Chapter 28 : Biological Control of Food-Challenging Microorganisms

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Biological Control of Food-Challenging Microorganisms, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819972/9781555819965.ch28-1.gif /docserver/preview/fulltext/10.1128/9781555819972/9781555819965.ch28-2.gif


This chapter provides an overview of current and emerging methods of food preservation using live microorganisms and biologically derived substances. This field of study is rapidly evolving, as interest in so-called “natural” and “organic” products has grown exponentially among the public in the past 25 years. Biological methods of preservation are of particular interest, again, due to their natural/biological origins and safety compared with commonly used chemical preservatives and physical treatments. Broadly speaking, biological preservatives can be divided into several distinct groups: (i) live microorganisms, (ii) plant derivatives, (iii) proteinaceous compounds of both eukaryotic and prokaryotic origins, and (iv) bacteriophages. Each group presents its own set of pros and cons, which must be carefully considered and balanced for every individual food application. The safety of biopreservatives is paramount and is the final basis on which a treatment may be chosen for application in the food industry, regardless of the efficacy demonstrated in laboratory studies. Impact on the quality of food is also a concern, as any loss of quality will result in an undesirable product. Quality concerns can be addressed through various techniques aimed at decreasing the amount of preservatives needed while increasing efficacy. These include novel modes of delivery, as well as synergistically acting combination treatments, both of which show promise.

Citation: Weeks R, Chikindas M. 2019. Biological Control of Food-Challenging Microorganisms, p 733-754. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch28
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 28.1
Figure 28.1

Environmental factors essential for biopreservation by bacteriocinogenic GRAS microorganisms. Image from reference .

Citation: Weeks R, Chikindas M. 2019. Biological Control of Food-Challenging Microorganisms, p 733-754. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch28
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 28.2
Figure 28.2

Natural antimicrobials of interest for food preservation.

Citation: Weeks R, Chikindas M. 2019. Biological Control of Food-Challenging Microorganisms, p 733-754. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch28
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 28.3
Figure 28.3

Chemical structure of polylysine.

Citation: Weeks R, Chikindas M. 2019. Biological Control of Food-Challenging Microorganisms, p 733-754. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch28
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 28.4
Figure 28.4

Generic bacteriocin operon. The operon's structural gene codes for a prebacteriocin (numbered 1). The bacteriocin processing and transport are carried out with assistance of the products of , coding for the accessory protein (3), and , coding for the ABC transporter (4). The bacteriocin producer cell's immunity to its own product is ensured by the gene product, the immunity protein (2). The bacteriocin translocation machinery is engaged in the energy-dependent process, resulting in the cleavage of the bacteriocin's leader region (1b) and release of the mature bacteriocin (1a). The immunity protein (2) protects the bacteriocin recognition site (6) by preventing the bacteriocin (1a) from interacting with this site. The gene codes for the histidine protein kinase (5), which is activated by the mature bacteriocin molecule working as a pheromone. The phosphorylated response regulator (7P) interacts with the bacteriocin operon's promoter region, triggering transcription.

