Chapter 27 : Chemical Preservatives and Natural Food Antimicrobials

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Chemical Preservatives and Natural Food Antimicrobials, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819972/9781555819965.ch27-1.gif /docserver/preview/fulltext/10.1128/9781555819972/9781555819965.ch27-2.gif


Food antimicrobials are chemical preservatives added to or present in foods that retard growth of or kill microbes, but they do not include therapeutic antibiotic-type compounds used for growth promotion or disease treatment in food animals. These compounds are divided into the traditional and the naturally occurring. Antimicrobials are classified as traditional when they (i) have been used for many years, (ii) are approved by many countries and/or regulatory bodies for inclusion in foods as antimicrobial agents, or (iii) are produced by synthetic processes as opposed to being natural extracts (e.g., industrial fermentation of nisin from subsp. ). Ironically, many synthetic and traditional food antimicrobials are found in nature; examples include acetic acid from vinegar and lactoperoxidase in fluid milk. The use of natural antimicrobials will likely continue to grow in popularity. Additional research is needed to determine the levels of natural antimicrobials required for successful inhibition of foodborne pathogens, their mechanisms of action, and their safety. The development of novel applications of existing antimicrobials, including encapsulation, incorporation into edible polymers and the use of combinations of antimicrobials capable of synergistic inhibition of foodborne microorganisms, is being investigated. Major challenges in future applications include demonstrating the efficacy of antimicrobial compounds in food products at concentrations that do not have adverse sensory effects, as well as controlling the cost of these interventions.

Citation: Taylor T, Ravishankar S, Bhargava K, Juneja V. 2019. Chemical Preservatives and Natural Food Antimicrobials, p 705-731. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch27
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 27.1
Figure 27.1

Organic acids used as antimicrobial food preservatives.

Citation: Taylor T, Ravishankar S, Bhargava K, Juneja V. 2019. Chemical Preservatives and Natural Food Antimicrobials, p 705-731. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 27.2
Figure 27.2


Citation: Taylor T, Ravishankar S, Bhargava K, Juneja V. 2019. Chemical Preservatives and Natural Food Antimicrobials, p 705-731. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 27.3
Figure 27.3

Apple-, carrot-, and hibiscus-based antimicrobial edible films containing carvacrol and cinnamaldehyde that can be used as wrappings for meat products or added as ingredients in salad bags.

Citation: Taylor T, Ravishankar S, Bhargava K, Juneja V. 2019. Chemical Preservatives and Natural Food Antimicrobials, p 705-731. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Taylor TM, Joerger R, Palou E, López-Malo A, Avila-Sosa R, Cálix-Lara T, . 2012. Alternatives to traditional antimicrobials for organically processed meat and poultry, p 211 237. In Ricke SC, Van Loo EJ, Johnson MG, O'Bryan CA (ed), Organic Meat Production and Processing. Blackwell Publishing, Ltd, New York, NY.[CrossRef]
2. Davidson PM, Branen AL, . 2005. Food antimicrobials—an introduction, p 1 10. In Davidson PM, Sofos JN, Branen AL (ed), Antimicrobials in Food. CRC Press, New York, NY.[CrossRef]
3. Leistner L . 2000. Basic aspects of food preservation by hurdle technology. Int J Food Microbiol 55 : 181 186.[CrossRef][PubMed]
4. Leistner L, Gorris LGM . 1995. Food preservation by hurdle technology. Trends Food Sci Technol 6 : 41 46.[CrossRef].
5. Robach MC . 1980. Use of preservatives to control microorganisms in food. Food Technol 34 : 81 84.
6. Nakai SA, Siebert KJ . 2003. Validation of bacterial growth inhibition models based on molecular properties of organic acids. Int J Food Microbiol 86 : 249 255.[CrossRef][PubMed]
7. Ricke SC . 2003. Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poult Sci 82 : 632 639.[CrossRef][PubMed]
8. Doores S, . 2005. Organic acids, p 91 142. In Davidson PM, Sofos JN, Branen AL (ed), Antimicrobials in Foods. CRC Press, New York, NY.[CrossRef]
9. Elgayyar M, Draughon FA, Golden DA, Mount JR . 2001. Antimicrobial activity of essential oils from plants against selected pathogenic and saprophytic microorganisms. J Food Prot 64 : 1019 1024.[CrossRef][PubMed]
10. Lambert RJ, Stratford M . 1999. Weak-acid preservatives: modelling microbial inhibition and response. J Appl Microbiol 86 : 157 164.[CrossRef][PubMed]
11. Carpenter CE, Broadbent JR . 2009. External concentration of organic acid anions and pH: key independent variables for studying how organic acids inhibit growth of bacteria in mildly acidic foods. J Food Sci 74 : R12 R15.[CrossRef][PubMed]
12. Cherrington CA, Hinton M, Chopra I . 1990. Effect of short-chain organic acids on macromolecular synthesis in Escherichia coli. J Appl Bacteriol 68 : 69 74.[CrossRef][PubMed]
13. Cherrington CA, Hinton M, Mead GC, Chopra I . 1991. Organic acids: chemistry, antibacterial activity and practical applications. Adv Microb Physiol 32 : 87 108.[CrossRef][PubMed]
14. Koczoń P . 2009. Growth inhibition mode of action of selected benzoic acid derivatives against the yeast Pichia anomala. J Food Prot 72 : 791 800.[CrossRef][PubMed]
15. Alakomi H-L, Skyttä E, Saarela M, Mattila-Sandholm T, Latva-Kala K, Helander IM . 2000. Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Appl Environ Microbiol 66 : 2001 2005.[CrossRef][PubMed]
16. Paul B, Hirshfield I . 2003. The effect of acid treatment on survival and protein expression of a laboratory K-12 strain Escherichia coli. Res Microbiol 154 : 115 121.[CrossRef][PubMed]
17. Beales N . 2004. Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH and osmotic stress: a review. Compr Rev Food Sci Food Saf 3 : 1 20.[CrossRef].
18. Buchanan RL, Edelson SG . 1999. pH-dependent stationary-phase acid resistance response of enterohemorrhagic Escherichia coli in the presence of various acidulants. J Food Prot 62 : 211 218.[CrossRef][PubMed]
19. Davidson PM, Harrison MA . 2002. Resistance and adaptation to food antimicrobials, sanitizers, and other process controls. Food Technol 56 : 69 78.
