1887

Chapter 34 : Antimicrobial Resistance, Gut Microbiota, and Health

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Antimicrobial Resistance, Gut Microbiota, and Health, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819972/9781555819965.ch34-1.gif /docserver/preview/fulltext/10.1128/9781555819972/9781555819965.ch34-2.gif

Abstract:

The rapid surge of antibiotic resistance has raised serious public health concerns and led to the enforcement of policies to limit the uses of antibiotics in food animal production and human medicine. However, recent scientific breakthroughs present a much more comprehensive picture of antibiotic resistance ecology. The identification of new risk factors in antibiotic resistance development, enrichment, dissemination, and persistence demands innovative strategies for effective mitigation. This chapter discusses important concepts as well as major shifts in research scope and methods based on microbiota instead of individual pathogens. The chapter also discusses corresponding findings on the abundance of antibiotic-resistant bacteria and resistance-encoding genes in the food chain, the major avenues of dissemination of antibiotic-resistant bacteria to hosts through food and feed, mechanisms of antibiotic resistance and persistence, and the impact of antibiotic administration on resistance ecology, gut microbiota, and modern diseases. Discoveries related to foodborne antibiotic-resistant pathogens are illustrated. Specifically, the chapter examines the mainstream practice of oral antibiotic administration in both food animal production and human medicine as a key driver for massive antibiotic resistance in the ecosystem and gut microbiota dysbiosis in animal and human hosts. These breakthroughs in knowledge have laid a solid foundation for targeted controls and opened the doors for innovative and effective mitigation of the major challenges of antibiotic resistance and modern diseases associated with gut microbiota dysbiosis. Future directions for research and paradigm changes in policy and practices in the food chain essential to improve food safety and human health are outlined.

Citation: Wang H, Zhou Y, Zhang L. 2019. Antimicrobial Resistance, Gut Microbiota, and Health, p 903-926. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch34
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 34.1
Figure 34.1

Flow of ART microorganisms from farm to fork. CCP, critical control point for mitigation.

Citation: Wang H, Zhou Y, Zhang L. 2019. Antimicrobial Resistance, Gut Microbiota, and Health, p 903-926. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch34
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555819972.ch34
1. Cloete TE . 2003. Resistance mechanisms of bacteria to antimicrobial compounds. Int Biodeterior Biodegradation 51 : 277 282.[CrossRef].
2. Zhang L, McEntire JC, Newsome R, Wang H, . 2013. Antimicrobial resistance, p 19 44. In Doyle MP, Buchanan RL (ed), Food Microbiology: Fundamentals and Frontiers, 4th ed. ASM Press, Washington, DC..
3. Andremont A . 2003. Commensal flora may play key role in spreading antibiotic resistance. ASM News 69 : 601 607.
4. Wang HH, Manuzon M, Lehman M, Wan K, Luo H, Wittum TE, Yousef A, Bakaletz LO . 2006. Food commensal microbes as a potentially important avenue in transmitting antibiotic resistance genes. FEMS Microbiol Lett 254 : 226 231.[CrossRef][PubMed]
5. Wang HH, . 2009. Commensal bacteria, microbial ecosystems and horizontal gene transmission: adjusting our focus for strategic breakthroughs against antibiotic resistance, p 267 281. In Jaykus L, Wang HH, Schlesinger L (ed), Food-Borne Microbes: Shaping the Host Ecosystem . ASM Press, Washington, DC.
6. Wang HH, Schaffner DW . 2011. Antibiotic resistance: how much do we know and where do we go from here? Appl Environ Microbiol 77 : 7093 7095.[CrossRef][PubMed]
7. Wang HH . 2010. Antibiotic resistance mitigation: a complicated issue begging for targeted investigation. Microbe 5 : 504 505.
8. Hooper LV, Littman DR, Macpherson AJ . 2012. Interactions between the microbiota and the immune system. Science 336 : 1268 1273.[CrossRef][PubMed]
9. Blander JM, Longman RS, Iliev ID, Sonnenberg GF, Artis D . 2017. Regulation of inflammation by microbiota interactions with the host. Nat Immunol 18 : 851 860.[CrossRef][PubMed]
10. Clavel T, Gomes-Neto JC, Lagkouvardos I, Ramer-Tait AE . 2017. Deciphering interactions between the gut microbiota and the immune system via microbial cultivation and minimal microbiomes. Immunol Rev 279 : 8 22.[CrossRef][PubMed]
11. Postler TS, Ghosh S . 2017. Understanding the holobiont: how microbial metabolites affect human health and shape the immune system. Cell Metab 26 : 110 130.[CrossRef][PubMed]
12. Vuong HE, Yano JM, Fung TC, Hsiao EY . 2017. The microbiome and host behavior. Annu Rev Neurosci 40 : 21 49.[CrossRef][PubMed]
13. Fung TC, Olson CA, Hsiao EY . 2017. Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci 20 : 145 155.[CrossRef][PubMed]
14. Taur Y, Xavier JB, Lipuma L, Ubeda C, Goldberg J, Gobourne A, Lee YJ, Dubin KA, Socci ND, Viale A, Perales MA, Jenq RR, van den Brink MRM, Pamer EG . 2012. Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation. Clin Infect Dis 55 : 905 914.[CrossRef][PubMed]
15. Lewis BB, Buffie CG, Carter RA, Leiner I, Toussaint NC, Miller LC, Gobourne A, Ling L, Pamer EG . 2015. Loss of microbiota-mediated colonization resistance to Clostridium difficile infection with oral vancomycin compared with metronidazole. J Infect Dis 212 : 1656 1665.[CrossRef][PubMed]
16. Shen J, Obin MS, Zhao L . 2013. The gut microbiota, obesity and insulin resistance. Mol Aspects Med 34 : 39 58.[CrossRef][PubMed]
17. Yang H, Huang X, Fang S, He M, Zhao Y, Wu Z, Yang M, Zhang Z, Chen C, Huang L . 2017. Unraveling the fecal microbiota and metagenomic functional capacity associated with feed efficiency in pigs. Front Microbiol 8 : 1555.[CrossRef][PubMed]
18. Sun L, Ma L, Ma Y, Zhang F, Zhao C, Nie Y . 2018. Insights into the role of gut microbiota in obesity: pathogenesis, mechanisms, and therapeutic perspectives. Protein Cell 9 : 397 403.[CrossRef][PubMed]
19. Lu D, Tiezzi F, Schillebeeckx C, McNulty NP, Schwab C, Shull C, Maltecca C . 2018. Host contributes to longitudinal diversity of fecal microbiota in swine selected for lean growth. Microbiome 6 : 4.[CrossRef][PubMed]
20. Food and Drug Administration . 2018. Tolerances for residues of new animal drugs in food. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfCFR/CFRSearch.cfm?CFRPart=556&showFR=1. Accessed 14 April 2019.
