1887

Chapter 32 : Probiotics and Prebiotics

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Probiotics and Prebiotics, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819972/9781555819965.ch32-1.gif /docserver/preview/fulltext/10.1128/9781555819972/9781555819965.ch32-2.gif

Abstract:

Probiotics, live microorganisms that, when administered in adequate amounts, confer a health benefit on the host, and prebiotics, substrates that are selectively utilized by host microorganisms conferring a health benefit, make up a group of highly researched substances targeted at influencing microbiota-mediated functions for the benefit of the host. Evidence that probiotics and prebiotics can benefit human and animal health continues to build and fuel basic research on mechanisms, genomics, and genetic improvement of these substances. This chapter explores basic mechanisms of probiotic and prebiotic function, next-generation probiotics and prebiotics, comparative genomics, taxonomy and molecular identification, health benefits for humans and animals, and safety and regulatory issues.

Citation: Sanders M, Goh Y, Klaenhammer T. 2019. Probiotics and Prebiotics, p 831-854. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch32
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 32.1
Figure 32.1

Elie Metchnikoff (1845–1916) ( ).

Citation: Sanders M, Goh Y, Klaenhammer T. 2019. Probiotics and Prebiotics, p 831-854. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch32
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 32.2
Figure 32.2

Probiotics: what is encompassed under this term. By definition, a health benefit must be demonstrated for a probiotic, either at a strain-specific level or at a taxonomic level where mechanisms are shared. Probiotics can be administered via different routes (oral, intravaginal, and topical routes and via mouth sprays) and are not limited to human use (i.e., they may also be given to companion animals, livestock, and fish). The probiotic definition is not restricted by regulatory category for probiotics and encompasses the spectrum from foods to drugs (live biotherapeutic agents). Dead microbes, microbial end products, microbial components, and undefined microbial mixes do not come under the probiotic classification. Adapted from reference with permission.

Citation: Sanders M, Goh Y, Klaenhammer T. 2019. Probiotics and Prebiotics, p 831-854. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch32
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 32.3
Figure 32.3

Genome atlas of the probiotic strain NCFM, presenting a circular view of the complete genome. The key describes the single circles in the top-down outermost-innermost direction ( ).

Citation: Sanders M, Goh Y, Klaenhammer T. 2019. Probiotics and Prebiotics, p 831-854. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch32
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 32.4
Figure 32.4

Overview of indications where probiotics have been researched with varying but solid evidence for clinical benefit. RTI, respiratory tract infection; GI, gastrointestinal.

Citation: Sanders M, Goh Y, Klaenhammer T. 2019. Probiotics and Prebiotics, p 831-854. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch32
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 32.5
Figure 32.5

Comparison of the complete genome sequences of subsp. DSM 10140 and Bl-04, showing a hierarchical clustering analysis of subsp. strains across 50 genetic loci. Rows represent strains, and columns represent genetic loci. Numbers on the right indicate strain clusters, and numbers on the bottom indicate genetic locus clusters. Colored squares correspond to the sequence type at each locus. Blue represents strain DSMZ 10140, red represents strain Bl-04, and gray represents unique sequence ( ).

Citation: Sanders M, Goh Y, Klaenhammer T. 2019. Probiotics and Prebiotics, p 831-854. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch32
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 32.6
Figure 32.6

Bacteriocin production by UCC118 protects against EGDe infection of mice. (Top left) Bacteriocin production by wild-type (wt) UCC118 and the non-bacteriocin-producing mutant. (Bottom left) Bars represent mice fed placebo (black), UCC118 (white), or a non-bacteriocin-producing mutant of UCC118 (gray). (Right) Image on the cover of shows livers of mice that are colonized with luminescent EGDe, in red. Adapted from reference with permission.

Citation: Sanders M, Goh Y, Klaenhammer T. 2019. Probiotics and Prebiotics, p 831-854. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch32
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 32.7
Figure 32.7

Pili expressed by (left) ( ) and (right) ( ).

Citation: Sanders M, Goh Y, Klaenhammer T. 2019. Probiotics and Prebiotics, p 831-854. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch32
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 32.8
Figure 32.8

Examples of prebiotic oligosaccharides with demonstrated health effects through modulation of beneficial microbiota. FF, FOS generated from partial hydrolysis of inulin; GF, FOS synthesized from sucrose; LNB, lacto--biose I; LNT, lacto--tetraose. The structure of HMO is modified from reference ; figure modified from reference .

Citation: Sanders M, Goh Y, Klaenhammer T. 2019. Probiotics and Prebiotics, p 831-854. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch32
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 32.9
Figure 32.9

Metabolism of prebiotic compounds by beneficial gut microbiota and probiotic microorganisms, by which the resulting population is enhanced directly and indirectly (via substrate cross-feeding and metabolic cross-feeding) and which has health-promoting effects on the host. SCFAs are an essential energy source for colonic epithelial cells and serve as growth factors for some beneficial bacteria. These metabolites have also been associated with maintenance of gut barrier integrity, immunomodulatory functions, and host signaling ( ). Dashed arrows indicate cross-feeding of hydrolyzed prebiotic substrate intermediates and SCFA metabolites.

Citation: Sanders M, Goh Y, Klaenhammer T. 2019. Probiotics and Prebiotics, p 831-854. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch32
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 32.10
Figure 32.10

Molecular mechanisms of prebiotic FOS and GOS uptake and catabolism identified among intestine-associated lactobacilli. A diverse array of transport systems (ABC transporter, sucrose and fructose PTSs, symporter) and hydrolytic pathways (intracellular versus extracellular) have evolved for FOS utilization in these organisms (top). Uptake of GOS is mainly mediated by lactose permeases and is hydrolyzed by cytoplasmic β-galactosidases (bottom). Note that no LacS permease ortholog was identified in the group. FFase, β-fructofuranosidase or β-fructosidase; ~P, phosphorylation of the substrate intermediate during the uptake process via PTS; an asterisk indicates that the transporter system was predicted based on analysis.