20. Grosulescu C, Juneja VK, Ravishankar S . 2011. Effects and interactions of sodium lactate, sodium diacetate, and pediocin on the thermal inactivation of starved Listeria monocytogenes on bologna. Food Microbiol 28 : 440 446.[CrossRef][PubMed]
21. Jiang X, Xu Y, Li Y, Zhang K, Liu L, Wang H, Tian J, Ying H, Shi L, Yu T . 2017. Characterization and horizontal transfer of qacH-associated class 1 integrons in Escherichia coli isolated from retail meats. Int J Food Microbiol 258 : 12 17.[CrossRef][PubMed]
22. Davidson P, Taylor T, Santiago L, . 2005. Pathogen resistance and adaptation to natural antimicrobials, p 460 483. In Griffiths M (ed), Understanding Pathogen Behaviour: Virulence, Stress Response and Resistance. Woodhead Publishing, Ltd, Cambridge, United Kingdom.[CrossRef]
23. Theron MM, Lues JFR . 2010. Organic Acids and Food Preservation. CRC Press, Boca Raton, FL.[CrossRef]
24. U.S. Department of Agriculture Food Safety and Inspection Service . 2017. Safe and suitable ingredients used in the production of meat, poultry, and egg products. Directive 7120.1, Rev. 42. Food Safety and Inspection Service, Washington, DC. https://www.fsis.usda.gov/wps/wcm/connect/bab10e09-aefa-483b-8be8-809a1f051d4c/7120.1.pdf?MOD=AJPERES.
25. Geng P, Zhang L, Shi GY . 2017. Omics analysis of acetic acid tolerance in Saccharomyces cerevisiae. World J Microbiol Biotechnol 33 : 94.[CrossRef][PubMed]
26. Svoboda A, Shaw A, Wilson L, Mendonca A, Nair A, Daraba A . 2016. The effects of produce washes on the quality and shelf life of “cantaloupe” ( Cucumis melo var. cantalupensis) and “watermelon” ( Citrullus lantus var. lanatus). J Food Qual 39 : 773 779.[CrossRef].
27. Rangel-Vargas E, Gómez-Aldapa CA, Falfan-Cortes RN, Rodríguez-Marín ML, Godínez-Oviedo A, Acevedo-Sandoval OA, Castro-Rosas J . 2017. Attachment of 13 types of foodborne bacteria to jalapeño and serrano peppers and antibacterial effect of roselle calyx extracts, sodium hypochlorite, colloidal silver, and acetic acid against these foodborne bacteria on peppers. J Food Prot 80 : 406 413.[CrossRef][PubMed]
28. Sullivan EK, Manns DC, Churey JJ, Worobo RW, Padilla-Zakour OI . 2013. Pickled egg production: inactivation rate of Salmonella, Escherichia coli O157:H7, Listeria monocytogenes, and Staphylococcus aureus during acidification step. J Food Prot 76 : 1846 1853.[CrossRef][PubMed]
29. Scheinberg JA, Valderrama WB, Cutter CN . 2013. The effects of a pickling process on the reduction of Escherichia coli O157:H7, Listeria monocytogenes, Salmonella spp. and Staphylococcus aureus inoculated onto hard-cooked eggs. J Food Saf 33 : 413 417.[CrossRef].
30. Burin RCK, Silva A Jr, Nero LA . 2014. Influence of lactic acid and acetic acid on Salmonella spp. growth and expression of acid tolerance-related genes. Food Res Int 64 : 726 732.[CrossRef][PubMed]
31. Lues JFR, Theron MM . 2012. Comparing organic acids and salt derivatives as antimicrobials against selected poultry-borne Listeria monocytogenes strains in vitro. Foodborne Pathog Dis 9 : 1126 1129.[CrossRef][PubMed]
32. Cheng C, Yang Y, Dong Z, Wang X, Fang C, Yang M, Sun J, Xiao L, Fang W, Song H . 2015. Listeria monocytogenes varies among strains to maintain intracellular pH homeostasis under stresses by different acids as analyzed by a high-throughput microplate-based fluorometry. Front Microbiol 6 : 15.[CrossRef][PubMed]
33. Smith JL, Liu Y, Paoli GC . 2013. How does Listeria monocytogenes combat acid conditions? Can J Microbiol 59 : 141 152.[CrossRef][PubMed]
34. Komora N, Bruschi C, Magalhães R, Ferreira V, Teixeira P . 2017. Survival of Listeria monocytogenes with different antibiotic resistance patterns to food-associated stresses. Int J Food Microbiol 245 : 79 87.[CrossRef][PubMed]
35. Birk T, Grønlund AC, Christensen BB, Knøchel S, Lohse K, Rosenquist H . 2010. Effect of organic acids and marination ingredients on the survival of Campylobacter jejuni on meat. J Food Prot 73 : 258 265.[CrossRef][PubMed]
36. Birk T, Wik MT, Lametsch R, Knøchel S . 2012. Acid stress response and protein induction in Campylobacter jejuni isolates with different acid tolerance. BMC Microbiol 12 : 174.[CrossRef][PubMed]
37. Nei D, Enomoto K, Nakamura N . 2015. A gaseous acetic acid treatment to disinfect fenugreek seeds and black pepper inoculated with pathogenic and spoilage bacteria. Food Microbiol 49 : 226 230.[CrossRef][PubMed]
38. Mirhosseini M, Arjmand V . 2014. Reducing pathogens by using zinc oxide nanoparticles and acetic acid in sheep meat. J Food Prot 77 : 1599 1604.[CrossRef][PubMed]
39. Bae Y-M, Lee S-Y . 2015. Combined effects of organic acids and salt depending on type of acids and pathogens in laboratory media and acidified pickle. J Appl Microbiol 119 : 455 464.[CrossRef][PubMed]
40. Li Y, Wu C . 2013. Enhanced inactivation of Salmonella Typhimurium from blueberries by combinations of sodium dodecyl sulfate with organic acids or hydrogen peroxide. Food Res Int 54 : 1553 1559.[CrossRef].