Citation: Weeks R, Chikindas M. 2019. Biological Control of Food-Challenging Microorganisms, p 733-754. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch28
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Chen H, Hoover DG . 2003. Bacteriocins and their food applications. Compr Rev Food Sci Food Saf 2 : 82 100.[CrossRef].
2. Wackett LP . 2016. Lactic acid bacteria: an annotated selection of World Wide Web sites relevant to the topics in microbial biotechnology. Microb Biotechnol 9 : 525 526.[CrossRef][PubMed]
3. Salminen MK, Rautelin H, Tynkkynen S, Poussa T, Saxelin M, Valtonen V, Järvinen A . 2004. Lactobacillus bacteremia, clinical significance, and patient outcome, with special focus on probiotic L. rhamnosus GG. Clin Infect Dis 38 : 62 69.[CrossRef][PubMed]
4. Pararajasingam A, Uwagwu J . 2017. Lactobacillus: the not so friendly bacteria. BMJ Case Rep 2017 : bcr-2016-218423.[CrossRef][PubMed]
5. Lanciotti R, Patrignani F, Bagnolini F, Guerzoni ME, Gardini F . 2003. Evaluation of diacetyl antimicrobial activity against Escherichia coli, Listeria monocytogenes and Staphylococcus aureus. Food Microbiol 20 : 537 543.[CrossRef].
6. Langa S, Martín-Cabrejas I, Montiel R, Landete JM, Medina M, Arqués JL . 2014. Short communication: combined antimicrobial activity of reuterin and diacetyl against foodborne pathogens. J Dairy Sci 97 : 6116 6121.[CrossRef][PubMed]
7. Kumar P, Chatli MK, Verma AK, Mehta N, Malav OP, Kumar D, Sharma N . 2017. Quality, functionality, and shelf life of fermented meat and meat products: a review. Crit Rev Food Sci Nutr 57 : 2844 2856.[CrossRef][PubMed]
8. Ross RP, Morgan S, Hill C . 2002. Preservation and fermentation: past, present and future. Int J Food Microbiol 79 : 3 16.[CrossRef][PubMed]
9. Kostrzynska M, Bachand A . 2006. Use of microbial antagonism to reduce pathogen levels on produce and meat products: a review. Can J Microbiol 52 : 1017 1026.[CrossRef][PubMed]
10. Chen C, Rui X, Lu Z, Li W, Dong M . 2014. Enhanced shelf-life of tofu by using bacteriocinogenic Weissella hellenica D1501 as bioprotective cultures. Food Control 46 : 203 209.[CrossRef].
11. Post RC . 1996. Regulatory perspective of the USDA on the use of antimicrobials and inhibitors in foods. J Food Prot 59( Suppl) : 78 81.[CrossRef][PubMed]
12. Crozier-Dodson BA, Carter M, Zheng Z . 2004-2005. Formulating food safety: an overview of antimicrobial ingredients. Food Safety Magazine. https://www.foodsafetymagazine.com/magazine-archive1/december-2004january-2005/formulating-food-safety-an-overview-of-antimicrobial-ingredients/. Last accessed 22 January 2018.
13. Chikindas ML, Weeks R, Drider D, Chistyakov VA, Dicks LM . 2018. Functions and emerging applications of bacteriocins. Curr Opin Biotechnol 49 : 23 28.[CrossRef][PubMed]
14. Gálvez A, Abriouel H, López RL, Ben Omar N . 2007. Bacteriocin-based strategies for food biopreservation. Int J Food Microbiol 120 : 51 70.[CrossRef][PubMed]
15. Cowan MM . 1999. Plant products as antimicrobial agents. Clin Microbiol Rev 12 : 564 582.[PubMed]
16. Pandey AK, Kumar S . 2013. Perspective on plant products as antimicrobial agents: a review. Pharmacologia 4 : 469 480.[CrossRef].
17. Hintz T, Matthews KK, Di R . 2015. The use of plant antimicrobial compounds for food preservation. BioMed Res Int 2015 : 246264.[CrossRef][PubMed]
18. Yoon Y, Choi KH . 2012. Antimicrobial activities of therapeutic herbal plants against Listeria monocytogenes and the herbal plant cytotoxicity on Caco-2 cell. Lett Appl Microbiol 55 : 47 55.[CrossRef][PubMed]
19. Gyawali R, Hayek SA, Ibrahim SA, . 2015. Plant extracts as antimicrobials in food products: mechanisms of action, extraction methods, and applications, p 49 68. In Taylor M (ed), Handbook of Natural Antimicrobials for Food Safety and Quality. Elsevier, New York, NY.
20. Hernández-Hernández E, Regalado-González C, Vázquez-Landaverde P, Guerrero-Legarreta I, García-Almendárez BE . 2014. Microencapsulation, chemical characterization, and antimicrobial activity of Mexican ( Lippia graveolens H.B.K.) and European ( Origanum vulgare L.) oregano essential oils. Sci World J 2014 : 641814.[CrossRef][PubMed]
21. Topuz OK, Özvural EB, Zhao Q, Huang Q, Chikindas M, Gölükçü M . 2016. Physical and antimicrobial properties of anise oil loaded nanoemulsions on the survival of foodborne pathogens. Food Chem 203 : 117 123.[CrossRef][PubMed]
22. Sekhon BS . 2010. Food nanotechnology—an overview. Nanotechnol Sci Appl 3 : 1 15.[PubMed]
23. Singh T, Shukla S, Kumar P, Wahla V, Bajpai VK . 2017. Application of nanotechnology in food science: perception and overview. Front Microbiol 8 : 1501 CORRIGENDUM Front Microbiol 8.[CrossRef][PubMed]
24. Prakash B, Kujur A, Yadav A, Kumar A, Singh PP, Dubey NK . 2018. Nanoencapsulation: an efficient technology to boost the antimicrobial potential of plant essential oils in food system. Food Control 89 : 1 11.[CrossRef]
25. Donsì F, Annunziata M, Sessa M, Ferrari G . 2011. Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods. LWT Food Sci Technol 44 : 1908 1914.[CrossRef].
26. Hadian M, Rajaei A, Mohsenifar A, Tabatabaei M . 2017. Encapsulation of Rosmarinus officinalis essential oils in chitosan-benzoic acid nanogel with enhanced antibacterial activity in beef cutlet against Salmonella typhimurium during refrigerated storage. LWT Food Sci Technol 84 : 394 401.[CrossRef].
27. He X, Hwang H-M . 2016. Nanotechnology in food science: functionality, applicability, and safety assessment. Yao Wu Shi Pin Fen Xi 24 : 671 681.[CrossRef][PubMed]
28. Zhang Q, Cundiff JK, Maria SD, McMahon RJ, Wickham MSJ, Faulks RM, van Tol EAF . 2014. Differential digestion of human milk proteins in a simulated stomach model. J Proteome Res 13 : 1055 1064.[CrossRef][PubMed]