Citation: Sanders M, Goh Y, Klaenhammer T. 2019. Probiotics and Prebiotics, p 831-854. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch32
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555819972.ch32
1. Szajewska H, Canani RB, Guarino A, Hojsak I, Indrio F, Kolacek S, Orel R, Shamir R, Vandenplas Y, van Goudoever JB, Weizman Z ESPGHAN Working Group for ProbioticsPrebiotics. 2016. Probiotics for the Prevention of Antibiotic-Associated Diarrhea in Children. J Pediatr Gastroenterol Nutr 62 : 495 506[CrossRef].[PubMed]
2. Guarner F, Sanders ME, Eliakim R, Fedorak R, Gangi A, Garisch J, Kaufmann P, Karakan T, Khan A, Kim N, De Paula JA, Ramakrishna B, Shanahan F, Szajewska H, Thomson A, Le Mair A, Merenstein DJ, Salminen S. 2017. WGO practice guideline—probiotics and prebiotics. World Gastroenterology Organisation, Milwaukee, WI. http://www.worldgastroenterology.org/guidelines/global-guidelines/probiotics-and-prebiotics. Accessed 2 January 2018.
3. Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, Scott K, Stanton C, Swanson KS, Cani PD, Verbeke K, Reid G. 2017. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol 14 : 491 502.[PubMed]
4. Tannock GW. 1999. Probiotics. A Critical Review. Horizon Scientific Press, Poole, United Kingdom.
5. Johnson BR, Klaenhammer TR. 2014. Impact of genomics on the field of probiotic research: historical perspectives to modern paradigms. Antonie van Leeuwenhoek 106 : 141 156[CrossRef].[PubMed]
6. Food and Agricultural Organization of the United Nations and World Health Organization. 2006. Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. FAO food and nutrition paper 85. Food and Agricultural Organization, Rome, Italy.
7. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME. 2014. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11 : 506 514[CrossRef].[PubMed]
8. Sherman PM, Ossa JC, Johnson-Henry K. 2009. Unraveling mechanisms of action of probiotics. Nutr Clin Pract 24 : 10 14[CrossRef].[PubMed]
9. Lebeer S, Bron PA, Marco ML, Van Pijkeren JP, O'Connell Motherway M, Hill C, Pot B, Roos S, Klaenhammer T. 2018. Identification of probiotic effector molecules: present state and future perspectives. Curr Opin Biotechnol 49 : 217 223[CrossRef].[PubMed]
10. Abraham BP, Quigley EMM. 2017. Probiotics in inflammatory bowel disease. Gastroenterol Clin North Am 46 : 769 782[CrossRef].[PubMed]
11. Klaenhammer TR, Kleerebezem M, Kopp MV, Rescigno M. 2012. The impact of probiotics and prebiotics on the immune system. Nat Rev Immunol 12 : 728 734[CrossRef].[PubMed]
12. Mohamadzadeh M, Pfeiler EA, Brown JB, Zadeh M, Gramarossa M, Managlia E, Bere P, Sarraj B, Khan MW, Pakanati KC, Ansari MJ, O'Flaherty S, Barrett T, Klaenhammer TR. 2011. Regulation of induced colonic inflammation by Lactobacillus acidophilus deficient in lipoteichoic acid. Proc Natl Acad Sci USA 108( Suppl 1) : 4623 4630[CrossRef].[PubMed]
13. Lei WT, Shih PC, Liu SJ, Lin CY, Yeh TL. 2017. Effect of probiotics and prebiotics on immune response to influenza vaccination in adults: a systematic review and meta-analysis of randomized controlled trials. Nutrients 9 : 1175[CrossRef].[PubMed]
14. Konstantinov SR, Smidt H, de Vos WM, Bruijns SC, Singh SK, Valence F, Molle D, Lortal S, Altermann E, Klaenhammer TR, van Kooyk Y. 2008. S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions. Proc Natl Acad Sci USA 105 : 19474 19479[CrossRef].[PubMed]
15. Tytgat HL, van Teijlingen NH, Sullan RM, Douillard FP, Rasinkangas P, Messing M, Reunanen J, Satokari R, Vanderleyden J, Dufrêne YF, Geijtenbeek TB, de Vos WM, Lebeer S. 2016. Probiotic gut microbiota isolate interacts with dendritic cells via glycosylated heterotrimeric pili. PLoS One 11 : e0151824[CrossRef].[PubMed]
16. Quigley EM. 2016. Leaky gut—concept or clinical entity? Curr Opin Gastroenterol 32 : 74 79[CrossRef].[PubMed]
17. Bron PA, Kleerebezem M, Brummer RJ, Cani PD, Mercenier A, MacDonald TT, Garcia-Ródenas CL, Wells JM. 2017. Can probiotics modulate human disease by impacting intestinal barrier function? Br J Nutr 117 : 93 107[CrossRef].[PubMed]
18. Chiu L, Bazin T, Truchetet ME, Schaeverbeke T, Delhaes L, Pradeu T. 2017. Protective microbiota: from localized to long-reaching co-immunity. Front Immunol 8 : 1678[CrossRef].[PubMed]
19. O'Hara AM, Shanahan F. 2007. Mechanisms of action of probiotics in intestinal diseases. Sci World J 7 : 31 46[CrossRef].[PubMed]
20. Pessione E, Cirrincione S. 2016. Bioactive molecules released in food by lactic acid bacteria: encrypted peptides and biogenic amines. Front Microbiol 7 : 876[CrossRef].[PubMed]