41. Liato V, Labrie S, Aïder M . 2017. Study of the antibacterial activity of electro-activated solutions of salts of weak organic acids on Salmonella enterica, Staphylococcus aureus and Listeria monocytogenes. J Ind Microbiol Biotechnol 44 : 23 33.[CrossRef][PubMed]
42. McDonnell LM, Glass KA, Sindelar JJ . 2013. Identifying ingredients that delay outgrowth of Listeria monocytogenes in natural, organic, and clean-label ready-to-eat meat and poultry products. J Food Prot 76 : 1366 1376.[CrossRef][PubMed]
43. Badvela MK, Dickson JS, Sebranek JG, Schroeder WD . 2016. Inhibition of Listeria monocytogenes by buffered dry vinegar in reduced-sodium ready-to-eat uncured turkey stored at 4°C. J Food Prot 79 : 1396 1403.[CrossRef][PubMed]
44. King AM, Glass KA, Milkowski AL, Sindelar JJ . 2015. Impact of clean-label antimicrobials and nitrite derived from natural sources on the outgrowth of Clostridium perfringens during cooling of deli-style turkey breast. J Food Prot 78 : 946 953.[CrossRef][PubMed]
45. Gupta S, Ravishankar S . 2005. A comparison of the antimicrobial activity of garlic, ginger, carrot, and turmeric pastes against Escherichia coli O157:H7 in laboratory buffer and ground beef. Foodborne Pathog Dis 2 : 330 340.[CrossRef][PubMed]
46. Ahn DU, Kim IS, Lee EJ . 2013. Irradiation and additive combinations on the pathogen reduction and quality of poultry meat. Poult Sci 92 : 534 545.[CrossRef][PubMed]
47. Ben-Fadhel Y, Saltaji S, Khlifi MA, Salmieri S, Dang Vu K, Lacroix M . 2017. Active edible coating and γ-irradiation as cold combined treatments to assure the safety of broccoli florets ( Brassica oleracea L.). Int J Food Microbiol 241 : 30 38.[CrossRef][PubMed]
48. Chipley JR, . 2005. Sodium benzoate and benzoic acid, p 11 48. In Davidson PM, Sofos JN, Branen AL (ed), Antimicrobials in Foods. CRC Press, Inc, New York, NY.[CrossRef]
49. Jay JM . 2000. Modern Food Microbiology, 6th ed. Springer, New York, NY.[CrossRef]
50. Davidson PM, Taylor TM, Schmidt SE, . 2013. Chemical preservatives and natural antimicrobial compounds, p 765 801. In Doyle MP, Buchanan RL (ed), Food Microbiology: Fundamentals and Frontiers, 4th ed. ASM Press, Washington, DC.
51. Critzer FJ, Dsouza DH, Golden DA . 2008. Transcription analysis of stx1, marA, and eaeA genes in Escherichia coli O157:H7 treated with sodium benzoate. J Food Prot 71 : 1469 1474.[CrossRef][PubMed]
52. Critzer FJ, D'Souza DH, Saxton AM, Golden DA . 2010. Increased transcription of the phosphate-specific transport system of Escherichia coli O157:H7 after exposure to sodium benzoate. J Food Prot 73 : 819 824.[CrossRef][PubMed]
53. Creamer KE, Ditmars FS, Basting PJ, Kunka KS, Hamdallah IN, Bush SP, Scott Z, He A, Penix SR, Gonzales AS, Eder EK, Camperchioli DW, Berndt A, Clark MW, Rouhier KA, Slonczewski JL . 2016. Benzoate- and salicylate-tolerant strains of Escherichia coli K-12 lose antibiotic resistance during laboratory evolution. Appl Environ Microbiol 83 : e02736-16.[PubMed]
54. Er B, Demirhan B, Onurdağ FK, Özgacar , Öktem AB . 2014. Antimicrobial and antibiofilm effects of selected food preservatives against Salmonella spp. isolated from chicken samples. Poult Sci 93 : 695 701.[CrossRef][PubMed]
55. Gabriel AA . 2015. Combinations of selected physical and chemical hurdles to inactivate Escherichia coli O157:H7 in apple and orange juices. Food Control 50 : 722 728.[CrossRef].
56. Sewlikar S, D'Souza DH . 2017. Antimicrobial effects of Quillaja saponaria extract against Escherichia coli O157:H7 and the emerging non-O157 Shiga toxin-producing E. coli. J Food Sci 82 : 1171 1177.[CrossRef][PubMed]
57. Sagoo SK, Board R, Roller S . 2002. Chitosan potentiates the antimicrobial action of sodium benzoate on spoilage yeasts. Lett Appl Microbiol 34 : 168 172.[CrossRef][PubMed]
58. Khalili ST, Mohsenifar A, Beyki M, Zhaveh S, Rahmani-Cherati T, Abdollahi A, Bayat M, Tabatabaei M . 2015. Encapsulation of thyme essential oils in chitosan-benzoic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. Lebensm Wiss Technol 60 : 502 508.[CrossRef].
59. Ghaderi-Ghahfarokhi M, Barzegar M, Sahari MA, Ahmadi Gavlighi H, Gardini F . 2017. Chitosan-cinnamon essential oil nano-formulation: application as a novel additive for controlled release and shelf life extension of beef patties. Int J Biol Macromol 102 : 19 28.[CrossRef][PubMed]
60. Hadian M, Rajaei A, Mohsenifar A, Tabatabaei M . 2017. Encapsulation of Rosmarinus officinalis essential oils in chitosan-benzoic acid nanogel with enhanced antibacterial activity in beef cutlet against Salmonella typhimurium during refrigerated storage. Lebensm Wiss Technol 84 : 394 401.[CrossRef].
61. Lynch H, Leonard FC, Walia K, Lawlor PG, Duffy G, Fanning S, Markey BK, Brady C, Gardiner GE, Argüello H . 2017. Investigation of in-feed organic acids as a low cost strategy to combat Salmonella in grower pigs. Prev Vet Med 139( Pt A) : 50 57.
62. Broom LJ . 2015. Organic acids for improving intestinal health of poultry. Worlds Poult Sci J 71 : 630 642.[CrossRef].
63. McWilliam Leitch EC, Stewart CS . 2002. Escherichia coli O157 and non-O157 isolates are more susceptible to l-lactate than to d-lactate. Appl Environ Microbiol 68 : 4676 4678.[CrossRef][PubMed]
64. Iraporda C, Abatemarco Júnior M, Neumann E, Nunes AC, Nicoli JR, Abraham AG, Garrote GL . 2017. Biological activity of the non-microbial fraction of kefir: antagonism against intestinal pathogens. J Dairy Res 84 : 339 345.[CrossRef][PubMed]
65. Graves T, Narendranath NV, Dawson K, Power R . 2006. Effect of pH and lactic or acetic acid on ethanol productivity by Saccharomyces cerevisiae in corn mash. J Ind Microbiol Biotechnol 33 : 469 474.[CrossRef][PubMed]
66. Papadopoulos LS, Miller RK, Acuff GR, Vanderzant C, Cross HR . 1991. Effect of sodium lactate on microbial and chemical composition of cooked beef during storage. J Food Sci 56 : 341 347.[CrossRef].