29. Khuyen TD, Mandiki SNM, Cornet V, Douxfils J, Betoulle S, Bossier P, Reyes-López FE, Tort L, Kestemont P . 2017. Physiological and immune response of juvenile rainbow trout to dietary bovine lactoferrin. Fish Shellfish Immunol 71 : 359 371.[CrossRef][PubMed]
30. Ragland SA, Criss AK . 2017. From bacterial killing to immune modulation: recent insights into the functions of lysozyme. PLoS Pathog 13 : e1006512.[CrossRef][PubMed]
31. Shima S, Sakai H . 1977. Polylysine produced by Streptomyces. Agric Biol Chem 41 : 1807 1809.
32. Yamanaka K, Kito N, Imokawa Y, Maruyama C, Utagawa T, Hamano Y . 2010. Mechanism of ε-poly- l-lysine production and accumulation revealed by identification and analysis of an ε-poly- l-lysine-degrading enzyme. Appl Environ Microbiol 76 : 5669 5675.[CrossRef][PubMed]
33. Kahar P, Iwata T, Hiraki J, Park EY, Okabe M . 2001. Enhancement of ε-polylysine production by Streptomyces albulus strain 410 using pH control. J Biosci Bioeng 91 : 190 194.[CrossRef][PubMed]
34. Shima S, Matsuoka H, Iwamoto T, Sakai H . 1984. Antimicrobial action of ε-poly-L-lysine. J Antibiot (Tokyo) 37 : 1449 1455.[CrossRef][PubMed]
35. Hiraki J, Ichikawa T, Ninomiya S, Seki H, Uohama K, Seki H, Kimura S, Yanagimoto Y, Barnett JW Jr . 2003. Use of ADME studies to confirm the safety of ε-polylysine as a preservative in food. Regul Toxicol Pharmacol 37 : 328 340.[CrossRef][PubMed]
36. Hyldgaard M, Mygind T, Vad BS, Stenvang M, Otzen DE, Meyer RL . 2014. The antimicrobial mechanism of action of epsilon-poly- l-lysine. Appl Environ Microbiol 80 : 7758 7770.[CrossRef][PubMed]
37. Bechinger B, Lohner K . 2006. Detergent-like actions of linear amphipathic cationic antimicrobial peptides. Biochim Biophys Acta 1758 : 1529 1539.[CrossRef][PubMed]
38. Ye R, Xu H, Wan C, Peng S, Wang L, Xu H, Aguilar ZP, Xiong Y, Zeng Z, Wei H . 2013. Antibacterial activity and mechanism of action of ε-poly-L-lysine. Biochem Biophys Res Commun 439 : 148 153.[CrossRef][PubMed]
39. Bo T, Liu M, Zhong C, Zhang Q, Su Q-Z, Tan Z-L, Han P-P, Jia S-R . 2014. Metabolomic analysis of antimicrobial mechanisms of ε-poly-L-lysine on Saccharomyces cerevisiae. J Agric Food Chem 62 : 4454 4465.[CrossRef][PubMed]
40. Geornaras I, Sofos JN . 2005. Activity of ε–polylysine against Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes. J Food Sci 70 : M404 M408.[CrossRef].
41. Geornaras I, Yoon Y, Belk KE, Smith GC, Sofos JN . 2007. Antimicrobial activity of ε -polylysine against Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes in various food extracts. J Food Sci 72 : M330 M334.[CrossRef][PubMed]
42. Masson PL, Heremans JF, Dive CH . 1966. An iron-binding protein common to many external secretions. Clin Chim Acta 14 : 735 739.[CrossRef].
43. Lydon JP, O'Malley BR, Saucedo O, Lee T, Headon DR, Conneely OM . 1992. Nucleotide and primary amino acid sequence of porcine lactoferrin. Biochim Biophys Acta 1132 : 97 99.[CrossRef][PubMed]
44. García-Montoya IA, Cendón TS, Arévalo-Gallegos S, Rascón-Cruz Q . 2012. Lactoferrin a multiple bioactive protein: an overview. Biochim Biophys Acta 1820 : 226 236.[CrossRef][PubMed]
45. Jenssen H, Hancock REW . 2009. Antimicrobial properties of lactoferrin. Biochimie 91 : 19 29.[CrossRef][PubMed]
46. Duran A, Kahve HI . 2017. The use of lactoferrin in food industry. Acad J Sci 7 : 89 94.
47. Abe H, Saito H, Miyakawa H, Tamura Y, Shimamura S, Nagao E, Tomita M . 1991. Heat stability of bovine lactoferrin at acidic pH. J Dairy Sci 74 : 65 71.[CrossRef].
48. Naidu AS . 2002. Activated lactoferrin—a new approach to meat safety. Food Technol 56 : 40 45.
49. Bellamy W, Takase M, Yamauchi K, Wakabayashi H, Kawase K, Tomita M . 1992. Identification of the bactericidal domain of lactoferrin. Biochim Biophys Acta 1121 : 130 136.[CrossRef][PubMed]
50. Sinha M, Kaushik S, Kaur P, Sharma S, Singh TP . 2013. Antimicrobial lactoferrin peptides: the hidden players in the protective function of a multifunctional protein. Int J Pept 2013 : 390230.[CrossRef][PubMed]
51. Vorland LH, Ulvatne H, Andersen J, Haukland H, Rekdal O, Svendsen JS, Gutteberg TJ . 1998. Lactoferricin of bovine origin is more active than lactoferricins of human, murine and caprine origin. Scand J Infect Dis 30 : 513 517.[CrossRef][PubMed]
52. Murdock C, Chikindas ML, Matthews KR . 2010. The pepsin hydrolysate of bovine lactoferrin causes a collapse of the membrane potential in Escherichia coli O157:H7. Probiotics Antimicrob Proteins 2 : 112 119.[CrossRef][PubMed]
53. Murdock CA, Matthews KR . 2002. Antibacterial activity of pepsin-digested lactoferrin on foodborne pathogens in buffered broth systems and ultra-high temperature milk with EDTA. J Appl Microbiol 93 : 850 856.[CrossRef][PubMed]
54. Fuglsang CC, Johansen C, Christgau S, Adler-Nissen J . 1995. Antimicrobial enzymes: applications and future potential in the food industry. Trends Food Sci Technol 6 : 390 396.[CrossRef].
55. Callewaert L, Michiels CW . 2010. Lysozymes in the animal kingdom. J Biosci 35 : 127 160.[CrossRef][PubMed]
56. Hughey VL, Wilger PA, Johnson EA . 1989. Antibacterial activity of hen egg white lysozyme against Listeria monocytogenes Scott A in foods. Appl Environ Microbiol 55 : 631 638.[PubMed]
57. Kihm DJ, Leyer GJ, An GH, Johnson EA . 1994. Sensitization of heat-treated Listeria monocytogenes to added lysozyme in milk. Appl Environ Microbiol 60 : 3854 3861.[PubMed]
58. Badaoui Najjar M, Chikindas M, Montville TJ . 2007. Changes in Listeria monocytogenes membrane fluidity in response to temperature stress. Appl Environ Microbiol 73 : 6429 6435.[CrossRef][PubMed]
59. Sinigaglia M, Bevilacqua A, Corbo MR, Pati S, Del Nobile MA . 2008. Use of active compounds for prolonging the shelf life of mozzarella cheese. Int Dairy J 18 : 624 630.[CrossRef].