21. Rousseaux C, Thuru X, Gelot A, Barnich N, Neut C, Dubuquoy L, Dubuquoy C, Merour E, Geboes K, Chamaillard M, Ouwehand A, Leyer G, Carcano D, Colombel JF, Ardid D, Desreumaux P. 2007. Lactobacillus acidophilus modulates intestinal pain and induces opioid and cannabinoid receptors. Nat Med 13 : 35 37[CrossRef].[PubMed]
22. Ringel-Kulka T, Goldsmith JR, Carroll IM, Barros SP, Palsson O, Jobin C, Ringel Y. 2014. Lactobacillus acidophilus NCFM affects colonic mucosal opioid receptor expression in patients with functional abdominal pain—a randomised clinical study. Aliment Pharmacol Ther 40 : 200 207[CrossRef].[PubMed]
23. Sherwin E, Dinan TG, Cryan JF. 2017. Recent developments in understanding the role of the gut microbiota in brain health and disease. Ann N Y Acad Sci 1420 : 5 25.[PubMed]
24. Kristensen NB, Bryrup T, Allin KH, Nielsen T, Hansen TH, Pedersen O. 2016. Alterations in fecal microbiota composition by probiotic supplementation in healthy adults: a systematic review of randomized controlled trials. Genome Med 8 : 52[CrossRef].[PubMed]
25. Sanders ME. 2011. Impact of probiotics on colonizing microbiota of the gut. J Clin Gastroenterol 45( Suppl) : S115 S119[CrossRef].[PubMed]
26. Hibberd AA, Lyra A, Ouwehand AC, Rolny P, Lindegren H, Cedgård L, Wettergren Y. 2017. Intestinal microbiota is altered in patients with colon cancer and modified by probiotic intervention. BMJ Open Gastroenterol 4 : e000145[CrossRef].[PubMed]
27. Frese SA, Hutton AA, Contreras LN, Shaw CA, Palumbo MC, Casaburi G, Xu G, Davis JCC, Lebrilla CB, Henrick BM, Freeman SL, Barile D, German JB, Mills DA, Smilowitz JT, Underwood MA. 2017. Persistence of supplemented Bifidobacterium longum subsp. infantis EVC001 in breastfed infants. mSphere 2 :e00501-17[CrossRef].[PubMed]
28. Maldonado-Gómez MX, Martínez I, Bottacini F, O'Callaghan A, Ventura M, van Sinderen D, Hillmann B, Vangay P, Knights D, Hutkins RW, Walter J. 2016. Stable engraftment of Bifidobacterium longum AH1206 in the human gut depends on individualized features of the resident microbiome. Cell Host Microbe 20 : 515 526[CrossRef].[PubMed]
29. McNulty NP, Yatsunenko T, Hsiao A, Faith JJ, Muegge BD, Goodman AL, Henrissat B, Oozeer R, Cools-Portier S, Gobert G, Chervaux C, Knights D, Lozupone CA, Knight R, Duncan AE, Bain JR, Muehlbauer MJ, Newgard CB, Heath AC, Gordon JI. 2011. The impact of a consortium of fermented milk strains on the gut microbiome of gnotobiotic mice and monozygotic twins. Sci Transl Med 3 : 106ra106[CrossRef].[PubMed]
30. Eloe-Fadrosh EA, Brady A, Crabtree J, Drabek EF, Ma B, Mahurkar A, Ravel J, Haverkamp M, Fiorino AM, Botelho C, Andreyeva I, Hibberd PL, Fraser CM. 2015. Functional dynamics of the gut microbiome in elderly people during probiotic consumption. mBio 6 :e00231-15[CrossRef].[PubMed]
31. Spinler JK, Sontakke A, Hollister EB, Venable SF, Oh PL, Balderas MA, Saulnier DM, Mistretta TA, Devaraj S, Walter J, Versalovic J, Highlander SK. 2014. From prediction to function using evolutionary genomics: human-specific ecotypes of Lactobacillus reuteri have diverse probiotic functions. Genome Biol Evol 6 : 1772 1789[CrossRef].[PubMed]
32. Paineau D, Carcano D, Leyer G, Darquy S, Alyanakian MA, Simoneau G, Bergmann JF, Brassart D, Bornet F, Ouwehand AC. 2008. Effects of seven potential probiotic strains on specific immune responses in healthy adults: a double-blind, randomized, controlled trial. FEMS Immunol Med Microbiol 53 : 107 113[CrossRef].[PubMed]
33. Ritchie ML, Romanuk TN. 2012. A meta-analysis of probiotic efficacy for gastrointestinal diseases. PLoS One 7 : e34938[CrossRef].[PubMed]
34. Sanders ME, Benson A, Lebeer S, Merenstein DJ, Klaenhammer TR. 2018. Shared mechanisms among probiotic taxa: implications for general probiotic claims. Curr Opin Biotechnol 49 : 207 216[CrossRef].[PubMed]
35. Corr SC, Li Y, Riedel CU, O'Toole PW, Hill C, Gahan CG. 2007. Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proc Natl Acad Sci USA 104 : 7617 7621[CrossRef].[PubMed]
36. Gao C, Ganesh BP, Shi Z, Shah RR, Fultz R, Major A, Venable S, Lugo M, Hoch K, Chen X, Haag A, Wang TC, Versalovic J. 2017. Gut microbe-mediated suppression of inflammation-associated colon carcinogenesis by luminal histamine production. Am J Pathol 187 : 2323 2336[CrossRef].[PubMed]
37. Bibel DJ. 1988. Elie Metchnikoff's bacillus of long life. ASM News 54 : 661 665.
38. Canfora EE, Jocken JW, Blaak EE. 2015. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol 11 : 577 591[CrossRef].[PubMed]