21. Shu XO, Linet MS, Gao RN, Gao YT, Brinton LA, Jin F, Fraumeni JF Jr . 1987. Chloramphenicol use and childhood leukaemia in Shanghai. Lancet ii : 934 937.[CrossRef][PubMed]
22. Food and Drug Administration . 2018. Import alert 16-127. Detention without physical examination of aquaculture seafood products due to unapproved drugs. https://www.accessdata.fda.gov/cms_ia/importalert_29.html. Accessed 14 April 2019.
23. Matros L, Wheeler T Microbiology Team, IVS Sacramento . 2001. Microbiology guide to interpreting MIC (minimum inhibitory concentraion). http://www.the-vet.net/DVMWiz/Vetlibrary/Lab-%20Microbiology%20Guide%20to%20Interpreting%20MIC.htm.
24. The National Library of Medicine . 2019. Ampicillin-ampicillin injection powder, for solution. https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=3f6275f9-ee6f-4087-b672-5611d6870558. Accessed 18 April 2019.
25. Zhang L, Huang Y, Zhou Y, Buckley T, Wang HH . 2013. Antibiotic administration routes significantly influence the levels of antibiotic resistance in gut microbiota. Antimicrob Agents Chemother 57 : 3659 3666.[CrossRef][PubMed]
26. National Nosocomial Infections Surveillance System . 2004. National Nosocomial Infections Surveillance (NNIS) System Report, data summary from January 1992 through June 2004, issued October 2004. Am J Infect Control 32 : 470485.[CrossRef][PubMed]
27. McDonnell G, Russell AD . 1999. Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 12 : 147 179.[CrossRef][PubMed]
28. Kohanski MA, Dwyer DJ, Collins JJ . 2010. How antibiotics kill bacteria: from targets to networks. Nat Rev Microbiol 8 : 423 435.[CrossRef][PubMed]
29. Pankey GA, Sabath LD . 2004. Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections. Clin Infect Dis 38 : 864 870.[CrossRef][PubMed]
30. Waxman DJ, Strominger JL . 1983. Penicillin-binding proteins and the mechanism of action of beta-lactam antibiotics. Annu Rev Biochem 52 : 825 869.[CrossRef][PubMed]
31. Fontana R, Canepari P, Lleò MM, Satta G . 1990. Mechanisms of resistance of enterococci to beta-lactam antibiotics. Eur J Clin Microbiol Infect Dis 9 : 103 105.[CrossRef][PubMed]
32. Pérez-Llarena FJ, Bou G . 2009. Beta-lactamase inhibitors: the story so far. Curr Med Chem 16 : 3740 3765.[CrossRef][PubMed]
33. Drawz SM, Bonomo RA . 2010. Three decades of beta-lactamase inhibitors. Clin Microbiol Rev 23 : 160 201.[CrossRef][PubMed]
34. Kotra LP, Haddad J, Mobashery S . 2000. Aminoglycosides: perspectives on mechanisms of action and resistance and strategies to counter resistance. Antimicrob Agents Chemother 44 : 3249 3256.[CrossRef][PubMed]
35. Moellering RC Jr . 1983. In vitro antibacterial activity of the aminoglycoside antibiotics. Rev Infect Dis 5( Supplement_2) : S212 S232.[CrossRef].
36. Lewin CS, Morrissey I, Smith JT . 1991. The mode of action of quinolones: the paradox in activity of low and high concentrations and activity in the anaerobic environment. Eur J Clin Microbiol Infect Dis 10 : 240 248.[CrossRef][PubMed]
37. Willmott CJR, Maxwell A . 1993. A single point mutation in the DNA gyrase A protein greatly reduces binding of fluoroquinolones to the gyrase-DNA complex. Antimicrob Agents Chemother 37 : 126 127.[CrossRef][PubMed]
38. Drlica K, Zhao X . 1997. DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol Mol Biol Rev 61 : 377 392.[PubMed]
39. Blondeau JM. 1999. A review of the comparative in-vitro activities of 12 antimicrobial agents, with a focus on five new respiratory quinolones. J Antimicrob Chemother 43( Suppl B) : 1 11.