67. Blanco-Lizarazo CM, Betancourt-Cortés R, Lombana A, Carrillo-Castro K, Sotelo-Díaz I . 2017. Listeria monocytogenes behaviour and quality attributes during sausage storage affected by sodium nitrite, sodium lactate and thyme essential oil. Food Sci Technol Int 23 : 277 288.[CrossRef][PubMed]
68. Castillo A, Lucia LM, Goodson KJ, Savell JW, Acuff GR . 1999. Decontamination of beef carcass surface tissue by steam vacuuming alone and combined with hot water and lactic acid sprays. J Food Prot 62 : 146 151.[CrossRef][PubMed]
69. Castillo A, Lucia LM, Goodson KJ, Savell JW, Acuff GR . 1998. Comparison of water wash, trimming, and combined hot water and lactic acid treatments for reducing bacteria of fecal origin on beef carcasses. J Food Prot 61 : 823 828.[CrossRef][PubMed]
70. Byelashov OA, Daskalov H, Geornaras I, Kendall PA, Belk KE, Scanga JA, Smith GC, Sofos JN . 2010. Reduction of Listeria monocytogenes on frankfurters treated with lactic acid solutions of various temperatures. Food Microbiol 27 : 783 790.[CrossRef][PubMed]
71. Casco G, Taylor TM, Alvarado C . 2015. Evaluation of novel micronized encapsulated essential oil-containing phosphate and lactate blends for growth inhibition of Listeria monocytogenes and Salmonella on poultry bologna, pork ham, and roast beef ready-to-eat deli loaves. J Food Prot 78 : 698 706.[CrossRef][PubMed]
72. Nuñez de Gonzalez MT, Keeton JT, Acuff GR, Ringer LJ, Lucia LM . 2004. Effectiveness of acidic calcium sulfate with propionic and lactic acid and lactates as postprocessing dipping solutions to control Listeria monocytogenes on frankfurters with or without potassium lactate and stored vacuum packaged at 4.5°C. J Food Prot 67 : 915 921.[CrossRef][PubMed]
73. Reddy Velugoti P, Rajagopal L, Juneja V, Thippareddi H . 2007. Use of calcium, potassium, and sodium lactates to control germination and outgrowth of Clostridium perfringens spores during chilling of injected pork. Food Microbiol 24 : 687 694.[CrossRef][PubMed]
74. Mohan A, Pohlman FW . 2016. Role of organic acids and peroxyacetic acid as antimicrobial intervention for controlling Escherichia coli O157:H7 on beef trimmings. Lebensm Wiss Technol 65 : 868 873.[CrossRef].
75. DeGeer SL, Wang L, Hill GN, Singh M, Bilgili SF, Bratcher CL . 2016. Optimizing application parameters for lactic acid and sodium metasilicate against pathogens on fresh beef, pork and deli meats. Meat Sci 118 : 28 33.[CrossRef][PubMed]
76. Li S, Kundu D, Holley RA . 2015. Use of lactic acid with electron beam irradiation for control of Escherichia coli O157:H7, non-O157 VTEC E. coli, and Salmonella serovars on fresh and frozen beef. Food Microbiol 46 : 34 39.[CrossRef][PubMed]
77. Aymerich T, Jofré A, Garriga M, Hugas M . 2005. Inhibition of Listeria monocytogenes and Salmonella by natural antimicrobials and high hydrostatic pressure in sliced cooked ham. J Food Prot 68 : 173 177.[CrossRef][PubMed]
78. Ilhak OI, Guran HS . 2014. Combined antimicrobial effect of thymol and sodium lactate against Listeria monocytogenes and Salmonella Typhimurium in fish patty. J Food Saf 34 : 211 217.[CrossRef].
79. García-Díez J, Alheiro J, Pinto AL, Soares L, Falco V, Fraqueza MJ, Patarata L . 2017. Influence of food characteristics and food additives on the antimicrobial effect of garlic and oregano essential oils. Foods 6 : 44.
80. Chibeu A, Agius L, Gao A, Sabour PM, Kropinski AM, Balamurugan S . 2013. Efficacy of bacteriophage LISTEX™P100 combined with chemical antimicrobials in reducing Listeria monocytogenes in cooked turkey and roast beef. Int J Food Microbiol 167 : 208 214.[CrossRef][PubMed]
81. Lourenço A, Kamnetz MB, Gadotti C, Diez-Gonzalez F . 2017. Antimicrobial treatments to control Listeria monocytogenes in queso fresco. Food Microbiol 64 : 47 55.[CrossRef][PubMed]
82. Lück E . 1990. Food applications of sorbic acid and its salts. Food Addit Contam 7 : 711 715.[CrossRef][PubMed]
83. Stopforth JD, Sofos JN, Busta FF, . 2005. Sorbic acid and sorbates, p 49 90. In Davidson PM, Sofos JN, Branen AL (ed), Antimicrobials in Foods. CRC Press, Boca Raton, FL.
84. Sofos JN, Pierson MD, Blocher JC, Busta FF . 1986. Mode of action of sorbic acid on bacterial cells and spores. Int J Food Microbiol 3 : 1 17.[CrossRef].
85. Lück E. 1976. Sorbic acid as a food preservative. Int Flavors Food Addit 7 : 122 124, 127.
86. Gliemmo MF, Schelegueda LI, Gerschenson LN, Campos CA . 2013. Effect of aspartame and other additives on the growth and thermal inactivation of Zygosaccharomyces bailii in acidfied aqueous systems. Food Res Int 53 : 209 217.[CrossRef].
87. Alcano MJ, Jahn RC, Scherer CD, Wigmann ÉF, Moraes VM, Garcia MV, Mallmann CA, Copetti MV . 2016. Susceptibility of Aspergillus spp. to acetic and sorbic acids based on pH and effect of sub-inhibitory doses of sorbic acid on ochratoxin A production. Food Res Int 81 : 25 30.[CrossRef].