39. Ríos-Covián D, Ruas-Madiedo P, Margolles A, Gueimonde M, de Los Reyes-Gavilán CG, Salazar N. 2016. Intestinal short chain fatty acids and their link with diet and human health. Front Microbiol 7 : 185[CrossRef].[PubMed]
40. O'Toole PW, Marchesi JR, Hill C. 2017. Next-generation probiotics: the spectrum from probiotics to live biotherapeutics. Nat Microbiol 2 : 17057[CrossRef].[PubMed]
41. Cani PD, de Vos WM. 2017. Next-generation beneficial microbes: the case of Akkermansia muciniphila. Front Microbiol 8 : 1765[CrossRef].[PubMed]
42. Udayappan S, Manneras-Holm L, Chaplin-Scott A, Belzer C, Herrema H, Dallinga-Thie GM, Duncan SH, Stroes ESG, Groen AK, Flint HJ, Backhed F, de Vos WM, Nieuwdorp M. 2016. Oral treatment with Eubacterium hallii improves insulin sensitivity in db/db mice. NPJ Biofilms Microbiomes 2 : 16009[CrossRef].[PubMed]
43. Sela DA, Chapman J, Adeuya A, Kim JH, Chen F, Whitehead TR, Lapidus A, Rokhsar DS, Lebrilla CB, German JB, Price NP, Richardson PM, Mills DA. 2008. The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proc Natl Acad Sci USA 105 : 18964 18969[CrossRef].[PubMed]
44. Sung V, D'Amico F, Cabana MD, Chau K, Koren G, Savino F, Szajewska H, Deshpande G, Dupont C, Indrio F, Mentula S, Partty A, Tancredi D. 2017. Lactobacillus reuteri to treat infant colic: a meta-analysis. Pediatrics 141 : e20171811.[PubMed]
45. Deshpande G, Jape G, Rao S, Patole S. 2017. Benefits of probiotics in preterm neonates in low-income and medium-income countries: a systematic review of randomised controlled trials. BMJ Open 7 : e017638[CrossRef].[PubMed]
46. Goldenberg JZ, Yap C, Lytvyn L, Lo CK, Beardsley J, Mertz D, Johnston BC. 2017. Probiotics for the prevention of Clostridium difficile-associated diarrhea in adults and children. Cochrane Database Syst Rev 12 : CD006095.[PubMed]
47. Hao Q, Dong BR, Wu T. 2015. Probiotics for preventing acute upper respiratory tract infections. Cochrane Database Syst Rev 2015( 2) : CD006895.[PubMed]
48. M, Yu S, Deng J, Yan Q, Yang C, Xia G, Zhou X. 2016. Efficacy of probiotic supplementation therapy for Helicobacter pylori eradication: a meta-analysis of randomized controlled trials. PLoS One 11 : e0163743[CrossRef].[PubMed]
49. Reid G. 2017. Therapeutic opportunities in the vaginal microbiome. Microbiol Spectr 5 : BAD-0001-2016[CrossRef].[PubMed]
50. Szajewska H, Mrukowicz JZ. 2001. Probiotics in the treatment and prevention of acute infectious diarrhea in infants and children: a systematic review of published randomized, double-blind, placebo-controlled trials. J Pediatr Gastroenterol Nutr 33( Suppl 2) : S17 S25[CrossRef].[PubMed]
51. Shane AL, Cabana MD, Ellis CL, Heimbach JT, Hempel S, Hummelen R, Lynch S, Merenstein DJ, Sanders ME, Tancredi DJ, Vidry S. 2010. Guide to designing, conducting, publishing and communicating results of clinical studies involving probiotic applications in human participants. Gut Microbes 1 : 243 253[CrossRef].[PubMed]
52. Glanville J, King S, Guarner F, Hill C, Sanders ME. 2015. A review of the systematic review process and its applicability for use in evaluating evidence for health claims on probiotic foods in the European Union. Nutr J 14 : 16[CrossRef].[PubMed]
53. Wells JM, Mercenier A. 2008. Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria. Nat Rev Microbiol 6 : 349 362[CrossRef].[PubMed]
54. Wells JM, Robinson K, Chamberlain LM, Schofield KM, Le Page RW. 1996. Lactic acid bacteria as vaccine delivery vehicles. Antonie van Leeuwenhoek 70 : 317 330[CrossRef].[PubMed]
55. Mohamadzadeh M, Durmaz E, Zadeh M, Pakanati KC, Gramarossa M, Cohran V, Klaenhammer TR. 2010. Targeted expression of anthrax protective antigen by Lactobacillus gasseri as an anthrax vaccine. Future Microbiol 5 : 1289 1296[CrossRef].[PubMed]
56. O'Flaherty S, Klaenhammer TR. 2016. Multivalent chromosomal expression of the Clostridium botulinum serotype A neurotoxin heavy-chain antigen and the Bacillus anthracis protective antigen in Lactobacillus acidophilus. Appl Environ Microbiol 82 : 6091 6101[CrossRef].[PubMed]
57. Sahay B, Colliou N, Zadeh M, Ge Y, Gong M, Owen JL, Valletti M, Jobin C, Mohamadzadeh M. 2018. Dual-route targeted vaccine protects efficiently against botulinum neurotoxin A complex. Vaccine 36 : 155 164[CrossRef].[PubMed]
58. Steidler L, Hans W, Schotte L, Neirynck S, Obermeier F, Falk W, Fiers W, Remaut E. 2000. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 289 : 1352 1355[CrossRef].[PubMed]
59. Braat H, Rottiers P, Hommes DW, Huyghebaert N, Remaut E, Remon JP, van Deventer SJ, Neirynck S, Peppelenbosch MP, Steidler L. 2006. A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn's disease. Clin Gastroenterol Hepatol 4 : 754 759[CrossRef].[PubMed]