40. Lopez P, Espinosa M, Greenberg B, Lacks SA . 1987. Sulfonamide resistance in Streptococcus pneumoniae: DNA sequence of the gene encoding dihydropteroate synthase and characterization of the enzyme. J Bacteriol 169 : 4320 4326.[CrossRef][PubMed]
41. Sköld O . 2000. Sulfonamide resistance: mechanisms and trends. Drug Resist Updat 3 : 155 160.[CrossRef][PubMed]
42. Capasso C, Supuran CT . 2014. Sulfa and trimethoprim-like drugs—antimetabolites acting as carbonic anhydrase, dihydropteroate synthase and dihydrofolate reductase inhibitors. J Enzyme Inhib Med Chem 29 : 379 387.[CrossRef][PubMed]
43. Chopra I, Roberts M . 2001. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 65 : 232 260.[CrossRef][PubMed]
44. Alekshun MN, Levy SB . 2007. Molecular mechanisms of antibacterial multidrug resistance. Cell 128 : 1037 1050.[CrossRef][PubMed]
45. Kaye KS, Fraimow HS, Abrutyn E . 2000. Pathogens resistant to antimicrobial agents. Epidemiology, molecular mechanisms, and clinical management. Infect Dis Clin North Am 14 : 293 319.[CrossRef][PubMed]
46. Blair JMA, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJV . 2015. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 13 : 42 51.[CrossRef][PubMed]
47. Burns JL, Mendelman PM, Levy J, Stull TL, Smith AL . 1985. A permeability barrier as a mechanism of chloramphenicol resistance in Haemophilus influenzae. Antimicrob Agents Chemother 27 : 46 54.[CrossRef][PubMed]
48. Burns JL, Hedin LA, Lien DM . 1989. Chloramphenicol resistance in Pseudomonas cepacia because of decreased permeability. Antimicrob Agents Chemother 33 : 136 141.[CrossRef][PubMed]
49. Sanyal D, Greenwood D . 1993. An electronmicroscope study of glycopeptide antibiotic-resistant strains of Staphylococcus epidermidis. J Med Microbiol 39 : 204 210.[CrossRef][PubMed]
50. Krulwich TA, Quirk PG, Guffanti AA . 1990. Uncoupler-resistant mutants of bacteria. Microbiol Rev 54 : 52 65.[PubMed]
51. Mallea M, Chevalier J, Bornet C, Eyraud A, Davin-Regli A, Bollet C, Pagès JM . 1998. Porin alteration and active efflux: two in vivo drug resistance strategies used by Enterobacter aerogenes. Microbiology 144 : 3003 3009.[CrossRef][PubMed]
52. Wright GD . 1999. Aminoglycoside-modifying enzymes. Curr Opin Microbiol 2 : 499 503.[CrossRef][PubMed]
53. Shaw KJ, Rather PN, Hare RS, Miller GH . 1993. Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol Rev 57 : 138 163.[PubMed]
54. Ruiz J . 2003. Mechanisms of resistance to quinolones: target alterations, decreased accumulation and DNA gyrase protection. J Antimicrob Chemother 51 : 1109 1117.[CrossRef][PubMed]
55. Slock J, Stahly DP, Han CY, Six EW, Crawford IP . 1990. An apparent Bacillus subtilis folic acid biosynthetic operon containing pab, an amphibolic trpG gene, a third gene required for synthesis of para-aminobenzoic acid, and the dihydropteroate synthase gene. J Bacteriol 172 : 7211 7226.[CrossRef][PubMed]
56. Liu B, Pop M . 2009. ARDB—Antibiotic Resistance Genes Database. Nucleic Acids Res 37( Database) : D443 D447.[CrossRef][PubMed]
57. Davies J . 1994. Inactivation of antibiotics and the dissemination of resistance genes. Science 264 : 375 382.[CrossRef][PubMed]
58. Luo N, Pereira S, Sahin O, Lin J, Huang S, Michel L, Zhang Q . 2005. Enhanced in vivo fitness of fluoroquinolone-resistant Campylobacter jejuni in the absence of antibiotic selection pressure. Proc Natl Acad Sci USA 102 : 541 546.[CrossRef][PubMed]
59. Kohanski MA, DePristo MA, Collins JJ . 2010. Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. Mol Cell 37 : 311 320.[CrossRef][PubMed]
60. Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P, Tsang KK, Lago BA, Dave BM, Pereira S, Sharma AN, Doshi S, Courtot M, Lo R, Williams LE, Frye JG, Elsayegh T, Sardar D, Westman EL, Pawlowski AC, Johnson TA, Brinkman FSL, Wright GD, McArthur AG . 2017. CARD 2017: expansion and model-centric curation of the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res 45( D1) : D566 D573.[CrossRef][PubMed]
61. Yin X, Jiang XT, Chai B, Li L, Yang Y, Cole JR, Tiedje JM, Zhang T . 2018. ARGs-OAP v2.0 with an expanded SARG database and hidden Markov models for enhancement characterization and quantification of antibiotic resistance genes in environmental metagenomes. Bioinformatics 34 : 2263 2270.[CrossRef][PubMed]
62. Arango-Argoty G, Garner E, Pruden A, Heath LS, Vikesland P, Zhang L . 2018. DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data. Microbiome 6 : 23.[CrossRef][PubMed]
63. Tsafnat G, Copty J, Partridge SR . 2011. RAC: repository of antibiotic resistance cassettes. Database (Oxford) 2011 : bar054.
64. Sommer MOA, Dantas G, Church GM . 2009. Functional characterization of the antibiotic resistance reservoir in the human microflora. Science 325 : 1128 1131.[CrossRef][PubMed]
65. Thomas CM, Nielsen KM . 2005. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol 3 : 711 721.[CrossRef][PubMed]
66. Lipps G . 2008. Plasmids: Current Research and Future Trends. Caister Academic Press, Norwich, United Kingdom.
67. Rankin DJ, Rocha EPC, Brown SP . 2011. What traits are carried on mobile genetic elements, and why? Hered Edinb 106 : 1 10.[CrossRef][PubMed]
68. McClintock B . 1950. The origin and behavior of mutable loci in maize. Proc Natl Acad Sci USA 36 : 344 355.[CrossRef][PubMed]
69. Hall RM, Collis CM . 1995. Mobile gene cassettes and integrons: capture and spread of genes by site-specific recombination. Mol Microbiol 15 : 593 600.[CrossRef][PubMed]
70. Cambray G, Guerout AM, Mazel D . 2010. Integrons. Annu Rev Genet 44 : 141 166.[CrossRef][PubMed]
71. Schneider D, Lenski RE . 2004. Dynamics of insertion sequence elements during experimental evolution of bacteria. Res Microbiol 155 : 319 327.[CrossRef][PubMed]
72. Feng P, Lampel KA, Karch H, Whittam TS . 1998. Genotypic and phenotypic changes in the emergence of Escherichia coli O157:H7. J Infect Dis 177 : 1750 1753.[CrossRef][PubMed]
73. US Food and Drug Administration . 2016. 2015 summary report on antimicrobials sold or distributed in 2015 for use in food-producing animals. https://www.fda.gov/downloads/ForIndustry/UserFees/AnimalDrugUserFeeActADUFA/UCM534243.pdf.