88. Huang Y, Wilson M, Chapman B, Hocking AD . 2010. Evaluation of the efficacy of four weak acids as antifungal preservatives in low-acid intermediate moisture model food systems. Food Microbiol 27 : 33 36.[CrossRef][PubMed]
89. FAO/WHO . 2019. Food additive index. Accessed 2 April 2019. http://www.fao.org/gsfaonline/additives/index.html.
90. Ronning IE, Frank HA . 1987. Growth inhibition of putrefactive anaerobe 3679 caused by stringent-type response induced by protonophoric activity of sorbic acid. Appl Environ Microbiol 53 : 1020 1027.[PubMed]
91. Ronning IE, Frank HA . 1989. Morphological changes in putrefactive anaerobe 3679 ( Clostridium sporogenes) induced by sorbate, hydrochloric acid, and nitrite. Can J Microbiol 35 : 388 398.[CrossRef][PubMed]
92. Smoot LA, Pierson MD . 1981. Mechanisms of sorbate inhibition of Bacillus cereus T and Clostridium botulinum 62A spore germination. Appl Environ Microbiol 42 : 477 483.[PubMed]
93. Robach MC, Sofos JN . 1982. Use of sorbate in meat products, fresh poultry and poultry products: a review. J Food Prot 45 : 374 383.[CrossRef].
94. Sofos JN, Busta FF, Allen CE . 1979. Botulism control by nitrite and sorbate in cured meats: a review. J Food Prot 42 : 739 770.[CrossRef].
95. Pandey R, Vischer NOE, Smelt JPPM, van Beilen JWA, Ter Beek A, De Vos WH, Brul S, Manders EMM . 2016. Intracellular pH response to weak acid stress in individual vegetative Bacillus subtilis cells. Appl Environ Microbiol 82 : 6463 6471 ERRATUM Appl Environ Microbiol 83 : e00861-17.[CrossRef][PubMed]
96. van Beilen JWA, Teixeira de Mattos MJ, Hellingwerf KJ, Brul S . 2014. Distinct effects of sorbic acid and acetic acid on the electrophysiology and metabolism of Bacillus subtilis. Appl Environ Microbiol 80 : 5918 5926.[CrossRef][PubMed]
97. Ter Beek A, Wijman JGE, Zakrzewska A, Orij R, Smits GJ, Brul S . 2015. Comparative physiological and transcriptional analysis of weak organic acid stress in Bacillus subtilis. Food Microbiol 45( Pt A) : 71 82.[CrossRef][PubMed]
98. Drosinos EH, Skandamis PN, Mataragas M, . 2009. Antimicrobials treatment, p 255 296. In Toldrá F (ed), Safety of Meat and Processed Meat. Springer, New York, NY.[CrossRef]
99. Fernández-Segovia I, Escriche I, Fuentes A, Serra JA . 2007. Microbial and sensory changes during refrigerated storage of desalted cod ( Gadus morhua) preserved by combined methods. Int J Food Microbiol 116 : 64 72.[CrossRef][PubMed]
100. Lund BM, George SM, Franklin JG . 1987. Inhibition of type A and type B (proteolytic) Clostridium botulinum by sorbic acid. Appl Environ Microbiol 53 : 935 941.[PubMed]
101. Khanipour E, Flint SH, McCarthy OJ, Golding M, Palmer J, Ratkowsky DA, Ross T, Tamplin M . 2016. Modelling the combined effects of salt, sorbic acid and nisin on the probability of growth of Clostridium sporogenes in a controlled environment (nutrient broth). Food Control 62 : 32 43.[CrossRef].
102. Pandey R, Pieper GH, Ter Beek A, Vischer NOE, Smelt JPPM, Manders EMM, Brul S . 2015. Quantifying the effect of sorbic acid, heat and combination of both on germination and outgrowth of Bacillus subtilis spores at single cell resolution. Food Microbiol 52 : 88 96.[CrossRef][PubMed]
103. Mejlholm O, Dalgaard P . 2013. Development and validation of an extensive growth and growth boundary model for psychrotolerant Lactobacillus spp. in seafood and meat products. Int J Food Microbiol 167 : 244 260.[CrossRef][PubMed]
104. Louis P, Flint HJ . 2017. Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol 19 : 29 41.[CrossRef][PubMed]
105. Kasubuchi M, Hasegawa S, Hiramatsu T, Ichimura A, Kimura I . 2015. Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients 7 : 2839 2849.[CrossRef][PubMed]
106. Young JW . 1977. Gluconeogenesis in cattle: significance and methodology. J Dairy Sci 60 : 1 15.[CrossRef][PubMed]
107. Johns AT . 1951. Isolation of a bacterium, producing propionic acid, from the rumen of sheep. J Gen Microbiol 5 : 317 325.[CrossRef][PubMed]
108. Yun J, Lee DG . 2016. A novel fungal killing mechanism of propionic acid. FEMS Yeast Res 16 : fow089 fow8.[CrossRef][PubMed]
109. Guan W, Fan X . 2010. Combination of sodium chlorite and calcium propionate reduces enzymatic browning and microbial population of fresh-cut “Granny Smith” apples. J Food Sci 75 : M72 M77.[CrossRef][PubMed]
110. Dagnas S, Gauvry E, Onno B, Membré J-M . 2015. Quantifying effect of lactic, acetic, and propionic acids on growth of molds isolated from spoiled bakery products. J Food Prot 78 : 1689 1698.[CrossRef][PubMed]
111. Eklund T . 1985. Inhibition of microbial growth at different pH levels by benzoic and propionic acids and esters of p-hydroxybenzoic acid. Int J Food Microbiol 2 : 159 167.[CrossRef].
112. Oshima S, Rea MC, Lothe S, Morgan S, Begley M, O'Connor PM, Fitzsimmons A, Kamikado H, Walton R, Ross RP, Hill C . 2012. Efficacy of organic acids, bacteriocins, and the lactoperoxidase system in inhibiting the growth of Cronobacter spp. in rehydrated infant formula. J Food Prot 75 : 1734 1742.[CrossRef][PubMed]
113. Menconi A, Shivaramaiah S, Huff GR, Prado O, Morales JE, Pumford NR, Morgan M, Wolfenden A, Bielke LR, Hargis BM, Tellez G . 2013. Effect of different concentrations of acetic, citric, and propionic acid dipping solutions on bacterial contamination of raw chicken skin. Poult Sci 92 : 2216 2220.[CrossRef][PubMed]
114. Kwak TY, Kim NH, Rhee MS . 2011. Response surface methodology-based optimization of decontamination conditions for Escherichia coli O157:H7 and Salmonella Typhimurium on fresh-cut celery using thermoultrasound and calcium propionate. Int J Food Microbiol 150 : 128 135.[CrossRef][PubMed]
115. Mine S, Boopathy R . 2011. Effect of organic acids on shrimp pathogen, Vibrio harveyi. Curr Microbiol 63 : 1 7.[CrossRef][PubMed]
116. Glass KA, McDonnell LM, Von Tayson R, Wanless B, Badvela M . 2013. Inhibition of Listeria monocytogenes by propionic acid-based ingredients in cured deli-style Turkey. J Food Prot 76 : 2074 2078.[CrossRef][PubMed]
117. Porto-Fett AC, Campano SG, Shoyer BA, Israeli D, Oser A, Luchansky JB . 2015. Comparative efficacy of potassium levulinate with and without potassium diacetate and potassium propionate versus potassium lactate and sodium diacetate for control of Listeria monocytogenes on commercially prepared uncured turkey breast. J Food Prot 78 : 927 933.[CrossRef][PubMed]
118. Lee Y-L, Cesario T, Owens J, Shanbrom E, Thrupp LD . 2002. Antibacterial activity of citrate and acetate. Nutrition 18 : 665 666.[CrossRef][PubMed]
119. Oh DH, Marshall DL . 1994. Enhanced inhibition of Listeria monocytogenes by glycerol monolaurate with organic acids. J Food Sci 59 : 1258 1261.[CrossRef].