60. Nurmi E, Rantala M. 1973. New aspects of Salmonella infection in broiler production. Nature 241 : 210 211[CrossRef].[PubMed]
61. Nisbet DJ, Tellez GI, Lowry VK, Anderson RC, Garcia G, Nava G, Kogut MH, Corrier DE, Stanker LH. 1998. Effect of a commercial competitive exclusion culture (Preempt) on mortality and horizontal transmission of Salmonella gallinarum in broiler chickens. Avian Dis 42 : 651 656[CrossRef].[PubMed]
62. Doyle MP, Erickson MC. 2006. Reducing the carriage of foodborne pathogens in livestock and poultry. Poult Sci 85 : 960 973[CrossRef].[PubMed]
63. Zhao T, Doyle MP, Harmon BG, Brown CA, Mueller PO, Parks AH. 1998. Reduction of carriage of enterohemorrhagic Escherichia coli O157:H7 in cattle by inoculation with probiotic bacteria. J Clin Microbiol 36 : 641 647.[PubMed]
64. Mohan V. 2015. The role of probiotics in the inhibition of Campylobacter jejuni colonization and virulence attenuation. Eur J Clin Microbiol Infect Dis 34 : 1503 1513[CrossRef].[PubMed]
65. Buntyn JO, Schmidt TB, Nisbet DJ, Callaway TR. 2016. The role of direct-fed microbials in conventional livestock production. Annu Rev Anim Biosci 4 : 335 355[CrossRef].[PubMed]
66. Schmitz S, Suchodolski J. 2016. Understanding the canine intestinal microbiota and its modification by pro-, pre- and synbiotics—what is the evidence? Vet Med Sci 2 : 71 94[CrossRef].[PubMed]
67. Grześkowiak Ł, Endo A, Beasley S, Salminen S. 2015. Microbiota and probiotics in canine and feline welfare. Anaerobe 34 : 14 23[CrossRef].[PubMed]
68. Sanders ME, Akkermans LM, Haller D, Hammerman C, Heimbach J, Hörmannsperger G, Huys G. 2010. Safety assessment of probiotics for human use. Gut Microbes 1 : 164 185[CrossRef].[PubMed]
69. Kleerebezem M, Boekhorst J, van Kranenburg R, Molenaar D, Kuipers OP, Leer R, Tarchini R, Peters SA, Sandbrink HM, Fiers MW, Stiekema W, Lankhorst RM, Bron PA, Hoffer SM, Groot MN, Kerkhoven R, de Vries M, Ursing B, de Vos WM, Siezen RJ. 2003. Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci USA 100 : 1990 1995[CrossRef].[PubMed]
70. Wang HH, Manuzon M, Lehman M, Wan K, Luo H, Wittum TE, Yousef A, Bakaletz LO. 2006. Food commensal microbes as a potentially important avenue in transmitting antibiotic resistance genes. FEMS Microbiol Lett 254 : 226 231[CrossRef].[PubMed]
71. Kullen MJ, Sanozky-Dawes RB, Crowell DC, Klaenhammer TR. 2000. Use of the DNA sequence of variable regions of the 16S rRNA gene for rapid and accurate identification of bacteria in the Lactobacillus acidophilus complex. J Appl Microbiol 89 : 511 516[CrossRef].[PubMed]
72. Salvetti E, Harris HMB, Felis GE, O'Toole PW . 2018. Comparative genomics of the genus Lactobacillus reveals robust phylogroups that provide the basis for reclassification. Appl Environ Microbiol 84 : e00993 e18. Erratum in: Appl Environ Microbiol 2018 Oct 1; 84(20).
73. Kullen MJ, Brady LJ, O'Sullivan DJ. 1997. Evaluation of using a short region of the recA gene for rapid and sensitive speciation of dominant bifidobacteria in the human large intestine. FEMS Microbiol Lett 154 : 377 383[CrossRef].[PubMed]
74. Barrangou R, Briczinski EP, Traeger LL, Loquasto JR, Richards M, Horvath P, Coûté-Monvoisin AC, Leyer G, Rendulic S, Steele JL, Broadbent JR, Oberg T, Dudley EG, Schuster S, Romero DA, Roberts RF. 2009. Comparison of the complete genome sequences of Bifidobacterium animalis subsp. lactis DSM 10140 and Bl-04. J Bacteriol 191 : 4144 4151[CrossRef].[PubMed]
75. Sun Z, Harris HM, McCann A, Guo C, Argimón S, Zhang W, Yang X, Jeffery IB, Cooney JC, Kagawa TF, Liu W, Song Y, Salvetti E, Wrobel A, Rasinkangas P, Parkhill J, Rea MC, O'Sullivan O, Ritari J, Douillard FP, Paul Ross R, Yang R, Briner AE, Felis GE, de Vos WM, Barrangou R, Klaenhammer TR, Caufield PW, Cui Y, Zhang H, O'Toole PW. 2015. Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera. Nat Commun 6 : 8322[CrossRef].[PubMed]
76. Felis GE, Dellaglio F. 2007. Taxonomy of lactobacilli and bifidobacteria. Curr Issues Intest Microbiol 8 : 44 61.[PubMed]
77. Ventura M, van Sinderen D, Fitzgerald GF, Zink R. 2004. Insights into the taxonomy, genetics and physiology of bifidobacteria. Antonie van Leeuwenhoek 86 : 205 223[CrossRef].[PubMed]
78. Loquasto JR, Barrangou R, Dudley EG, Stahl B, Chen C, Roberts RF. 2013. Bifidobacterium animalis subsp. lactis ATCC 27673 is a genomically unique strain within its conserved subspecies. Appl Environ Microbiol 79 : 6903 6910[CrossRef].[PubMed]
79. Klaenhammer TR, Barrangou R, Buck BL, Azcarate-Peril MA, Altermann E. 2005. Genomic features of lactic acid bacteria effecting bioprocessing and health. FEMS Microbiol Rev 29 : 393 409[CrossRef].[PubMed]