74. Shryock TJ, . 2000. Growth promotion and feed antibiotics, p 735 743. In Prescott JF, Baggot JD, Walker RD (ed), Antimicrobial Therapy in Veterinary Medicine. Iowa State Press, Ames, IA.
75. Gaskins HR, Collier CT, Anderson DB . 2002. Antibiotics as growth promotants: mode of action. Anim Biotechnol 13 : 29 42.[CrossRef][PubMed]
76. Dibner JJ, Richards JD . 2005. Antibiotic growth promoters in agriculture: history and mode of action. Poult Sci 84 : 634 643.[CrossRef][PubMed]
77. Rosen GD . 1996. Pronutrient antibiotic replacement standards discussed. Feedstuffs 75 : 11 13.
78. Niewold TA . 2007. The nonantibiotic anti-inflammatory effect of antimicrobial growth promoters, the real mode of action? A hypothesis. Poult Sci 86 : 605 609.[CrossRef][PubMed]
79. World Health Organization . 2003. Impacts of antimicrobial growth promoter termination in Denmark. World Health Organization, Geneva, Switzerland. https://apps.who.int/iris/bitstream/handle/10665/68357/WHO_CDS_CPE_ZFK_2003.1.pdf;sequence=1. Accessed 14 April 2019.
80. Casewell M, Friis C, Marco E, McMullin P, Phillips I . 2003. The European ban on growth-promoting antibiotics and emerging consequences for human and animal health. J Antimicrob Chemother 52 : 159 161.[CrossRef][PubMed]
81. Gebreyes WA, Bahnson PB, Funk JA, McKean J, Patchanee P . 2008. Seroprevalence of Trichinella, Toxoplasma, and Salmonella in antimicrobial-free and conventional swine production systems. Foodborne Pathog Dis 5 : 199 203.[CrossRef][PubMed]
82. Cox LA Jr, Popken DA, Carnevale R . 2007. Quantifying human health risks from animal antimicrobials. Interfaces 37 : 22 38.[CrossRef].
83. Cabello FC . 2006. Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ Microbiol 8 : 1137 1144.[CrossRef][PubMed]
84. Heuer OE, Kruse H, Grave K, Collignon P, Karunasagar I, Angulo FJ . 2009. Human health consequences of use of antimicrobial agents in aquaculture. Clin Infect Dis 49 : 1248 1253.[CrossRef][PubMed]
85. Huang Y, Zhang L, Tiu L, Wang HH . 2015. Characterization of antibiotic resistance in commensal bacteria from an aquaculture ecosystem. Front Microbiol 6 : 914.[CrossRef][PubMed]
86. Huang Y, Zhang L, Wang HH . 2015. Identification of a new tetracycline resistance determinant tet47 from fish intestine. J Food Prot 78 : 1581 1585.[CrossRef][PubMed]
87. Zhang L, Kinkelaar D, Huang Y, Li Y, Li X, Wang HH . 2011. Acquired antibiotic resistance: are we born with it? Appl Environ Microbiol 77 : 7134 7141.[CrossRef][PubMed]
88. Li X, Wang HH . 2010. Tetracycline resistance associated with commensal bacteria from representative ready-to-consume deli and restaurant foods. J Food Prot 73 : 1841 1848.[CrossRef][PubMed]
89. Centers for Disease Control and Prevention . 2006. Preliminary FoodNet data on the incidence of infection with pathogens transmitted commonly through food—10 states, United States, 2005. JAMA 295 : 22412243. (Reprinted from Morb Mortal Wkly Rep, 55 : 392395, 2006.)[CrossRef].
90. Gyles CL . 2008. Antimicrobial resistance in selected bacteria from poultry. Anim Health Res Rev 9 : 149 158.[CrossRef][PubMed]
91. Carattoli A . 2003. Plasmid-mediated antimicrobial resistance in Salmonella enterica. Curr Issues Mol Biol 5 : 113 122.[PubMed]
92. Rankin SC, Aceto H, Cassidy J, Holt J, Young S, Love B, Tewari D, Munro DS, Benson CE . 2002. Molecular characterization of cephalosporin-resistant Salmonella enterica serotype Newport isolates from animals in Pennsylvania. J Clin Microbiol 40 : 4679 4684.[CrossRef][PubMed]
93. Zhao S, Qaiyumi S, Friedman S, Singh R, Foley SL, White DG, McDermott PF, Donkar T, Bolin C, Munro S, Baron EJ, Walker RD . 2003. Characterization of Salmonella enterica serotype Newport isolated from humans and food animals. J Clin Microbiol 41 : 5366 5371.[CrossRef][PubMed]
94. Call DR, Singer RS, Meng D, Broschat SL, Orfe LH, Anderson JM, Herndon DR, Kappmeyer LS, Daniels JB, Besser TE . 2010. blaCMY-2-positive IncA/C plasmids from Escherichia coli and Salmonella enterica are a distinct component of a larger lineage of plasmids. Antimicrob Agents Chemother 54 : 590 596.[CrossRef][PubMed]
95. Centers for Disease Control and Prevention . 2015. FoodNet 2015 Surveillance Report. https://www.cdc.gov/foodnet/pdfs/FoodNet-Annual-Report-2015-508c.pdf. Accessed 18 April 2019.
96. Acheson D, Allos BM . 2001. Campylobacter jejuni infections: update on emerging issues and trends. Clin Infect Dis 32 : 1201 1206.[CrossRef][PubMed]
97. Food and Drug Administration . 2005. Animal drugs, feeds, and related products; enrofloxacin for poultry; withdrawal of approval of new animal drug application. Fed Regist 70 : 4404844049.