120. Thippareddi H, Juneja VK, Phebus RK, Marsden JL, Kastner CL . 2003. Control of Clostridium perfringens germination and outgrowth by buffered sodium citrate during chilling of roast beef and injected pork. J Food Prot 66 : 376 381.[CrossRef][PubMed]
121. Blaszyk M, Holley RA . 1998. Interaction of monolaurin, eugenol and sodium citrate on growth of common meat spoilage and pathogenic organisms. Int J Food Microbiol 39 : 175 183.[CrossRef][PubMed]
122. Červenka L, Malíková Z, Zachová I, Vytrasová J . 2004. The effect of acetic acid, citric acid, and trisodium citrate in combination with different levels of water activity on the growth of Arcobacter butzleri in culture. Folia Microbiol (Praha) 49 : 8 12.[CrossRef][PubMed]
123. Kim NH, Park TH, Rhee MS . 2014. Enhanced bactericidal action of acidified sodium chlorite caused by the saturation of reactants. J Appl Microbiol 116 : 1447 1457.[CrossRef][PubMed]
124. Byelashov OA, Adler JM, Geornaras I, Ko KY, Belk KE, Smith GC, Sofos JN . 2010. Evaluation of brining ingredients and antimicrobials for effects on thermal destruction of Escherichia coli O157:H7 in a meat model system. J Food Sci 75 : M209 M217.[CrossRef][PubMed]
125. Campion A, Morrissey R, Field D, Cotter PD, Hill C, Ross RP . 2017. Use of enhanced nisin derivatives in combination with food-grade oils or citric acid to control Cronobacter sakazakii and Escherichia coli O157:H7. Food Microbiol 65 : 254 263.[CrossRef][PubMed]
126. Sagong H-G, Lee S-Y, Chang P-S, Heu S, Ryu S, Choi Y-J, Kang D-H . 2011. Combined effect of ultrasound and organic acids to reduce Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on organic fresh lettuce. Int J Food Microbiol 145 : 287 292.[CrossRef][PubMed]
127. Adler JM, Cain-Helfrich ED, Shen C . 2016. Reductions in natural microbial flora, nonpathogenic Escherichia coli, and pathogenic Salmonella on jalapeno peppers processed in a commercial antimicrobial cabinet: a pilot plant trial. J Food Prot 79 : 1854 1859.[CrossRef][PubMed]
128. Jung Y, Jang H, Guo M, Gao J, Matthews KR . 2017. Sanitizer efficacy in preventing cross-contamination of heads of lettuce during retail crisping. Food Microbiol 64 : 179 185.[CrossRef][PubMed]
129. Reiss J . 1976. Prevention of the formation of mycotoxins in whole wheat bread by citric acid and lactic acid (Mycotoxins in foodstuffs. IX). Experientia 32 : 168 169.[CrossRef][PubMed]
130. Humer E, Lucke A, Harder H, Metzler-Zebeli BU, Böhm J, Zebeli Q . 2016. Effects of citric and lactic acid on the reduction of deoxynivalenol and its derivatives in feeds. Toxins (Basel) 8 : 285.[CrossRef][PubMed]
131. Shi HU, Stroshine RL, Ileleji K . 2017. Determination of the relative effectiveness of four food additives in degrading aflatoxin in distillers wet grains and condensed distillers solubles. J Food Prot 80 : 90 95.[CrossRef][PubMed]
132. Rastegar H, Shoeibi S, Yazdanpanah H, Amirahmadi M, Khaneghah AM, Campagnollo FB, Sant'Ana AS . 2017. Removal of aflatoxin B 1 by roasting with lemon juice and/or citric acid in contaminated pistachio nuts. Food Control 71 : 279 284.[CrossRef].
133. Miller AJ, Call JE . 1994. Inhibitory potential of four-carbon dicarboxylic acids on Clostridium botulinum spores in an uncured turkey product. J Food Prot 57 : 679 683.[CrossRef].
134. Mller AJ, Call JE, Whiting RC . 1993. Comparison of organic acid salts for Clostridium botulinum control in an uncured turkey product. J Food Prot 56 : 958 962.[CrossRef].
135. Nielsen MK, Arneborg N . 2007. The effect of citric acid and pH on growth and metabolism of anaerobic Saccharomyces cerevisiae and Zygosaccharomyces bailii cultures. Food Microbiol 24 : 101 105.[CrossRef][PubMed]
136. Zhao X, Zhen Z, Wang X, Guo N . 2017. Synergy of a combination of nisin and citric acid against Staphylococcus aureus and Listeria monocytogenes . Food Addit Contam Part A 34 : 2058 2068.
137. Over KF, Hettiarachchy N, Johnson MG, Davis B . 2009. Effect of organic acids and plant extracts on Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella Typhimurium in broth culture model and chicken meat systems. J Food Sci 74 : M515 M521.[CrossRef][PubMed]
138. Kang J-W, Kang D-H . 2017. Antimicrobial efficacy of vacuum impregnation washing with malic acid applied to whole paprika, carrots, king oyster mushrooms and muskmelons. Food Control 82 : 126 135.[CrossRef].
139. Huang Y, Chen H . 2011. Effect of organic acids, hydrogen peroxide and mild heat on inactivation of Escherichia coli O157:H7 on baby spinach. Food Control 22 : 1178 1183.[CrossRef].
