1887

Chapter 35 : Genomics of Foodborne Microorganisms

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Genomics of Foodborne Microorganisms, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819972/9781555819965.ch35-1.gif /docserver/preview/fulltext/10.1128/9781555819972/9781555819965.ch35-2.gif

Abstract:

As in other fields of science, food microbiologists are relying more and more on genomic techniques to understand the microbiota associated with our foods. We are looking to whole-genome sequences to decipher the genetic content of foodborne pathogens, industrially relevant strains, and potentially beneficial microbes. Metagenomic and metatranscriptomic techniques are now also being used to determine both the composition and function of microbes in a complex food matrix. Additionally, in recent years, laboratory-based global initiatives have been implemented that use genomics in place of traditional culturing techniques for identification and surveillance of strains involved in outbreaks of foodborne illness. There is little doubt that genomics has emerged as an important tool and will play a large role in the future of food microbiology.

Citation: Guinane C, Walsh C, Cotter P. 2019. Genomics of Foodborne Microorganisms, p 927-937. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch35
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 35.1
Figure 35.1

Sequencing pipeline for metagenomic and metatranscriptomic analysis from a complex food matrix.

Citation: Guinane C, Walsh C, Cotter P. 2019. Genomics of Foodborne Microorganisms, p 927-937. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch35
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555819972.ch35
1. Guinane CM, Crispie F, Cotter PD, . 2016. Value of microbial genome sequencing for probiotic strain identification and characterization: promises and pitfalls, p 45 60. In Hyland N, Stanton C (ed), The Gut-Brain Axis. Dietary, Probiotic, and Prebiotic Interventions on the Microbiota. Academic Press, Cambridge, MA.[CrossRef]
2. Guinane CM, Callanan MJ, . 2018. Genome sequencing of microbes. In Cotter P,, Dixon B,, Giordano A,, O'Neill S,, Pentimalli F,, Ranganathan S,, Roitberg B,, Sharfstein S,, Vitale I,, Yelon D (ed), Reference Module in Life Sciences. Elsevier, Oxford, United Kingdom.[CrossRef]
3. Sanger F, Nicklen S, Coulson AR . 1977. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74 : 5463 5467[CrossRef].[PubMed]
4. Fleischmann RD, Adams M, White O, Clayton R, Kirkness E, Kerlavage A, Bult C, Tomb J, Dougherty B, Merrick J , , et al 1995. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269 : 496 512[CrossRef].[PubMed]
5. Parkhill J, Wren BW, Mungall K, Ketley JM, Churcher C, Basham D, Chillingworth T, Davies RM, Feltwell T, Holroyd S, Jagels K, Karlyshev AV, Moule S, Pallen MJ, Penn CW, Quail MA, Rajandream MA, Rutherford KM, van Vliet AH, Whitehead S, Barrell BG . 2000. The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403 : 665 668[CrossRef].[PubMed]
6. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI . 2007. The human microbiome project. Nature 449 : 804 810[CrossRef].[PubMed]
7. Ambardar S, Gupta R, Trakroo D, Lal R, Vakhlu J . 2016. High throughput sequencing: an overview of sequencing chemistry. Indian J Microbiol 56 : 394 404[CrossRef].[PubMed]
8. Mardis ER . 2017. DNA sequencing technologies: 2006-2016. Nat Protoc 12 : 213 218[CrossRef].[PubMed]
9. Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W, Davey M, Leamon JH, Johnson K, Milgrew MJ, Edwards M, Hoon J, Simons JF, Marran D, Myers JW, Davidson JF, Branting A, Nobile JR, Puc BP, Light D, Clark TA, Huber M, Branciforte JT, Stoner IB, Cawley SE, Lyons M, Fu Y, Homer N, Sedova M, Miao X, Reed B, Sabina J, Feierstein E, Schorn M, Alanjary M, Dimalanta E, Dressman D, Kasinskas R, Sokolsky T, Fidanza JA, Namsaraev E, McKernan KJ, Williams A, Roth GT, Bustillo J . 2011. An integrated semiconductor device enabling non-optical genome sequencing. Nature 475 : 348 352[CrossRef].[PubMed]