98. Luangtongkum T, Jeon B, Han J, Plummer P, Logue CM, Zhang Q . 2009. Antibiotic resistance in Campylobacter: emergence, transmission and persistence. Future Microbiol 4 : 189 200.[CrossRef][PubMed]
99. Ladely SR, Harrison MA, Fedorka-Cray PJ, Berrang ME, Englen MD, Meinersmann RJ . 2007. Development of macrolide-resistant Campylobacter in broilers administered subtherapeutic or therapeutic concentrations of tylosin. J Food Prot 70 : 1945 1951.[CrossRef][PubMed]
100. Lin J, Yan M, Sahin O, Pereira S, Chang YJ, Zhang Q . 2007. Effect of macrolide usage on emergence of erythromycin-resistant Campylobacter isolates in chickens. Antimicrob Agents Chemother 51 : 1678 1686.[CrossRef][PubMed]
101. Luo N, Sahin O, Lin J, Michel LO, Zhang Q . 2003. In vivo selection of Campylobacter isolates with high levels of fluoroquinolone resistance associated with gyrA mutations and the function of the CmeABC efflux pump. Antimicrob Agents Chemother 47 : 390 394.[CrossRef][PubMed]
102. Centers for Disease Control and Prevention . 2012. National Antimicrobial Resistance Monitoring System: enteric bacteria. 2010. Human isolates final report. https://www.cdc.gov/narms/pdf/2010-annual-report-narms.pdf
103. Wong MR, Reddy V, Hanson H, Johnson KM, Tsoi B, Cokes C, Gallagher L, Lee L, Plentsova A, Dang T, Krueger A, Joyce K, Balter S . 2010. Antimicrobial resistance trends of Shigella serotypes in New York City, 2006-2009. Microb Drug Resist 16 : 155 161.[CrossRef][PubMed]
104. Prazak MA, Murano EA, Mercado I, Acuff GR . 2002. Antimicrobial resistance of Listeria monocytogenes isolated from various cabbage farms and packing sheds in Texas. J Food Prot 65 : 1796 1799.[CrossRef][PubMed]
105. Yücel N, Çitak S, Önder M . 2005. Prevalence and antibiotic resistance of Listeria species in meat products in Ankara, Turkey. Food Microbiol 22 : 241 245.[CrossRef].
106. Chao G, Zhou X, Jiao X, Qian X, Xu L . 2007. Prevalence and antimicrobial resistance of foodborne pathogens isolated from food products in China. Foodborne Pathog Dis 4 : 277 284.[CrossRef][PubMed]
107. Filiousis G, Johansson A, Frey J, Perreten V . 2009. Prevalence, genetic diversity and antimicrobial susceptibility of Listeria monocytogenes isolated from open-air food markets in Greece. Food Control 20 : 314 317.[CrossRef].
108. Pesavento G, Ducci B, Nieri D, Comodo N, Lo Nostro A . 2010. Prevalence and antibiotic susceptibility of Listeria spp. isolated from raw meat and retail foods. Food Control 21 : 708 713.[CrossRef].
109. Miranda JM, Vázquez BI, Fente CA, Calo-Mata P, Cepeda A, Franco CM . 2008. Comparison of antimicrobial resistance in Escherichia coli, Staphylococcus aureus, and Listeria monocytogenes strains isolated from organic and conventional poultry meat. J Food Prot 71 : 2537 2542.[CrossRef][PubMed]
110. Lyon SA, Berrang ME, Fedorka-Cray PJ, Fletcher DL, Meinersmann RJ . 2008. Antimicrobial resistance of Listeria monocytogenes isolated from a poultry further processing plant. Foodborne Pathog Dis 5 : 253 259.[CrossRef][PubMed]
111. Miller LG, Kaspar CW . 1994. Escherichia coli O157:H7 acid tolerance and survival in apple cider. J Food Prot 57 : 460 464.[CrossRef].
112. Conner DE, Kotrola JS . 1995. Growth and survival of Escherichia coli O157:H7 under acidic conditions. Appl Environ Microbiol 61 : 382 385.[PubMed]
113. Leyer GJ, Wang LL, Johnson EA . 1995. Acid adaptation of Escherichia coli O157:H7 increases survival in acidic foods. Appl Environ Microbiol 61 : 3752 3755.[PubMed]
114. International Commission on Microbiological Specifications of Foods . 2005. Microorganisms in Foods 6: Microbial Ecology of Food Commodities, 2nd ed. Springer, New York, NY.
115. Marshall B, Petrowski D, Levy SB . 1990. Inter- and intraspecies spread of Escherichia coli in a farm environment in the absence of antibiotic usage. Proc Natl Acad Sci USA 87 : 6609 6613.[CrossRef][PubMed]
116. Diez-Gonzalez F, Callaway TR, Kizoulis MG, Russell JB . 1998. Grain feeding and the dissemination of acid-resistant Escherichia coli from cattle. Science 281 : 1666 1668.[CrossRef][PubMed]
117. Marshall BM, Ochieng DJ, Levy SB . 2009. Commensals: underappreciated reservoir of antibiotic resistance. Microbe 4 : 231 238.
118. European Food Safety Authority . 2010. The Community Summary Report on antimicrobial resistance in zoonotic and indicator bacteria from animals and food in the European Union in 2004-2007. EFSA J 8 : 1309.[CrossRef].