60. Gill AO, Holley RA . 2000. Inhibition of bacterial growth on ham and bologna by lysozyme, nisin and EDTA. Food Res Int 33 : 83 90.[CrossRef].
61. Gill AO, Holley RA . 2000. Surface application of lysozyme, nisin, and EDTA to inhibit spoilage and pathogenic bacteria on ham and bologna. J Food Prot 63 : 1338 1346.[CrossRef][PubMed]
62. Gill AO, Holley RA . 2003. Interactive inhibition of meat spoilage and pathogenic bacteria by lysozyme, nisin and EDTA in the presence of nitrite and sodium chloride at 24 °C. Int J Food Microbiol 80 : 251 259.[CrossRef][PubMed]
63. Phoenix DA, Dennison SR, Harris F . 2013. Antimicrobial Peptides, p 1 37. Wiley-VCH, Weinheim, Germany.
64. Mahlapuu M, Håkansson J, Ringstad L, Björn C . 2016. Antimicrobial peptides: an emerging category of therapeutic agents. Front Cell Infect Microbiol 6 : 194.[CrossRef][PubMed]
65. Cotter PD, Hill C, Ross RP . 2005. Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3 : 777 788.[CrossRef][PubMed]
66. Tagg JR, . Bacteriocins of Gram-positive bacteria: an opinion regarding their nature, nomenclature and numbers, p 33 35. In James R, Lazdunski C, Pattus F (ed), Bacteriocins, Microcins and Lantibiotics. Springer, Berlin, Germany.[CrossRef]
67. Riley MA, Wertz JE . 2002. Bacteriocins: evolution, ecology, and application. Annu Rev Microbiol 56 : 117 137.[CrossRef][PubMed]
68. Alvarez-Sieiro P, Montalbán-López M, Mu D, Kuipers OP . 2016. Bacteriocins of lactic acid bacteria: extending the family. Appl Microbiol Biotechnol 100 : 2939 2951.[CrossRef][PubMed]
69. Ennahar S, Sashihara T, Sonomoto K, Ishizaki A . 2000. Class IIa bacteriocins: biosynthesis, structure and activity. FEMS Microbiol Rev 24 : 85 106.[CrossRef][PubMed]
70. Drider D, Fimland G, Héchard Y, McMullen LM, Prévost H . 2006. The continuing story of class IIa bacteriocins. Microbiol Mol Biol Rev 70 : 564 582.[CrossRef][PubMed]
71. Venema K, Kok J, Marugg JD, Toonen MY, Ledeboer AM, Venema G, Chikindas ML . 1995. Functional analysis of the pediocin operon of Pediococcus acidilactici PAC1.0: PedB is the immunity protein and PedD is the precursor processing enzyme. Mol Microbiol 17 : 515 522.[CrossRef][PubMed]
72. Ray B, Schamber R, Miller KW . 1999. The pediocin AcH precursor is biologically active. Appl Environ Microbiol 65 : 2281 2286.[PubMed]
73. Kuipers A, de Boef E, Rink R, Fekken S, Kluskens LD, Driessen AJ, Leenhouts K, Kuipers OP, Moll GN . 2004. NisT, the transporter of the lantibiotic nisin, can transport fully modified, dehydrated, and unmodified prenisin and fusions of the leader peptide with non-lantibiotic peptides. J Biol Chem 279 : 22176 22182.[CrossRef][PubMed]
74. Zaitseva J, Jenewein S, Oswald C, Jumpertz T, Holland IB, Schmitt L . 2005. A molecular understanding of the catalytic cycle of the nucleotide-binding domain of the ABC transporter HlyB. Biochem Soc Trans 33 : 990 995.[CrossRef][PubMed]
75. Chikindas M, Emond E, Haandrikman AJ, Kok J, Leenhouts K, Pandian S, Venema G, Venema K . 2010. Heterologous processing and export of the bacteriocins pediocin PA-1 and lactococcin A in Lactococcus lactis: a study with leader exchange. Probiotics Antimicrob Proteins 2 : 66 76.[CrossRef][PubMed]
76. Holland IB, Schmitt L, Young J . 2005. Type 1 protein secretion in bacteria, the ABC-transporter dependent pathway (review). Mol Membr Biol 22 : 29 39.[CrossRef][PubMed]
77. Back A, Borges F, Mangavel C, Paris C, Rondags E, Kapel R, Aymes A, Rogniaux H, Pavlović M, van Heel AJ, Kuipers OP, Revol-Junelles AM, Cailliez-Grimal C . 2016. Recombinant pediocin in Lactococcus lactis: increased production by propeptide fusion and improved potency by co-production with PedC. Microb Biotechnol 9 : 466 477.[CrossRef][PubMed]
78. Khusainov R, Kuipers OP . 2012. When the leader gets loose: in vivo biosynthesis of a leaderless prenisin is stimulated by a trans-acting leader peptide. ChemBioChem 13 : 2433 2438.[CrossRef][PubMed]
79. Fimland G, Eijsink VGH, Nissen-Meyer J . 2002. Comparative studies of immunity proteins of pediocin-like bacteriocins. Microbiology 148 : 3661 3670.[CrossRef][PubMed]
80. AlKhatib Z, Lagedroste M, Fey I, Kleinschrodt D, Abts A, Smits SHJ . 2014. Lantibiotic immunity: inhibition of nisin mediated pore formation by NisI. PLoS One 9 : e102246.[CrossRef][PubMed]
81. Saris PE, Immonen T, Reis M, Sahl HG . 1996. Immunity to lantibiotics. Antonie van Leeuwenhoek 69 : 151 159.[CrossRef][PubMed]
82. Stein T, Heinzmann S, Solovieva I, Entian K-D . 2003. Function of Lactococcus lactis nisin immunity genes nisI and nisFEG after coordinated expression in the surrogate host Bacillus subtilis. J Biol Chem 278 : 89 94.[CrossRef][PubMed]
83. Perez RH, Zendo T, Sonomoto K . 2014. Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications. Microb Cell Fact 13( Suppl 1) : S3.[CrossRef][PubMed]
84. Fimland G, Johnsen L, Dalhus B, Nissen-Meyer J . 2005. Pediocin-like antimicrobial peptides (class IIa bacteriocins) and their immunity proteins: biosynthesis, structure, and mode of action. J Pept Sci 11 : 688 696.[CrossRef][PubMed]
85. Kjos M, Borrero J, Opsata M, Birri DJ, Holo H, Cintas LM, Snipen L, Hernández PE, Nes IF, Diep DB . 2011. Target recognition, resistance, immunity and genome mining of class II bacteriocins from Gram-positive bacteria. Microbiology 157 : 3256 3267.[CrossRef][PubMed]
86. Kleerebezem M . 2004. Quorum sensing control of lantibiotic production; nisin and subtilin autoregulate their own biosynthesis. Peptides 25 : 1405 1414.[CrossRef][PubMed]
87. Brurberg MB, Nes IF, Eijsink VGH . 1997. Pheromone-induced production of antimicrobial peptides in Lactobacillus. Mol Microbiol 26 : 347 360.[CrossRef][PubMed]