10. MacLean D, Jones JD, Studholme DJ . 2009. Application of ‘next-generation’ sequencing technologies to microbial genetics. Nat Rev Microbiol 7 : 287 296.[PubMed]
11. Glaser P . , et al . 2001. Comparative genomics of Listeria species. Science 294 : 849 852.[PubMed]
12. Grant MA, Weagant SD, Feng P . 2001. Glutamate decarboxylase genes as a prescreening marker for detection of pathogenic Escherichia coli groups. Appl Environ Microbiol 67 : 3110 3114[CrossRef].[PubMed]
13. Blattner FR, Plunkett G III, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y . 1997. The complete genome sequence of Escherichia coli K-12. Science 277 : 1453 1462[CrossRef].[PubMed]
14. Coleman R, Lowe PJ, Billington D . 1980. Membrane lipid composition and susceptibility to bile salt damage. Biochim Biophys Acta 599 : 294 300[CrossRef].[PubMed]
15. Begley M, Gahan CG, Hill C . 2005. The interaction between bacteria and bile. FEMS Microbiol Rev 29 : 625 651[CrossRef].[PubMed]
16. Begley M, Sleator RD, Gahan CG, Hill C . 2005. Contribution of three bile-associated loci, bsh, pva, and btlB, to gastrointestinal persistence and bile tolerance of Listeria monocytogenes. Infect Immun 73 : 894 904[CrossRef].[PubMed]
17. Dussurget O, Cabanes D, Dehoux P, Lecuit M, Buchrieser C, Glaser P, Cossart P European Listeria Genome Consortium . 2002. Listeria monocytogenes bile salt hydrolase is a PrfA-regulated virulence factor involved in the intestinal and hepatic phases of listeriosis. Mol Microbiol 45 : 1095 1106[CrossRef].[PubMed]
18. Sleator RD, Watson D, Hill C, Gahan CG . 2009. The interaction between Listeria monocytogenes and the host gastrointestinal tract. Microbiology 155 : 2463 2475[CrossRef].[PubMed]
19. Toledo-Arana A, Dussurget O, Nikitas G, Sesto N, Guet-Revillet H, Balestrino D, Loh E, Gripenland J, Tiensuu T, Vaitkevicius K, Barthelemy M, Vergassola M, Nahori MA, Soubigou G, Régnault B, Coppée JY, Lecuit M, Johansson J, Cossart P . 2009. The Listeria transcriptional landscape from saprophytism to virulence. Nature 459 : 950 956[CrossRef].[PubMed]
20. Hain T, Hossain H, Chatterjee SS, Machata S, Volk U, Wagner S, Brors B, Haas S, Kuenne CT, Billion A, Otten S, Pane-Farre J, Engelmann S, Chakraborty T . 2008. Temporal transcriptomic analysis of the Listeria monocytogenes EGD-e sigmaB regulon. BMC Microbiol 8 : 20[CrossRef].[PubMed]
21. Schultze T, Hilker R, Mannala GK, Gentil K, Weigel M, Farmani N, Windhorst AC, Goesmann A, Chakraborty T, Hain T . 2015. A detailed view of the intracellular transcriptome of Listeria monocytogenes in murine macrophages using RNA-seq. Front Microbiol 6 : 1199[CrossRef].[PubMed]
22. Walsh AM, Crispie F, Claesson MJ, Cotter PD . 2017. Translating omics to food microbiology. Annu Rev Food Sci Technol 8 : 113 134[CrossRef].[PubMed]
23. Douglas GL, Klaenhammer TR . 2010. Genomic evolution of domesticated microorganisms. Annu Rev Food Sci Technol 1 : 397 414[CrossRef].[PubMed]
24. Bolotin A, Quinquis B, Renault P, Sorokin A, Ehrlich SD, Kulakauskas S, Lapidus A, Goltsman E, Mazur M, Pusch GD, Fonstein M, Overbeek R, Kyprides N, Purnelle B, Prozzi D, Ngui K, Masuy D, Hancy F, Burteau S, Boutry M, Delcour J, Goffeau A, Hols P . 2004. Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus. Nat Biotechnol 22 : 1554 1558[CrossRef].[PubMed]
25. Pridmore RD, Berger B, Desiere F, Vilanova D, Barretto C, Pittet AC, Zwahlen MC, Rouvet M, Altermann E, Barrangou R, Mollet B, Mercenier A, Klaenhammer T, Arigoni F, Schell MA . 2004. The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proc Natl Acad Sci USA 101 : 2512 2517[CrossRef].[PubMed]