119. Alexander TW, Yanke LJ, Topp E, Olson ME, Read RR, Morck DW, McAllister TA . 2008. Effect of subtherapeutic administration of antibiotics on the prevalence of antibiotic-resistant Escherichia coli bacteria in feedlot cattle. Appl Environ Microbiol 74 : 4405 4416.[CrossRef][PubMed]
120. Morley PS, Dargatz DA, Hyatt DR, Dewell GA, Patterson JG, Burgess BA, Wittum TE . 2011. Effects of restricted antimicrobial exposure on antimicrobial resistance in fecal Escherichia coli from feedlot cattle. Foodborne Pathog Dis 8 : 87 98.[CrossRef][PubMed]
121. Li X, Li Y, Alvarez V, Harper WJ, Wang HH . 2011. Effective antibiotic resistance mitigation during cheese fermentation. Appl Environ Microbiol 77 : 7171 7175.[CrossRef][PubMed]
122. Lin Y, Barker E, Kislow J, Kaldhone P, Stemper ME, Pantrangi M, Moore FM, Hall M, Fritsche TR, Novicki T, Foley SL, Shukla SK . 2011. Evidence of multiple virulence subtypes in nosocomial and community-associated MRSA genotypes in companion animals from the upper midwestern and northeastern United States. Clin Med Res 9 : 7 16.[CrossRef][PubMed]
123. Gilliver MA, Bennett M, Begon M, Hazel SM, Hart CA . 1999. Antibiotic resistance found in wild rodents. Nature 401 : 233 234.[CrossRef][PubMed]
124. Nandi S, Maurer JJ, Hofacre C, Summers AO . 2004. Gram-positive bacteria are a major reservoir of class 1 antibiotic resistance integrons in poultry litter. Proc Natl Acad Sci USA 101 : 7118 7122.[CrossRef][PubMed]
125. D'Costa VM, Griffiths E, Wright GD . 2007. Expanding the soil antibiotic resistome: exploring environmental diversity. Curr Opin Microbiol 10 : 481 489.[CrossRef][PubMed]
126. Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J, Handelsman J . 2010. Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol 8 : 251 259.[CrossRef][PubMed]
127. Forslund K, Sunagawa S, Kultima JR, Mende DR, Arumugam M, Typas A, Bork P . 2013. Country-specific antibiotic use practices impact the human gut resistome. Genome Res 23 : 1163 1169.[CrossRef][PubMed]
128. Su JQ, Wei B, Ou-Yang WY, Huang FY, Zhao Y, Xu HJ, Zhu YG . 2015. Antibiotic resistome and its association with bacterial communities during sewage sludge composting. Environ Sci Technol 49 : 7356 7363.[CrossRef][PubMed]
129. Luo H, Wan K, Wang HH . 2005. High-frequency conjugation system facilitates biofilm formation and pAMbeta1 transmission by Lactococcus lactis. Appl Environ Microbiol 71 : 2970 2978.[CrossRef][PubMed]
130. Manuzon MY, Hanna SE, Luo H, Yu Z, Harper WJ, Wang HH . 2007. Quantitative assessment of the tetracycline resistance gene pool in cheese samples by real-time TaqMan PCR. Appl Environ Microbiol 73 : 1676 1677.[CrossRef][PubMed]
131. Kastner S, Perreten V, Bleuler H, Hugenschmidt G, Lacroix C, Meile L . 2006. Antibiotic susceptibility patterns and resistance genes of starter cultures and probiotic bacteria used in food. Syst Appl Microbiol 29 : 145 155.[CrossRef][PubMed]
132. Durán GM, Marshall DL . 2005. Ready-to-eat shrimp as an international vehicle of antibiotic-resistant bacteria. J Food Prot 68 : 2395 2401.[CrossRef][PubMed]
133. Salyers AA, Gupta A, Wang Y . 2004. Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends Microbiol 12 : 412 416.[CrossRef][PubMed]
134. Smith MS, Yang RK, Knapp CW, Niu Y, Peak N, Hanfelt MM, Galland JC, Graham DW . 2004. Quantification of tetracycline resistance genes in feedlot lagoons by real-time PCR. Appl Environ Microbiol 70 : 7372 7377.[CrossRef][PubMed]
135. Sliwa J . 2007. Resistance genes in our food supply. https://www.eurekalert.org/pub_releases/2007-05/asfm-rgi051707.php. Accessed 14 April 2019.
136. Stanton TB, Humphrey SB, Stoffregen WC . 2011. Chlortetracycline-resistant intestinal bacteria in organically raised and feral swine. Appl Environ Microbiol 77 : 7167 7170.[CrossRef][PubMed]
137. Smith JL, Drum DJ, Dai Y, Kim JM, Sanchez S, Maurer JJ, Hofacre CL, Lee MD . 2007. Impact of antimicrobial usage on antimicrobial resistance in commensal Escherichia coli strains colonizing broiler chickens. Appl Environ Microbiol 73 : 1404 1414.[CrossRef][PubMed]
138. Li X, Sun K, Zhang L, Li YL, Wang HH . 2010. The involvement of animal host in the enrichment of antibiotic resistance, abstr. 037-45. In Abstr Inst Food Technol Annu Meet, Chicago, IL.
139. Bettelheim KA, Breadon A, Faiers MC, O'Farrell SM, Shooter RA . 1974. The origin of O serotypes of Escherichia coli in babies after normal delivery. J Hyg (Lond) 72 : 67 70.[CrossRef][PubMed]
140. Liljebjelke KA, Hofacre CL, Liu T, White DG, Ayers S, Young S, Maurer JJ . 2005. Vertical and horizontal transmission of salmonella within integrated broiler production system. Foodborne Pathog Dis 2 : 90 102.[CrossRef][PubMed]
141. Penders J, Thijs C, Vink C, Stelma FF, Snijders B, Kummeling I, van den Brandt PA, Stobberingh EE . 2006. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 118 : 511 521.[CrossRef][PubMed]
142. Bartoloni A, Bartalesi F, Mantella A, Dell'Amico E, Roselli M, Strohmeyer M, Barahona HG, Barrón VP, Paradisi F, Rossolini GM . 2004. High prevalence of acquired antimicrobial resistance unrelated to heavy antimicrobial consumption. J Infect Dis 189 : 1291 1294.[CrossRef][PubMed]
143. Jacobsen L, Wilcks A, Hammer K, Huys G, Gevers D, Andersen SR . 2007. Horizontal transfer of tet(M) and erm(B) resistance plasmids from food strains of Lactobacillus plantarum to Enterococcus faecalis JH2-2 in the gastrointestinal tract of gnotobiotic rats. FEMS Microbiol Ecol 59 : 158 166.[CrossRef][PubMed]
144. Shoemaker NB, Vlamakis H, Hayes K, Salyers AA . 2001. Evidence for extensive resistance gene transfer among Bacteroides spp. and among Bacteroides and other genera in the human colon. Appl Environ Microbiol 67 : 561 568.[CrossRef][PubMed]