88. Diep DB, Håvarstein LS, Nissen-Meyer J, Nes IF . 1994. The gene encoding plantaricin A, a bacteriocin from Lactobacillus plantarum C11, is located on the same transcription unit as an agr-like regulatory system. Appl Environ Microbiol 60 : 160 166.[PubMed]
89. Rodríguez JM, Martínez MI, Kok J . 2002. Pediocin PA-1, a wide-spectrum bacteriocin from lactic acid bacteria. Crit Rev Food Sci Nutr 42 : 91 121.[CrossRef][PubMed]
90. Drider D, Bendali F, Naghmouchi K, Chikindas ML . 2016. Bacteriocins: not only antibacterial agents. Probiotics Antimicrob Proteins 8 : 177 182.[CrossRef][PubMed]
91. Kawulka KE, Sprules T, Diaper CM, Whittal RM, McKay RT, Mercier P, Zuber P, Vederas JC . 2004. Structure of subtilosin A, a cyclic antimicrobial peptide from Bacillus subtilis with unusual sulfur to α-carbon cross-links: formation and reduction of α-thio-α-amino acid derivatives. Biochemistry 43 : 3385 3395.[CrossRef][PubMed]
92. Mathur H, Rea MC, Cotter PD, Hill C, Ross RP . 2015. The sactibiotic subclass of bacteriocins: an update. Curr Protein Pept Sci 16 : 549 558.[CrossRef][PubMed]
93. Varella Coelho ML, de Souza Duarte AF, do Carmo de Freire Bastos M . 2017. Bacterial labionin-containing peptides and sactibiotics: unusual types of antimicrobial peptides with potential use in clinical settings (a review). Curr Top Med Chem 17 : 1177 1198.[CrossRef][PubMed]
94. Breukink E, van Heusden HE, Vollmerhaus PJ, Swiezewska E, Brunner L, Walker S, Heck AJR, de Kruijff B . 2003. Lipid II is an intrinsic component of the pore induced by nisin in bacterial membranes. J Biol Chem 278 : 19898 19903.[CrossRef][PubMed]
95. Kjos M, Salehian Z, Nes IF, Diep DB . 2010. An extracellular loop of the mannose phosphotransferase system component IIC is responsible for specific targeting by class IIa bacteriocins. J Bacteriol 192 : 5906 5913.[CrossRef][PubMed]
96. Biswas S, Biswas I . 2014. A conserved streptococcal membrane protein, LsrS, exhibits a receptor-like function for lantibiotics. J Bacteriol 196 : 1578 1587.[CrossRef][PubMed]
97. Chikindas ML, García-Garcerá MJ, Driessen AJ, Ledeboer AM, Nissen-Meyer J, Nes IF, Abee T, Konings WN, Venema G . 1993. Pediocin PA-1, a bacteriocin from Pediococcus acidilactici PAC1.0, forms hydrophilic pores in the cytoplasmic membrane of target cells. Appl Environ Microbiol 59 : 3577 3584.[PubMed]
98. Moll GN, Konings WN, Driessen AJM . 1999. Bacteriocins: mechanism of membrane insertion and pore formation. Antonie van Leeuwenhoek 76 : 185 198.[CrossRef][PubMed]
99. Herranz C, Chen Y, Chung HJ, Cintas LM, Hernández PE, Montville TJ, Chikindas ML . 2001. Enterocin P selectively dissipates the membrane potential of Enterococcus faecium T136. Appl Environ Microbiol 67 : 1689 1692.[CrossRef][PubMed]
100. Noll KS, Sinko PJ, Chikindas ML . 2011. Elucidation of the molecular mechanisms of action of the natural antimicrobial peptide subtilosin against the bacterial vaginosis-associated pathogen Gardnerella vaginalis. Probiotics Antimicrob Proteins 3 : 41 47.[CrossRef][PubMed]
101. Trinetta V, Morleo A, Sessa F, Iametti S, Bonomi F, Ferranti P . 2012. Purified sakacin A shows a dual mechanism of action against Listeria spp: proton motive force dissipation and cell wall breakdown. FEMS Microbiol Lett 334 : 143 149.[CrossRef][PubMed]
102. Moll G, Ubbink-Kok T, Hildeng-Hauge H, Nissen-Meyer J, Nes IF, Konings WN, Driessen AJ . 1996. Lactococcin G is a potassium ion-conducting, two-component bacteriocin. J Bacteriol 178 : 600 605.[CrossRef][PubMed]
103. Fujita K, Ichimasa S, Zendo T, Koga S, Yoneyama F, Nakayama J, Sonomoto K . 2007. Structural analysis and characterization of lacticin Q, a novel bacteriocin belonging to a new family of unmodified bacteriocins of gram-positive bacteria. Appl Environ Microbiol 73 : 2871 2877.[CrossRef][PubMed]
104. Montville TJ, Chung HJ, Chikindas ML, Chen Y . 1999. Nisin A depletes intracellular ATP and acts in bactericidal manner against Mycobacterium smegmatis. Lett Appl Microbiol 28 : 189 193.[CrossRef][PubMed]
105. Egan K, Field D, Rea MC, Ross RP, Hill C, Cotter PD . 2016. Bacteriocins: novel solutions to age old spore-related problems? Front Microbiol 7 : 461.[CrossRef][PubMed]
106. Grande MJ, Lucas R, Abriouel H, Omar NB, Maqueda M, Martínez-Bueno M, Martínez-Cañamero M, Valdivia E, Gálvez A . 2005. Control of Alicyclobacillus acidoterrestris in fruit juices by enterocin AS-48. Int J Food Microbiol 104 : 289 297.[CrossRef][PubMed]
107. Mazzotta AS, Montville TJ . 1999. Characterization of fatty acid composition, spore germination, and thermal resistance in a nisin-resistant mutant of Clostridium botulinum 169B and in the wild-type strain. Appl Environ Microbiol 65 : 659 664.[PubMed]
108. Aouadhi C, Mejri S, Maaroufi A . 2015. Inhibitory effects of nisin and potassium sorbate alone or in combination on vegetative cells growth and spore germination of Bacillus sporothermodurans in milk. Food Microbiol 46 : 40 45.[CrossRef][PubMed]
109. Gut IM, Prouty AM, Ballard JD, van der Donk WA, Blanke SR . 2008. Inhibition of Bacillus anthracis spore outgrowth by nisin. Antimicrob Agents Chemother 52 : 4281 4288.[CrossRef][PubMed]
110. Gut IM, Blanke SR, van der Donk WA . 2011. Mechanism of inhibition of Bacillus anthracis spore outgrowth by the lantibiotic nisin. ACS Chem Biol 6 : 744 752.[CrossRef][PubMed]
111. Beatty ME, Ashford DA, Griffin PM, Tauxe RV, Sobel J . 2003. Gastrointestinal anthrax: review of the literature. Arch Intern Med 163 : 2527 2531.[CrossRef][PubMed]
112. Voss D, Montville TJ . 2014. 1,6-Diphenyl-1,3,5-hexatrine as a reporter of inner spore membrane fluidity in Bacillus subtilis and Alicyclobacillus acidoterrestris. J Microbiol Methods 96 : 101 103.[CrossRef][PubMed]