80. Molenaar D, Bringel F, Schuren FH, de Vos WM, Siezen RJ, Kleerebezem M. 2005. Exploring Lactobacillus plantarum genome diversity by using microarrays. J Bacteriol 187 : 6119 6127[CrossRef].[PubMed]
81. Boekhorst J, Siezen RJ, Zwahlen MC, Vilanova D, Pridmore RD, Mercenier A, Kleerebezem M, de Vos WM, Brüssow H, Desiere F. 2004. The complete genomes of Lactobacillus plantarum and Lactobacillus johnsonii reveal extensive differences in chromosome organization and gene content. Microbiology 150 : 3601 3611[CrossRef].[PubMed]
82. Gueimonde M, Flórez AB, van Hoek AH, Stuer-Lauridsen B, Strøman P, de los Reyes-Gavilán CG, Margolles A. 2010. Genetic basis of tetracycline resistance in Bifidobacterium animalis subsp. lactis. Appl Environ Microbiol 76 : 3364 3369[CrossRef].[PubMed]
83. Gueimonde M, Salminen S, Isolauri E. 2006. Presence of specific antibiotic (tet) resistance genes in infant faecal microbiota. FEMS Immunol Med Microbiol 48 : 21 25[CrossRef].[PubMed]
84. Makarova KS, Koonin EV. 2007. Evolutionary genomics of lactic acid bacteria. J Bacteriol 189 : 1199 1208[CrossRef].[PubMed]
85. Kankainen M, Paulin L, Tynkkynen S, von Ossowski I, Reunanen J, Partanen P, Satokari R, Vesterlund S, Hendrickx AP, Lebeer S, De Keersmaecker SC, Vanderleyden J, Hämäläinen T, Laukkanen S, Salovuori N, Ritari J, Alatalo E, Korpela R, Mattila-Sandholm T, Lassig A, Hatakka K, Kinnunen KT, Karjalainen H, Saxelin M, Laakso K, Surakka A, Palva A, Salusjärvi T, Auvinen P, de Vos WM. 2009. Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human- mucus binding protein. Proc Natl Acad Sci USA 106 : 17193 17198[CrossRef].[PubMed]
86. O'Connell Motherway M, Zomer A, Leahy SC, Reunanen J, Bottacini F, Claesson MJ, O'Brien F, Flynn K, Casey PG, Munoz JA, Kearney B, Houston AM, O'Mahony C, Higgins DG, Shanahan F, Palva A, de Vos WM, Fitzgerald GF, Ventura M, O'Toole PW, van Sinderen D. 2011. Functional genome analysis of Bifidobacterium breve UCC2003 reveals type IVb tight adherence (Tad) pili as an essential and conserved host-colonization factor. Proc Natl Acad Sci USA 108 : 11217 11222[CrossRef].[PubMed]
87. Cantarel BL, Lombard V, Henrissat B. 2012. Complex carbohydrate utilization by the healthy human microbiome. PLoS One 7 : e28742[CrossRef].[PubMed]
88. György P, Norris RF, Rose CS. 1954. Bifidus factor. I. A variant of Lactobacillus bifidus requiring a special growth factor. Arch Biochem Biophys 48 : 193 201[CrossRef].[PubMed]
89. Gibson GR, Roberfroid MB. 1995. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125 : 1401 1412.[PubMed]
90. Belenguer A, Duncan SH, Calder AG, Holtrop G, Louis P, Lobley GE, Flint HJ. 2006. Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Appl Environ Microbiol 72 : 3593 3599[CrossRef].[PubMed]
91. Falony G, Vlachou A, Verbrugghe K, De Vuyst L. 2006. Cross-feeding between Bifidobacterium longum BB536 and acetate-converting, butyrate-producing colon bacteria during growth on oligofructose. Appl Environ Microbiol 72 : 7835 7841[CrossRef].[PubMed]
92. El-Semman IE, Karlsson FH, Shoaie S, Nookaew I, Soliman TH, Nielsen J. 2014. Genome-scale metabolic reconstructions of Bifidobacterium adolescentis L2-32 and Faecalibacterium prausnitzii A2-165 and their interaction. BMC Syst Biol 8 : 41[CrossRef].[PubMed]
93. Scott KP, Gratz SW, Sheridan PO, Flint HJ, Duncan SH. 2013. The influence of diet on the gut microbiota. Pharmacol Res 69 : 52 60[CrossRef].[PubMed]
94. Bindels LB, Delzenne NM, Cani PD, Walter J. 2015. Towards a more comprehensive concept for prebiotics. Nat Rev Gastroenterol Hepatol 12 : 303 310[CrossRef].[PubMed]
95. Hutkins RW, Krumbeck JA, Bindels LB, Cani PD, Fahey G Jr, Goh YJ, Hamaker B, Martens EC, Mills DA, Rastal RA, Vaughan E, Sanders ME. 2016. Prebiotics: why definitions matter. Curr Opin Biotechnol 37 : 1 7[CrossRef].[PubMed]
96. Azcarate-Peril MA, Ritter AJ, Savaiano D, Monteagudo-Mera A, Anderson C, Magness ST, Klaenhammer TR. 2017. Impact of short-chain galactooligosaccharides on the gut microbiome of lactose-intolerant individuals. Proc Natl Acad Sci USA 114 : E367 E375[CrossRef].[PubMed]
97. Savaiano DA, Ritter AJ, Klaenhammer TR, James GM, Longcore AT, Chandler JR, Walker WA, Foyt HL. 2013. Improving lactose digestion and symptoms of lactose intolerance with a novel galacto-oligosaccharide (RP-G28): a randomized, double-blind clinical trial. Nutr J 12 : 160[CrossRef].[PubMed]