140. Choi M-R, Lee S-Y, Park K-H, Chung M-S, Ryu S, Kang D-H . 2012. Effect of aerosolized malic acid against Listeria monocytogenes, Salmonella Typhimurium, and Escherichia coli O157:H7 on spinach and lettuce. Food Control 24 : 171 176.[CrossRef].
141. Cannon JL, Aydin A, Mann AN, Bolton SL, Zhao T, Doyle MP . 2012. Efficacy of a levulinic acid plus sodium dodecyl sulfate-based sanitizer on inactivation of human norovirus surrogates. J Food Prot 75 : 1532 1535.[CrossRef][PubMed]
142. Ortega YR, Torres MP, Tatum JM . 2011. Efficacy of levulinic acid-sodium dodecyl sulfate against Encephalitozoon intestinalis, Escherichia coli O157:H7, and Cryptosporidium parvum. J Food Prot 74 : 140 144.[CrossRef][PubMed]
143. Jiang Y, Fan X, Li X, Gurtler JB, Mukhopadhyay S, Jin T . 2017. Inactivation of Salmonella Typhimurium and quality preservation of cherry tomatoes by in-package aerosolization of antimicrobials. Food Control 73 : 411 420.[CrossRef].
144. Landry KS, Komaiko J, Wong DE, Xu T, McClements DJ, McLandsborough L . 2016. Inactivation of Salmonella on sprouting seeds using a spontaneous carvacrol nanoemulsion acidified with organic acids. J Food Prot 79 : 1115 1126.[CrossRef][PubMed]
145. Chen D, Zhao T, Doyle MP . 2014. Transfer of foodborne pathogens during mechanical slicing and their inactivation by levulinic acid-based sanitizer on slicers. Food Microbiol 38 : 263 269.[CrossRef][PubMed]
146. Chen D, Zhao T, Doyle MP . 2015. Control of pathogens in biofilms on the surface of stainless steel by levulinic acid plus sodium dodecyl sulfate. Int J Food Microbiol 207 : 1 7.[CrossRef][PubMed]
147. Brandt AL, Castillo A, Harris KB, Keeton JT, Hardin MD, Taylor TM . 2011. Synergistic inhibition of Listeria monocytogenes in vitro through the combination of octanoic acid and acidic calcium sulfate. J Food Prot 74 : 122 125.[CrossRef][PubMed]
148. Chang S-S, Redondo-Solano M, Thippareddi H . 2010. Inactivation of Escherichia coli O157:H7 and Salmonella spp. on alfalfa seeds by caprylic acid and monocaprylin. Int J Food Microbiol 144 : 141 146.[CrossRef][PubMed]
149. Patel J, Keelara S, Venkitanarayana K . 2015. Reduction of Escherichia coli O157:H7 and Salmonella on fresh-cut produce by caprylic acid. J Food Process Preserv 39 : 2234 2239.[CrossRef].
150. Kim SA, Rhee MS . 2016. Highly enhanced bactericidal effects of medium chain fatty acids (caprylic, capric, and lauric acid) combined with edible plant essential oils (carvacrol, eugenol, β-resorcylic acid, trans-cinnamaldehyde, thymol, and vanillin) against Escherichia coli O157:H7. Food Control 60 : 447 454.[CrossRef].
151. Kozak SM, Margison KM, D'amico DJ . 2017. Synergistic antimicrobial combinations inhibit and inactivate Listeria monocytogenes in neutral and acidic broth systems. J Food Prot 80 : 1266 1272.[CrossRef][PubMed]
152. Marounek M, Putthana V, Benada O, Lukešová D . 2012. Antimicrobial activities of medium-chain fatty acids and monoacylglycerols on Cronobacter sakazakii DBM 3157 T and Cronobacter malonaticus DBM 3148. Czech J Food Sci 30 : 573 580.[CrossRef].
153. Doležálková I, Máčalík Z, Butkovičová A, Janiš R, Buňková L . 2012. Monoacylglycerols as fruit juices preservatives. Czech J Food Sci 30 : 567 572.[CrossRef].
154. Luo C, Zeng Z, Gong D, Zhao C, Liang Q, Zeng C . 2014. Evaluation of monolaurin from camphor tree seeds for controlling food spoilage fungi. Food Control 46 : 488 494.[CrossRef].
155. Tangwatcharin P, Khopaibool P . 2012. Activity of virgin coconut oil, lauric acid or monolaurin in combination with lactic acid against Staphylococcus aureus. Southeast Asian J Trop Med Public Health 43 : 969 985.[PubMed]
156. Hamedi H, Razavi-Rohani SM, Gandomi H . 2014. Combination effect of essential oils of some herbs with monolaurin on growth and survival of Listeria monocytogenes in culture media and cheese. J Food Process Preserv 38 : 304 310.[CrossRef].
157. Sadiq S, Imran M, Habib H, Shabbir S, Ihsan A, Zafar Y, Hafeez FY . 2016. Potential of monolaurin based food-grade nano-micelles loaded with nisin Z for synergistic antimicrobial action against Staphylococcus aureus. Lebensm Wiss Technol 71 : 227 233.[CrossRef].
158. Moradi M, Tajik H, Rohani SMR, Mahmoudian A . 2016. Antioxidant and antimicrobial effects of zein edible film impregnated with Zataria multiflora Boiss. essential oil and monolaurin. Lebensm Wiss Technol 72 : 37 43.[CrossRef].
159. Stopforth JD, Visser D, Zumbrink R, van Dijk L, Bontenbal EW . 2010. Control of Listeria monocytogenes on cooked cured ham by formulation with a lactate-diacetate blend and surface treatment with lauric arginate. J Food Prot 73 : 552 555.[CrossRef][PubMed]
160. Dai Y, Normand MD, Weiss J, Peleg M . 2010. Modeling the efficacy of triplet antimicrobial combinations: yeast suppression by lauric arginate, cinnamic acid, and sodium benzoate or potassium sorbate as a case study. J Food Prot 73 : 515 523.[CrossRef][PubMed]
161. Martin EM, Griffis CL, Vaughn KLS, O'Bryan CA, Friedly EC, Marcy JA, Ricke SC, Crandall PG, Lary RY Jr . 2009. Control of Listeria monocytogenes by lauric arginate on frankfurters formulated with or without lactate/diacetate. J Food Sci 74 : M237 M241.[CrossRef][PubMed]
162. Oladunjoye A, Soni KA, Nannapaneni R, Schilling MW, Silva JL, Mikel B, Bailey RH, Mahmoud BSM, Sharma CS . 2013. Synergistic activity between lauric arginate and carvacrol in reducing Salmonella in ground turkey. Poult Sci 92 : 1357 1365.[CrossRef][PubMed]
163. Ma Q, Davidson PM, Zhong Q . 2013. Antimicrobial properties of lauric arginate alone or in combination with essential oils in tryptic soy broth and 2% reduced fat milk. Int J Food Microbiol 166 : 77 84.[CrossRef][PubMed]
164. Yang S, Sadekuzzaman M, Ha S-D . 2017. Treatment with lauric arginate ethyl ester and commercial bacteriophage, alone or in combination, inhibits Listeria monocytogenes in chicken breast tissue. Food Control 78 : 57 63.[CrossRef].