113. Draper LA, Cotter PD, Hill C, Ross RP . 2015. Lantibiotic resistance. Microbiol Mol Biol Rev 79 : 171 191.[CrossRef][PubMed]
114. Brown S, Santa Maria JP Jr, Walker S . 2013. Wall teichoic acids of gram-positive bacteria. Annu Rev Microbiol 67 : 313 336.[CrossRef][PubMed]
115. Kramer NE, van Hijum SAFT, Knol J, Kok J, Kuipers OP . 2006. Transcriptome analysis reveals mechanisms by which Lactococcus lactis acquires nisin resistance. Antimicrob Agents Chemother 50 : 1753 1761.[CrossRef][PubMed]
116. Kovács M, Halfmann A, Fedtke I, Heintz M, Peschel A, Vollmer W, Hakenbeck R, Brückner R . 2006. A functional dlt operon, encoding proteins required for incorporation of d-alanine in teichoic acids in gram-positive bacteria, confers resistance to cationic antimicrobial peptides in Streptococcus pneumoniae. J Bacteriol 188 : 5797 5805.[CrossRef][PubMed]
117. Vadyvaloo V, Arous S, Gravesen A, Héchard Y, Chauhan-Haubrock R, Hastings JW, Rautenbach M . 2004. Cell-surface alterations in class IIa bacteriocin-resistant Listeria monocytogenes strains. Microbiology 150 : 3025 3033.
118. Vadyvaloo V, Hastings JW, van der Merwe MJ, Rautenbach M . 2002. Membranes of class IIa bacteriocin-resistant Listeria monocytogenes cells contain increased levels of desaturated and short-acyl-chain phosphatidylglycerols. Appl Environ Microbiol 68 : 5223 5230.[CrossRef][PubMed]
119. Modi KD, Chikindas ML, Montville TJ . 2000. Sensitivity of nisin-resistant Listeria monocytogenes to heat and the synergistic action of heat and nisin. Lett Appl Microbiol 30 : 249 253.[CrossRef][PubMed]
120. Cleveland J, Montville TJ, Nes IF, Chikindas ML . 2001. Bacteriocins: safe, natural antimicrobials for food preservation. Int J Food Microbiol 71 : 1 20.[CrossRef][PubMed]
121. Makhal S, Kanawjia SK, Giri A . 2015. Effect of microGARD on keeping quality of direct acidified cottage cheese. J Food Sci Technol 52 : 936 943.[CrossRef][PubMed]
122. O'Shea EF, O'Connor PM, Cotter PD, Ross RP, Hill C . 2010. Synthesis of trypsin-resistant variants of the Listeria-active bacteriocin salivaricin P. Appl Environ Microbiol 76 : 5356 5362.[CrossRef][PubMed]
123. Field D, Begley M, O'Connor PM, Daly KM, Hugenholtz F, Cotter PD, Hill C, Ross RP . 2012. Bioengineered nisin A derivatives with enhanced activity against both Gram positive and Gram negative pathogens. PLoS One 7 : e46884.[CrossRef][PubMed]
124. Healy B, Field D, O'Connor PM, Hill C, Cotter PD, Ross RP . 2013. Intensive mutagenesis of the nisin hinge leads to the rational design of enhanced derivatives. PLoS One 8 : e79563.[CrossRef][PubMed]
125. Amrouche T, Sutyak Noll K, Wang Y, Huang Q, Chikindas ML . 2010. Antibacterial activity of subtilosin alone and combined with curcumin, poly-lysine and zinc lactate against Listeria monocytogenes strains. Probiotics Antimicrob Proteins 2 : 250 257.[CrossRef][PubMed]
126. Balasubramanian A, Lee DS, Chikindas ML, Yam KL . 2011. Effect of nisin's controlled release on microbial growth as modeled for Micrococcus luteus. Probiotics Antimicrob Proteins 3 : 113 118.[CrossRef][PubMed]
127. Balasubramanian A, Rosenberg LE, Yam K, Chikindas ML . 2009. Antimicrobial packaging: potential vs. reality—a review. J Appl Packag Res 3 : 193 221.
128. Malhotra B, Keshwani A, Kharkwal H . 2015. Antimicrobial food packaging: potential and pitfalls. Front Microbiol 6 : 611.[CrossRef][PubMed]
129. Roach DR, Debarbieux L . 2017. Phage therapy: awakening a sleeping giant. Emerg Top Life Sci 1 : 93 103.[CrossRef].
130. Sulakvelidze A, Alavidze Z, Morris JG Jr . 2001. Bacteriophage therapy. Antimicrob Agents Chemother 45 : 649 659.[CrossRef][PubMed]
131. Forterre P . 2010. Defining life: the virus viewpoint. Orig Life Evol Biosph 40 : 151 160.[CrossRef][PubMed]
132. Koonin EV, Starokadomskyy P . 2016. Are viruses alive? The replicator paradigm sheds decisive light on an old but misguided question. Stud Hist Philos Biol Biomed Sci 59 : 125 134.[CrossRef][PubMed]
133. Marcó MB, Moineau S, Quiberoni A . 2012. Bacteriophages and dairy fermentations. Bacteriophage 2 : 149 158.[CrossRef][PubMed]
134. Fernández L, Escobedo S, Gutiérrez D, Portilla S, Martínez B, García P, Rodríguez A . 2017. Bacteriophages in the dairy environment: from enemies to allies. Antibiotics (Basel) 6 : 27.[CrossRef][PubMed]
135. Haq IU, Chaudhry WN, Akhtar MN, Andleeb S, Qadri I . 2012. Bacteriophages and their implications on future biotechnology: a review. Virol J 9 : 9.[CrossRef][PubMed]
136. Atterbury RJ . 2009. Bacteriophage biocontrol in animals and meat products. Microb Biotechnol 2 : 601 612.[CrossRef][PubMed]
137. Wernicki A, Nowaczek A, Urban-Chmiel R . 2017. Bacteriophage therapy to combat bacterial infections in poultry. Virol J 14 : 179.[CrossRef][PubMed]
138. García P, Martínez B, Obeso JM, Rodríguez A . 2008. Bacteriophages and their application in food safety. Lett Appl Microbiol 47 : 479 485.[CrossRef][PubMed]
139. Shabram P, Aguilar-Cordova E . 2000. Multiplicity of infection/multiplicity of confusion. Mol Ther 2 : 420 421.[CrossRef][PubMed]
140. O'Flynn G, Ross RP, Fitzgerald GF, Coffey A . 2004. Evaluation of a cocktail of three bacteriophages for biocontrol of Escherichia coli O157:H7. Appl Environ Microbiol 70 : 3417 3424.[CrossRef][PubMed]
141. Gandhi M, Chikindas ML . 2007. Listeria: a foodborne pathogen that knows how to survive. Int J Food Microbiol 113 : 1 15.[CrossRef][PubMed]
142. Buchanan RL, Gorris LGM, Hayman MM, Jackson TC, Whiting RC . 2017. A review of Listeria monocytogenes: an update on outbreaks, virulence, dose-response, ecology, and risk assessments. Food Control 75 : 1 13. CORRIGENDUM Food Control 88 : 236..[CrossRef]