98. Yang J, Martínez I, Walter J, Keshavarzian A, Rose DJ. 2013. In vitro characterization of the impact of selected dietary fibers on fecal microbiota composition and short chain fatty acid production. Anaerobe 23 : 74 81[CrossRef].[PubMed]
99. Valcheva R, Dieleman LA. 2016. Prebiotics: definition and protective mechanisms. Best Pract Res Clin Gastroenterol 30 : 27 37[CrossRef].[PubMed]
100. Rivière A, Selak M, Lantin D, Leroy F, De Vuyst L. 2016. Bifidobacteria and butyrate-producing colon bacteria: importance and strategies for their stimulation in the human gut. Front Microbiol 7 : 979[CrossRef].[PubMed]
101. Shokryazdan P, Faseleh Jahromi M, Navidshad B, Liang JB. 2017. Effects of prebiotics on immune system and cytokine expression. Med Microbiol Immunol (Berl) 206 : 1 9[CrossRef].[PubMed]
102. Hegarty JW, Guinane CM, Ross RP, Hill C, Cotter PD. 2016. Bacteriocin production: a relatively unharnessed probiotic trait? F1000 Res 5 : 2587[CrossRef].[PubMed]
103. LeBlanc JG, Milani C, de Giori GS, Sesma F, van Sinderen D, Ventura M. 2013. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol 24 : 160 168[CrossRef].[PubMed]
104. Yunes RA, Poluektova EU, Dyachkova MS, Klimina KM, Kovtun AS, Averina OV, Orlova VS, Danilenko VN. 2016. GABA production and structure of gadB/gadC genes in Lactobacillus and Bifidobacterium strains from human microbiota. Anaerobe 42 : 197 204[CrossRef].[PubMed]
105. Patterson E, Cryan JF, Fitzgerald GF, Ross RP, Dinan TG, Stanton C. 2014. Gut microbiota, the pharmabiotics they produce and host health. Proc Nutr Soc 73 : 477 489[CrossRef].[PubMed]
106. Theilmann MC, Goh YJ, Nielsen KF, Klaenhammer TR, Barrangou R, Abou Hachem M. 2017. Lactobacillus acidophilus metabolizes dietary plant glucosides and externalizes their bioactive phytochemicals. mBio 8 :e01421-17[CrossRef].[PubMed]
107. Goh YJ, Klaenhammer TR. 2015. Genetic mechanisms of prebiotic oligosaccharide metabolism in probiotic microbes. Annu Rev Food Sci Technol 6 : 137 156[CrossRef].[PubMed]
108. Cockburn DW, Koropatkin NM. 2016. Polysaccharide degradation by the intestinal microbiota and its influence on human health and disease. J Mol Biol 428 : 3230 3252[CrossRef].[PubMed]
109. Barrangou R, Altermann E, Hutkins R, Cano R, Klaenhammer TR. 2003. Functional and comparative genomic analyses of an operon involved in fructooligosaccharide utilization by Lactobacillus acidophilus. Proc Natl Acad Sci USA 100 : 8957 8962[CrossRef].[PubMed]
110. Saulnier DM, Molenaar D, de Vos WM, Gibson GR, Kolida S. 2007. Identification of prebiotic fructooligosaccharide metabolism in Lactobacillus plantarum WCFS1 through microarrays. Appl Environ Microbiol 73 : 1753 1765[CrossRef].[PubMed]
111. O'Donnell MM, Forde BM, Neville B, Ross PR, O'Toole PW. 2011. Carbohydrate catabolic flexibility in the mammalian intestinal commensal Lactobacillus ruminis revealed by fermentation studies aligned to genome annotations. Microb Cell Fact 10( Suppl 1) : S12[CrossRef].[PubMed]
112. Parche S, Amon J, Jankovic I, Rezzonico E, Beleut M, Barutçu H, Schendel I, Eddy MP, Burkovski A, Arigoni F, Titgemeyer F. 2007. Sugar transport systems of Bifidobacterium longum NCC2705. J Mol Microbiol Biotechnol 12 : 9 19[CrossRef].[PubMed]
113. Goh YJ, Zhang C, Benson AK, Schlegel V, Lee JH, Hutkins RW. 2006. Identification of a putative operon involved in fructooligosaccharide utilization by Lactobacillus paracasei. Appl Environ Microbiol 72 : 7518 7530[CrossRef].[PubMed]
114. Goh YJ, Lee JH, Hutkins RW. 2007. Functional analysis of the fructooligosaccharide utilization operon in Lactobacillus paracasei 1195. Appl Environ Microbiol 73 : 5716 5724[CrossRef].[PubMed]
115. Andersen JM, Barrangou R, Abou Hachem M, Lahtinen S, Goh YJ, Svensson B, Klaenhammer TR. 2011. Transcriptional and functional analysis of galactooligosaccharide uptake by lacS in Lactobacillus acidophilus. Proc Natl Acad Sci USA 108 : 17785 17790[CrossRef].[PubMed]
116. Pfeiler EA, Azcarate-Peril MA, Klaenhammer TR. 2007. Characterization of a novel bile-inducible operon encoding a two-component regulatory system in Lactobacillus acidophilus. J Bacteriol 189 : 4624 4634[CrossRef].[PubMed]
117. Hinz SW, Pastink MI, van den Broek LA, Vincken JP, Voragen AG. 2005. Bifidobacterium longum endogalactanase liberates galactotriose from type I galactans. Appl Environ Microbiol 71 : 5501 5510[CrossRef].[PubMed]
118. O'Connell Motherway M, Fitzgerald GF, van Sinderen D. 2011. Metabolism of a plant derived galactose-containing polysaccharide by Bifidobacterium breve UCC2003. Microb Biotechnol 4 : 403 416[CrossRef].[PubMed]