145. Chen J, Michel FC Jr, Sreevatsan S, Morrison M, Yu Z . 2010. Occurrence and persistence of erythromycin resistance genes ( erm) and tetracycline resistance genes ( tet) in waste treatment systems on swine farms. Microb Ecol 60 : 479 486.[CrossRef][PubMed]
146. Aarestrup FM, Wegener HC . 1999. The effects of antibiotic usage in food animals on the development of antimicrobial resistance of importance for humans in Campylobacter and Escherichia coli. Microbes Infect 1 : 639 644.[CrossRef][PubMed]
147. Threlfall EJ, Ward LR, Frost JA, Willshaw GA . 2000. The emergence and spread of antibiotic resistance in food-borne bacteria. Int J Food Microbiol 62 : 1 5.[CrossRef][PubMed]
148. Chee-Sanford JC, Aminov RI, Krapac IJ, Garrigues-Jeanjean N, Mackie RI . 2001. Occurrence and diversity of tetracycline resistance genes in lagoons and groundwater underlying two swine production facilities. Appl Environ Microbiol 67 : 1494 1502.[CrossRef][PubMed]
149. Sayah RS, Kaneene JB, Johnson Y, Miller R . 2005. Patterns of antimicrobial resistance observed in Escherichia coli isolates obtained from domestic- and wild-animal fecal samples, human septage, and surface water. Appl Environ Microbiol 71 : 1394 1404.[CrossRef][PubMed]
150. Kieke AL, Borchardt MA, Kieke BA, Spencer SK, Vandermause MF, Smith KE, Jawahir SL, Belongia EA Marshfield Enterococcal Study Group . 2006. Use of streptogramin growth promoters in poultry and isolation of streptogramin-resistant Enterococcus faecium from humans. J Infect Dis 194 : 1200 1208.[CrossRef][PubMed]
151. Johnson JR, Sannes MR, Croy C, Johnston B, Clabots C, Kuskowski MA, Bender J, Smith KE, Winokur PL, Belongia EA . 2007. Antimicrobial drug-resistant Escherichia coli from humans and poultry products, Minnesota and Wisconsin, 2002-2004. Emerg Infect Dis 13 : 838 846.[CrossRef][PubMed]
152. Stanton TB, Humphrey SB . 2003. Isolation of tetracycline-resistant Megasphaera elsdenii strains with novel mosaic gene combinations of tet(O) and tet(W) from swine. Appl Environ Microbiol 69 : 3874 3882.[CrossRef][PubMed]
153. Moritz EM, Hergenrother PJ . 2007. Toxin-antitoxin systems are ubiquitous and plasmid-encoded in vancomycin-resistant enterococci. Proc Natl Acad Sci USA 104 : 311 316.[CrossRef][PubMed]
154. Rosvoll TCS, Pedersen T, Sletvold H, Johnsen PJ, Sollid JE, Simonsen GS, Jensen LB, Nielsen KM, Sundsfjord A . 2010. PCR-based plasmid typing in Enterococcus faecium strains reveals widely distributed pRE25-, pRUM-, pIP501- and pHTbeta-related replicons associated with glycopeptide resistance and stabilizing toxin-antitoxin systems. FEMS Immunol Med Microbiol 58 : 254 268.[CrossRef][PubMed]
155. Garcia-Migura L, Sanchez-Valenzuela AJ, Jensen LB . 2011. Presence of glycopeptide-encoding plasmids in enterococcal isolates from food and humans in Denmark. Foodborne Pathog Dis 8 : 1191 1197.[CrossRef][PubMed]
156. Werner G, Freitas AR, Coque TM, Sollid JE, Lester C, Hammerum AM, Garcia-Migura L, Jensen LB, Francia MV, Witte W, Willems RJ, Sundsfjord A . 2011. Host range of enterococcal vanA plasmids among Gram-positive intestinal bacteria. J Antimicrob Chemother 66 : 273 282.[CrossRef][PubMed]
157. Maki T, Santos MD, Kondo H, Hirono I, Aoki T . 2009. A transferable 20-kilobase multiple drug resistance-conferring R plasmid (pKL0018) from a fish pathogen ( Lactococcus garvieae) is highly homologous to a conjugative multiple drug resistance-conferring enterococcal plasmid. Appl Environ Microbiol 75 : 3370 3372.[CrossRef][PubMed]
158. Li X, Alvarez V, Harper WJ, Wang HH . 2011. Persistent, toxin-antitoxin system-independent, tetracycline resistance-encoding plasmid from a dairy Enterococcus faecium isolate. Appl Environ Microbiol 77 : 7096 7103.[CrossRef][PubMed]
159. Davidson PM, Harrison MA . 2002. Resistance and adaptation to food antimicrobials, sanitizers, and other process controls. Food Technol 56 : 69 78.
160. Broadbent JR, Sandine WE, Kondo JK . 1995. Characteristics of Tn5307 exchange and intergeneric transfer of genes associated with nisin production. Appl Microbiol Biotechnol 44 : 139 146.[CrossRef][PubMed]
161. Kuipers OP, Beerthuyzen MM, de Ruyter PGGA, Luesink EJ, de Vos WM . 1995. Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. J Biol Chem 270 : 27299 27304.[CrossRef][PubMed]
162. Stein T, Heinzmann S, Solovieva I, Entian KD . 2003. Function of Lactococcus lactis nisin immunity genes nisI and nisFEG after coordinated expression in the surrogate host Bacillus subtilis. J Biol Chem 278 : 89 94.[CrossRef][PubMed]
163. Montville TJ, Bruno MEC . 1994. Evidence that dissipation of proton motive force is a common mechanism of action for bacteriocins and other antimicrobial proteins. Int J Food Microbiol 24 : 53 74.[CrossRef][PubMed]
164. Brul S, Coote P . 1999. Preservative agents in foods. Mode of action and microbial resistance mechanisms. Int J Food Microbiol 50 : 1 17.[CrossRef][PubMed]
165. Cotter PD, Hill C . 2003. Surviving the acid test: responses of gram-positive bacteria to low pH. Microbiol Mol Biol Rev 67 : 429 453.[CrossRef][PubMed]
166. Heir E, Lindstedt BA, Røtterud OJ, Vardund T, Kapperud G, Nesbakken T . 2004. Molecular epidemiology and disinfectant susceptibility of Listeria monocytogenes from meat processing plants and human infections. Int J Food Microbiol 96 : 85 96.[CrossRef][PubMed]
167. Ming XT, Daeschel MA . 1993. Nisin resistance of foodborne bacteria and the specific resistance responses of Listeria monocytogenes Scottm-A. J Food Prot 56 : 944 948.[CrossRef].