143. Strydom A, Witthuhn CR . 2015. Listeria monocytogenes: A target for bacteriophage biocontrol. Compr Rev Food Sci Food Saf 14 : 694 704.[CrossRef].
144. Guenther S, Loessner MJ . 2011. Bacteriophage biocontrol of Listeria monocytogenes on soft ripened white mold and red-smear cheeses. Bacteriophage 1 : 94 100.[CrossRef][PubMed]
145. Chibeu A, Agius L, Gao A, Sabour PM, Kropinski AM, Balamurugan S . 2013. Efficacy of bacteriophage LISTEX™P100 combined with chemical antimicrobials in reducing Listeria monocytogenes in cooked turkey and roast beef. Int J Food Microbiol 167 : 208 214.[CrossRef][PubMed]
146. Sharma M . 2013. Lytic bacteriophages: potential interventions against enteric bacterial pathogens on produce. Bacteriophage 3 : e25518.[CrossRef][PubMed]
147. Mills S, Ross RP, Hill C . 2017. Bacteriocins and bacteriophage; a narrow-minded approach to food and gut microbiology. FEMS Microbiol Rev 41( Supp_1) : S129 S153.[CrossRef][PubMed]
148. Hara H, Ohashi Y, Sakurai T, Yagi K, Fujisawa T, Igimi S . 2009. Effect of nisin (Nisaplin) on the growth of Listeria monocytogenes in karashi-mentaiko (red-pepper seasoned cod roe). Shokuhin Eiseigaku Zasshi 50 : 173 177.[CrossRef][PubMed]
149. Sarkar S . 2016. Effect of nisin on technological and microbiological characteristics of stirred yoghurt. J Microbiol Microb Technol 1 : 6.
150. Verma SK, Sood SK, Saini RK, Saini N . 2017. Pediocin PA-1 containing fermented cheese whey reduces total viable count of raw buffalo ( Bubalis bubalus) milk. LWT Food Sci Technol 83 : 193 200.[CrossRef].
151. Ananou S, Rivera S, Madrid MI, Maqueda M, Martínez-Bueno M, Valdivia E . 2018. Application of enterocin AS-48 as biopreservative in eggs and egg fractions: synergism through lysozyme. LWT Food Sci Technol 89 : 409 417.[CrossRef].
152. Baños A, García-López JD, Núñez C, Martínez-Bueno M, Maqueda M, Valdivia E . 2016. Biocontrol of Listeria monocytogenes in fish by enterocin AS-48 and Listeria lytic bacteriophage P100. LWT Food Sci Technol 66 : 672 677.[CrossRef].
153. Hata T, Sato T, Morimitsu Y . 2016. Genetic characterization of Enterococcus faecalis N1-33 bacteriocin and obtained of the mutant strain that produce many bacteriocin by novobiocin agent effect, its merit as a food preservative in steamed rice model. J Food Saf 36 : 348 359.[CrossRef].
154. Ribeiro SC, Ross RP, Stanton C, Silva CCG . 2017. Characterization and application of antilisterial enterocins on model fresh cheese. J Food Prot 80 : 1303 1316.[CrossRef][PubMed]
155. Pei J, Yue T, Yuan Y, Dai L . 2017. Activity of paracin C from lactic acid bacteria against Alicyclobacillus in apple juice: application of a novelty bacteriocin. J Food Saf 37 : e12350.
156. de Souza Barbosa M, Todorov SD, Ivanova I, Chobert J-M, Haertlé T, de Melo Franco BDG . 2015. Improving safety of salami by application of bacteriocins produced by an autochthonous Lactobacillus curvatus isolate. Food Microbiol 46 : 254 262.[CrossRef][PubMed]
157. Carlin Fagundes P, Miceli de Farias F, Cabral da Silva Santos O, Souza da Paz JA, Ceotto-Vigoder H, Sales Alviano D, Villela Romanos MT, de Freire Bastos MD . 2016. The four-component aureocin A70 as a promising agent for food biopreservation. Int J Food Microbiol 237 : 39 46.[CrossRef][PubMed]
158. Leverentz B, Conway WS, Camp MJ, Janisiewicz WJ, Abuladze T, Yang M, Saftner R, Sulakvelidze A . 2003. Biocontrol of Listeria monocytogenes on fresh-cut produce by treatment with lytic bacteriophages and a bacteriocin. Appl Environ Microbiol 69 : 4519 4526.[CrossRef][PubMed]
159. García P, Martínez B, Rodríguez L, Rodríguez A . 2010. Synergy between the phage endolysin LysH5 and nisin to kill Staphylococcus aureus in pasteurized milk. Int J Food Microbiol 141 : 151 155.[CrossRef][PubMed]
160. Sobrino-Lopez A, Viedma-Martínez P, Abriouel H, Valdivia E, Gálvez A, Martin-Belloso O . 2009. The effect of adding antimicrobial peptides to milk inoculated with Staphylococcus aureus and processed by high-intensity pulsed-electric field. J Dairy Sci 92 : 2514 2523.[CrossRef][PubMed]
161. Arqués JL, Rodríguez E, Nuñez M, Medina M . 2008. Antimicrobial activity of nisin, reuterin, and the lactoperoxidase system on Listeria monocytogenes and Staphylococcus aureus in cuajada, a semisolid dairy product manufactured in Spain. J Dairy Sci 91 : 70 75.[CrossRef][PubMed]
162. Murdock CA, Cleveland J, Matthews KR, Chikindas ML . 2007. The synergistic effect of nisin and lactoferrin on the inhibition of Listeria monocytogenes and Escherichia coli O157:H7. Lett Appl Microbiol 44 : 255 261.[CrossRef][PubMed]
163. Shi C, Zhang X, Zhao X, Meng R, Liu Z, Chen X, Guo N . 2017. Synergistic interactions of nisin in combination with cinnamaldehyde against Staphylococcus aureus in pasteurized milk. Food Control 71 : 10 16.[CrossRef].
164. Chen H, Zhong Q . 2017. Lactobionic acid enhances the synergistic effect of nisin and thymol against Listeria monocytogenes Scott A in tryptic soy broth and milk. Int J Food Microbiol 260 : 36 41.[CrossRef][PubMed]
165. Schlyter JH, Glass KA, Loeffelholz J, Degnan AJ, Luchansky JB . 1993. The effects of diacetate with nitrite, lactate, or pediocin on the viability of Listeria monocytogenes in turkey slurries. Int J Food Microbiol 19 : 271 281.[CrossRef][PubMed]
166. Kalchayanand N, Sikes A, Dunne CP, Ray B . 1998. Interaction of hydrostatic pressure, time and temperature of pressurization and pediocin AcH on inactivation of foodborne bacteria. J Food Prot 61 : 425 431.[CrossRef][PubMed]
167. Lüders T, Birkemo GA, Fimland G, Nissen-Meyer J, Nes IF . 2003. Strong synergy between a eukaryotic antimicrobial peptide and bacteriocins from lactic acid bacteria. Appl Environ Microbiol 69 : 1797 1799.[CrossRef][PubMed]