119. Barboza M, Sela DA, Pirim C, Locascio RG, Freeman SL, German JB, Mills DA, Lebrilla CB. 2009. Glycoprofiling bifidobacterial consumption of galacto-oligosaccharides by mass spectrometry reveals strain-specific, preferential consumption of glycans. Appl Environ Microbiol 75 : 7319 7325[CrossRef].[PubMed]
120. Bode L. 2006. Recent advances on structure, metabolism, and function of human milk oligosaccharides. J Nutr 136 : 2127 2130[CrossRef].[PubMed]
121. Sela DA, Mills DA. 2010. Nursing our microbiota: molecular linkages between bifidobacteria and milk oligosaccharides. Trends Microbiol 18 : 298 307[CrossRef].[PubMed]
122. Ashida H, Miyake A, Kiyohara M, Wada J, Yoshida E, Kumagai H, Katayama T, Yamamoto K. 2009. Two distinct α-L-fucosidases from Bifidobacterium bifidum are essential for the utilization of fucosylated milk oligosaccharides and glycoconjugates. Glycobiology 19 : 1010 1017[CrossRef].[PubMed]
123. Katayama T, Sakuma A, Kimura T, Makimura Y, Hiratake J, Sakata K, Yamanoi T, Kumagai H, Yamamoto K. 2004. Molecular cloning and characterization of Bifidobacterium bifidum 1,2-α- l-fucosidase (AfcA), a novel inverting glycosidase (glycoside hydrolase family 95). J Bacteriol 186 : 4885 4893[CrossRef].[PubMed]
124. Wada J, Ando T, Kiyohara M, Ashida H, Kitaoka M, Yamaguchi M, Kumagai H, Katayama T, Yamamoto K. 2008. Bifidobacterium bifidum lacto- N-biosidase, a critical enzyme for the degradation of human milk oligosaccharides with a type 1 structure. Appl Environ Microbiol 74 : 3996 4004[CrossRef].[PubMed]
125. Pfeiler EA, Klaenhammer TR,. 2013. Probiotics and prebiotics, p 949 974. In Doyle MP,, Buchanan RI (ed), Food Microbiology: Fundamentals and Frontiers, 4th ed. ASM Press, Washington, DC.
126. Altermann E, Russell WM, Azcarate-Peril MA, Barrangou R, Buck BL, McAuliffe O, Souther N, Dobson A, Duong T, Callanan M, Lick S, Hamrick A, Cano R, Klaenhammer TR. 2005. Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proc Natl Acad Sci USA 102 : 3906 3912[CrossRef].[PubMed]
127. Briczinski EP, Loquasto JR, Barrangou R, Dudley EG, Roberts AM, Roberts RF. 2009. Strain-specific genotyping of Bifidobacterium animalis subsp. lactis by using single-nucleotide polymorphisms, insertions, and deletions. Appl Environ Microbiol 75 : 7501 7508[CrossRef].[PubMed]
128. Shortt C. 1999. The probiotic century: historical and current perspectives. Trends Food Sci Technol 10 : 411 417[CrossRef].
129. Patel RM, Denning PW. 2013. Therapeutic use of prebiotics, probiotics, and postbiotics to prevent necrotizing enterocolitis: what is the current evidence? Clin Perinatol 40 : 11 25[CrossRef].[PubMed]
130. Clancy R. 2003. Immunobiotics and the probiotic evolution. FEMS Immunol Med Microbiol 38 : 9 12[CrossRef].[PubMed]
131. Sarkar A, Lehto SM, Harty S, Dinan TG, Cryan JF, Burnet PWJ. 2016. Psychobiotics and the manipulation of bacteria-gut-brain signals. Trends Neurosci 39 : 763 781[CrossRef].[PubMed]
132. Howarth GS. 2010. Probiotic-derived factors: probiotaceuticals? J Nutr 140 : 229 230[CrossRef].[PubMed]
133. Center for Biologics Evaluation and Research, U.S. Food and Drug Administration. 2016. Early clinical trials with live biotherapeutic products: chemistry, manufacturing, and control information. Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Washington, DC. https://www.fda.gov/downloads/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guidances/General/UCM292704.pdf. Accessed 13 April 2018.
134. Sanders ME,, Merenstein D,, Merrifield CA,, Hutkins R. 2018. Probiotics for human use. Nutrition Bull 43 : 212 225. https://onlinelibrary.wiley.com/doi/10.1111/nbu.12334

Tables

Generic image for table
Table 32.1

Terminology related to probiotics

Citation: Sanders M, Goh Y, Klaenhammer T. 2019. Probiotics and Prebiotics, p 831-854. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch32
Generic image for table
Table 32.2

Mechanisms of action that may mediate health benefits conferred by specific probiotic strains

Citation: Sanders M, Goh Y, Klaenhammer T. 2019. Probiotics and Prebiotics, p 831-854. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch32
Generic image for table
Table 32.3

Examples of probiotic strains with research documentation in human subjects

Citation: Sanders M, Goh Y, Klaenhammer T. 2019. Probiotics and Prebiotics, p 831-854. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch32
Generic image for table
Table 32.4

Characteristics important for probiotic strains

Citation: Sanders M, Goh Y, Klaenhammer T. 2019. Probiotics and Prebiotics, p 831-854. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch32

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error