrán JA, Barbosa-Cánovas GV . 2004. Advantages and limitations on processing foods by UV light. Food Sci Technol Int 10 : 137 147[CrossRef].
35. Koutchma T . 2008. UV light for processing foods. Ozone Sci Eng 30 : 93 98[CrossRef].
36. Koutchma T . 2009. Advances in ultraviolet light technology for non-thermal processing of liquid foods. Food Bioprocess Technol 2 : 138 155[CrossRef].
37. Park HS, Choi HJ, Kim KH . 2013. Effect of supercritical CO 2 modified with water cosolvent on the sterilization of fungal spore-contaminated barley seeds and the germination of barley seeds. J Food Saf 33 : 94 101[CrossRef].
38. Hongmei L, Zhong K, Liao X, Hu X . 2014. Inactivation of microorganisms naturally present in raw bovine milk by high-pressure carbon dioxide. Int J Food Sci Technol 49 : 696 702[CrossRef].
39. Gunes G, Blum LK, Hotchkiss JH . 2005. Inactivation of yeasts in grape juice using a continuous dense phase carbon dioxide processing system. J Sci Food Agric 85 : 2362 2368[CrossRef].
40. Qiu W-Z, Zhao Z-S, Du Y, Hu M-X, Xu Z-K . 2017. Antimicrobial membrane surfaces via efficient polyethyleneimine immobilization and cationization. Appl Surf Sci 426 : 972 979[CrossRef].
41. Hou S, Xing J, Dong X, Zheng J, Li S . 2017. Integrated antimicrobial and antifouling ultrafiltration membrane by surface grafting PEO and N-chloramine functional groups. J Colloid Interface Sci 500 : 333 340[CrossRef].[PubMed]
42. Weng R, Chen L, Lin S, Zhang H, Wu H, Liu K, Cao S, Huang L . 2017. Preparation and characterization of antibacterial cellulose/chitosan nanofiltration membranes. Polymers (Basel) 9 : 116.
43. Liu C, Mao H, Zhu J, Zhang S . 2017. Ultrafiltration membranes with tunable morphology and performance prepared by blending quaternized cardo poly(arylene ether sulfone)s ionomers with polysulfone. Separ Purif Tech 179 : 215 224[CrossRef].
44. Şimşek EN, Akdağ A, Çulfaz-Emecen PZ . 2016. Modification of poly(ether sulfone) for antimicrobial ultrafiltration membranes. Polymer (Guildf) 106 : 91 99[CrossRef].
45. Niemira BA . 2012. Cold plasma reduction of Salmonella and Escherichia coli O157:H7 on almonds using ambient pressure gases. J Food Sci 77 : M171 M175[CrossRef].[PubMed]
46. Hertwig C, Reineke K, Ehlbeck J, Knorr D, Schlüter O . 2015. Decontamination of whole black pepper using different cold atmospheric pressure plasma applications. Food Control 55 : 221 229[CrossRef].
47. Flores-Rojas GG, Pino-Ramos VH, López-Saucedo F, Concheiro A, Alvarez-Lorenzo C, Bucio E . 2017. Improved covalent immobilization of lysozyme on silicone rubber-films grafted with poly(ethylene glycol dimethacrylate-co-glycidylmethacrylate). Eur Polym J 95 : 27 40[CrossRef].
48. Ibarguren C, Audisio MC, Sham EL, Müller FA, Farfán Torres EM . 2017. Adsorption of nisin on montmorillonite: a concentration strategy. J Food Process Preserv 41 : e12788.
49. Zhou L, Lai Y, Huang W, Huang S, Xu Z, Chen J, Wu D . 2015. Biofunctionalization of microgroove titanium surfaces with an antimicrobial peptide to enhance their bactericidal activity and cytocompatibility. Colloids Surf B Biointerfaces 128 : 552 560[CrossRef].[PubMed]
50. de Oliveira EF, Cossu A, Tikekar RV, Nitin N . 2017. Enhanced antimicrobial activity based on a synergistic combination of sublethal levels of stresses induced by UV-A light and organic acids. Appl Environ Microbiol 83 :e00383-17[CrossRef].[PubMed]
51. Mikš-Krajnik M, James Feng LX, Bang WS, Yuk H-G . 2017. Inactivation of Listeria monocytogenes and natural microbiota on raw salmon fillets using acidic electrolyzed water, ultraviolet light or/and ultrasounds. Food Control 74 : 54 60[CrossRef].
52. Lacivita V, Conte A, Manzocco L, Plazzotta S, Zambrini VA, Del Nobile MA, Nicoli MC . 2016. Surface UV-C light treatments to prolong the shelf-life of Fiordilatte cheese. Innov Food Sci Emerg Technol 36 : 150 155[CrossRef].
53. Tawema P, Han J, Vu KD, Salmieri S, Lacroix M . 2016. Antimicrobial effects of combined UV-C or gamma radiation with natural antimicrobial formulations against Listeria monocytogenes, Escherichia coli O157:H7, and total yeasts/molds in fresh cut cauliflower. Lebensm Wiss Technol 65 : 451 456[CrossRef].

Tables

Generic image for table
Table 26.1

Recent studies on DPCD applications in foods

Citation: Bastarrachea L, Tikekar R. 2019. Novel Physical Methods for Food Preservation, p 695-704. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch26
Generic image for table
Table 26.2

Results of recent studies on antimicrobial filtration technology applications for foods

Citation: Bastarrachea L, Tikekar R. 2019. Novel Physical Methods for Food Preservation, p 695-704. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch26
Generic image for table
Table 26.3

Results of studies on antimicrobial plasma applications in foods

Citation: Bastarrachea L, Tikekar R. 2019. Novel Physical Methods for Food Preservation, p 695-704. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch26
Generic image for table
Table 26.4

Examples of the use of antimicrobial coatings for food applications

Citation: Bastarrachea L, Tikekar R. 2019. Novel Physical Methods for Food Preservation, p 695-704. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch26
Generic image for table
Table 26.5

Examples of UV irradiation for inactivating microbes in foods

Citation: Bastarrachea L, Tikekar R. 2019. Novel Physical Methods for Food Preservation, p 695-704. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch26

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error