168. Mazzotta AS, Modi K, Montville TJ . 2000. Nisin-resistant (Nis r) Listeria monocytogenes and Nis r Clostridium botulinum are not resistant to common food preservatives. J Food Sci 65 : 888 890.[CrossRef].
169. Gillespie MT, Lyon BR, Skurray RA . 1989. Gentamicin and antiseptic resistance in epidemic methicillin-resistant Staphylococcus aureus. Lancet i : 503.[CrossRef][PubMed]
170. Bjorland J, Sunde M, Waage S . 2001. Plasmid-borne smr gene causes resistance to quaternary ammonium compounds in bovine Staphylococcus aureus. J Clin Microbiol 39 : 3999 4004.[CrossRef][PubMed]
171. Smith K, Gemmell CG, Hunter IS . 2007. The association between biocide tolerance and the presence or absence of qac genes among hospital-acquired and community-acquired MRSA isolates. J Antimicrob Chemother 61 : 78 84.[CrossRef][PubMed]
172. Institute of Food Technologists . 2006. Antimicrobial resistance: implications for the food system. Institute of Food Technologists, Chicago, IL. http://www.ift.org/knowledge-center/read-ift-publications/science-reports/expert-reports/antimicrobial-resistance.aspx. Accessed 15 November 2018.
173. Bacon RT, Ransom JR, Sofos JN, Kendall PA, Belk KE, Smith GC . 2003. Thermal inactivation of susceptible and multiantimicrobial-resistant Salmonella strains grown in the absence or presence of glucose. Appl Environ Microbiol 69 : 4123 4128.[CrossRef][PubMed]
174. Russell AD . 1997. Plasmids and bacterial resistance to biocides. J Appl Microbiol 83 : 155 165.[CrossRef][PubMed]
175. Davis IJ, Roberts AP, Ready D, Richards H, Wilson M, Mullany P . 2005. Linkage of a novel mercury resistance operon with streptomycin resistance on a conjugative plasmid in Enterococcus faecium. Plasmid 54 : 26 38.[CrossRef][PubMed]
176. Baker-Austin C, Wright MS, Stepanauskas R, McArthur JV . 2006. Co-selection of antibiotic and metal resistance. Trends Microbiol 14 : 176 182.[CrossRef][PubMed]
177. Pal C, Bengtsson-Palme J, Kristiansson E, Larsson DGJ . 2015. Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. BMC Genomics 16 : 964.[CrossRef][PubMed]
178. Potenski CJ, Gandhi M, Matthews KR . 2003. Exposure of Salmonella Enteritidis to chlorine or food preservatives increases susceptibility to antibiotics. FEMS Microbiol Lett 220 : 181 186.[CrossRef][PubMed]
179. Hegstad K, Langsrud S, Lunestad BT, Scheie AA, Sunde M, Yazdankhah SP . 2010. Does the wide use of quaternary ammonium compounds enhance the selection and spread of antimicrobial resistance and thus threaten our health? Microb Drug Resist 16 : 91 104.[CrossRef][PubMed]
180. European Food Safety Authority . 2008. Assessment of the possible effect of the four antimicrobial treatment substances on the emergence of antimicrobial resistance—scientific opinion of the Panel on Biological Hazards. http://www.efsa.europa.eu/en/scdocs/scdoc/659.htm.
181. Walsh D, Sheridan JJ, Duffy G, Blair IS, McDowell DA, Harrington D . 2001. Thermal resistance of wild-type and antibiotic-resistant Listeria monocytogenes in meat and potato substrates. J Appl Microbiol 90 : 555 560.[CrossRef][PubMed]
182. Hossack DJN, Bird MC, Fowler AA, . 1983. The effects of nisin on the sensitivity of microorganisms to antibiotics and other chemotherapeutic agents, p 425 433. In Woodbine M (ed), Antimicrobials and Agriculture. Butterworth, London, United Kingdom.
183. Hiron A, Falord M, Valle J, Débarbouillé M, Msadek T . 2011. Bacitracin and nisin resistance in Staphylococcus aureus: a novel pathway involving the BraS/BraR two-component system (SA2417/SA2418) and both the BraD/BraE and VraD/VraE ABC transporters. Mol Microbiol 81 : 602 622.[CrossRef][PubMed]
184. Crandall AD, Montville TJ . 1998. Nisin resistance in Listeria monocytogenes ATCC 700302 is a complex phenotype. Appl Environ Microbiol 64 : 231 237.[PubMed]
185. McEntire JC . 2003. Relationship between nisin resistance and acid sensitivity of Listeria monocytogenes .Ph.D. thesis. Rutgers University, New Brunswick, NJ.
186. Okereke A, Montville TJ . 1992. Nisin dissipates the proton motive force of the obligate anaerobe Clostridium sporogenes PA 3679. Appl Environ Microbiol 58 : 2463 2467.[PubMed]
187. McEntire JC, Carman GM, Montville TJ . 2004. Increased ATPase activity is responsible for acid sensitivity of nisin-resistant Listeria monocytogenes ATCC 700302. Appl Environ Microbiol 70 : 2717 2721.[CrossRef][PubMed]
188. Alonso-Hernando A, Capita R, Prieto M, Alonso-Calleja C . 2009. Comparison of antibiotic resistance patterns in Listeria monocytogenes and Salmonella enterica strains pre-exposed and exposed to poultry decontaminants. Food Control 20 : 1108 1111.[CrossRef].

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error