Generic image for table
Table 28.1

Examples of commercially available bacteriocin-producing food-grade microorganisms

Citation: Weeks R, Chikindas M. 2019. Biological Control of Food-Challenging Microorganisms, p 733-754. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch28
Generic image for table
Table 28.2

Proteinaceous food biopreservatives examples

Citation: Weeks R, Chikindas M. 2019. Biological Control of Food-Challenging Microorganisms, p 733-754. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch28
Generic image for table
Table 28.3

Bacteriocins: AMPs with varying charges, structures, and targets

Citation: Weeks R, Chikindas M. 2019. Biological Control of Food-Challenging Microorganisms, p 733-754. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch28
Generic image for table
Table 28.4

Bacteriocins are not antibiotics

Citation: Weeks R, Chikindas M. 2019. Biological Control of Food-Challenging Microorganisms, p 733-754. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch28
Generic image for table
Table 28.5

Bacteriocins’ activity in food products (recent publications)

Citation: Weeks R, Chikindas M. 2019. Biological Control of Food-Challenging Microorganisms, p 733-754. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch28
Generic image for table
Table 28.6

Increased activity of bacteriocins when combined with synergistically acting stressors

Citation: Weeks R, Chikindas M. 2019. Biological Control of Food-Challenging Microorganisms, p 733-754. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch28
Generic image for table
Table 28.7

Bacteriophages as an aid in infectious diseases and food safety: commonalities and differences in food and infection scenarios

Citation: Weeks R, Chikindas M. 2019. Biological Control of Food-Challenging Microorganisms, p 733-754. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch28

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error