165. Manrique Y, Gibis M, Schmidt H, Weiss J . 2017. Influence of application sequence and timing of eugenol and lauric arginate (LAE) on survival of spoilage organisms. Food Microbiol 64 : 210 218.[CrossRef][PubMed]
166. Ruengvisesh S, Loquercio A, Castell-Perez E, Taylor TM . 2015. Inhibition of bacterial pathogens in medium and on spinach leaf surfaces using plant-derived antimicrobials loaded in surfactant micelles. J Food Sci 80 : M2522 M2529.[CrossRef][PubMed]
167. Nübling S, Hägele F, Wohlt D, Graf B, Schweiggert RM, Carle R, Schmidt H, Weiss A . 2017. Effects of Quillaja saonaria extract and N α-lauroyl- l-arginine ethyl ester on reducing selected foodborne pathogens in vitro and maintaining quality of fresh-cut endive ( Cichorium endivia L.) at pilot plant scale. Food Control 73 : 393 400.[CrossRef].
168. Kang J, Wiedmann M, Boor KJ, Bergholz TM . 2015. VirR-mediated resistance of Listeria monocytogenes against food antimicrobials and cross-protection induced by exposure to organic acid salts. Appl Environ Microbiol 81 : 4553 4562.[CrossRef][PubMed]
169. Ma Q, Davidson PM, Critzer F, Zhong Q . 2016. Antimicrobial activities of lauric arginate and cinnamon oil combination against foodborne pathogens: improvement by ethylenediaminetetraacetate and possible mechanisms. Lebensm Wiss Technol 72 : 9 18.[CrossRef].
170. Fisher KD, Bratcher CL, Jin TZ, Bilgili SF, Owsley WF, Wang L . 2016. Evaluation of a novel antimicrobial solution and its potential for control Escherichia coli O157:H7, non-O157:H7 Shiga toxin-producing E. coli, Salmonella spp., and Listeria monocytogenes on beef. Food Control 64 : 196 201.[CrossRef].
171. Guo M, Jin TZ, Scullen OJ, Sommers CH . 2013. Effects of antimicrobial coatings and cryogenic freezing on survival and growth of Listeria innocua on frozen ready-to-eat shrimp during thawing. J Food Sci 78 : M1195 M1200.[CrossRef][PubMed]
172. Golden DA, Worobo RW, Ough CS, . 2005. Dimethyl dicarbonate and diethyl dicarbonate, p 305 326. In Davidson PM, Sofos JN, Branen AL (ed), Antimicrobials in Foods. CRC Press, Boca Raton, FL.
173. Guo M, Jin TZ, Wang L, Scullen OJ, Sommers CH . 2014. Antimicrobial films and coatings for inactivation of Listeria innocua on ready-to-eat deli turkey meat. Food Control 40 : 64 70.[CrossRef].
174. Basaran-Akgul N, Churey JJ, Basaran P, Worobo RW . 2009. Inactivation of different strains of Escherichia coli O157:H7 in various apple ciders treated with dimethyl dicarbonate (DMDC) and sulfur dioxide (SO 2) as an alternative method. Food Microbiol 26 : 8 15.[CrossRef][PubMed]
175. Gurtler JB, Rivera RB, Zhang HQ, Sommers CH . 2010. Behavior of avirulent Yersinia pestis in liquid whole egg as affected by storage temperature, antimicrobials and thermal pasteurization. J Food Saf 30 : 537 557.
176. Sánchez-Rubio M, Guerrouj K, Taboada-Rodríguez A, López-Gómez A, Marín-Iniesta F . 2017. Control of native spoilage yeast on dealcoholized red wine by preservatives alone and in binary mixtures. J Food Sci 82 : 2128 2133.[CrossRef][PubMed]
177. Zuehlke JM, Petrova B, Edwards CG . 2013. Advances in the control of wine spoilage by Zygosaccharomyces and Dekkera/Brettanomyces. Annu Rev Food Sci Technol 4 : 57 78.[CrossRef][PubMed]
178. Chen W, Harte FM, Davidson PM, Golden DA . 2013. Inactivation of Alicyclobacillus acidoterrestris using high pressure homogenization and dimethyl dicarbonate. J Food Prot 76 : 1041 1045.[CrossRef][PubMed]
179. Burt S . 2004. Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol 94 : 223 253.[CrossRef][PubMed]
180. Nazzaro F, Fratianni F, De Martino L, Coppola R, De Feo V . 2013. Effect of essential oils on pathogenic bacteria. Pharmaceuticals (Basel) 6 : 1451 1474.[CrossRef][PubMed]
181. Shan B, Cai Y-Z, Brooks JD, Corke H . 2007. The in vitro antibacterial activity of dietary spice and medicinal herb extracts. Int J Food Microbiol 117 : 112 119.[CrossRef][PubMed]
182. Moreira MR, Ponce A, del Valle CE, Roura SI . 2005. Inhibitory parameters of essential oils to reduce a foodborne pathogen. Lebensm Wiss Technol 38 : 565 570.[CrossRef].
183. Friedman M, Rasooly R, Do PM, Henika PR . 2011. The olive compound 4-hydroxytyrosol inactivates Staphylococcus aureus bacteria and staphylococcal enterotoxin A (SEA). J Food Sci 76 : M558 M563.[CrossRef][PubMed]
184. Wendakoon CN, Sakaguchi M . 1995. Inhibition of amino-acid decarboxylase activity of Enterobacter aerogenes by active components in spices. J Food Prot 58 : 280 283.[CrossRef].
185. Kwon JA, Yu CB, Park HD . 2003. Bacteriocidal effects and inhibition of cell separation of cinnamic aldehyde on Bacillus cereus. Lett Appl Microbiol 37 : 61 65.[CrossRef][PubMed]