26. Guinane CM, Kent RM, Norberg S, Hill C, Fitzgerald GF, Stanton C, Ross RP . 2011. Host specific diversity in Lactobacillus johnsonii as evidenced by a major chromosomal inversion and phage resistance mechanisms. PLoS One 6 : e18740[CrossRef].[PubMed]
27. Ventura M, Turroni F, van Sinderen D . 2012. Probiogenomics as a tool to obtain genetic insights into adaptation of probiotic bacteria to the human gut. Bioeng Bugs 3 : 73 79.[PubMed]
28. El-Semman IE, Karlsson FH, Shoaie S, Nookaew I, Soliman TH, Nielsen J . 2014. Genome-scale metabolic reconstructions of Bifidobacterium adolescentis L2-32 and Faecalibacterium prausnitzii A2-165 and their interaction. BMC Syst Biol 8 : 41[CrossRef].[PubMed]
29. Shin NR, Lee JC, Lee HY, Kim MS, Whon TW, Lee MS, Bae JW . 2014. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 63 : 727 735[CrossRef].[PubMed]
30. Guo X, Li S, Zhang J, Wu F, Li X, Wu D, Zhang M, Ou Z, Jie Z, Yan Q, Li P, Yi J, Peng Y . 2017. Genome sequencing of 39 Akkermansia muciniphila isolates reveals its population structure, genomic and functional diverisity, and global distribution in mammalian gut microbiotas. BMC Genomics 18 : 800[CrossRef].[PubMed]
31. Nadon C, Van Walle I, Gerner-Smidt P, Campos J, Chinen I, Concepcion-Acevedo J, Gilpin B, Smith AM, Man Kam K, Perez E, Trees E, Kubota K, Takkinen J, Nielsen EM, Carleton H FWD-NEXT Expert Panel . 2017. PulseNet International: vision for the implementation of whole genome sequencing (WGS) for global food-borne disease surveillance. Euro Surveill 22 : 30544[CrossRef].[PubMed]
32. Nadon CA, Trees E, Ng LK, Møller Nielsen E, Reimer A, Maxwell N, Kubota KA, Gerner-Smidt P MLVA Harmonization Working Group . 2013. Development and application of MLVA methods as a tool for inter-laboratory surveillance. Euro Surveill 18 : 20565[CrossRef].[PubMed]
33. den Bakker HC, Allard MW, Bopp D, Brown EW, Fontana J, Iqbal Z, Kinney A, Limberger R, Musser KA, Shudt M, Strain E, Wiedmann M, Wolfgang WJ . 2014. Rapid whole-genome sequencing for surveillance of Salmonella enterica serovar enteritidis. Emerg Infect Dis 20 : 1306 1314[CrossRef].[PubMed]
34. Buchanan RL, Gorris LGM, Hayman MM, Jackson TC, Whiting RC . 2017. A review of Listeria monocytogenes: an update on outbreaks, virulence, dose-response, ecology, and risk assessments. Food Control 75 : 1 13. CORRIGENDUM Food Control 88 : 236[CrossRef].
35. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF . 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75 : 7537 7541[CrossRef].[PubMed]
36. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R . 2010. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7 : 335 336[CrossRef].[PubMed]
37. Abubucker S, Segata N, Goll J, Schubert AM, Izard J, Cantarel BL, Rodriguez-Mueller B, Zucker J, Thiagarajan M, Henrissat B, White O, Kelley ST, Methé B, Schloss PD, Gevers D, Mitreva M, Huttenhower C . 2012. Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLOS Comput Biol 8 : e1002358[CrossRef].[PubMed]
38. Silva GG, Green KT, Dutilh BE, Edwards RA . 2016. SUPER-FOCUS: a tool for agile functional analysis of shotgun metagenomic data. Bioinformatics 32 : 354 361[CrossRef].[PubMed]
39. Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M . 2014. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 42( D1) : D199 D205[CrossRef].[PubMed]
40. Caspi R, Billington R, Ferrer L, Foerster H, Fulcher CA, Keseler IM, Kothari A, Krummenacker M, Latendresse M, Mueller LA, Ong Q, Paley S, Subhraveti P, Weaver DS, Karp PD . 2016. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 44( D1) : D471 D480[CrossRef].[PubMed]
41. Powell S, Forslund K, Szklarczyk D, Trachana K, Roth A, Huerta-Cepas J, Gabaldón T, Rattei T, Creevey C, Kuhn M, Jensen LJ, von Mering C, Bork P . 2014. eggNOG v4.0: nested orthology inference across 3686 organisms. Nucleic Acids Res 42( D1) : D231 D239[CrossRef].[PubMed]
42. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer EL, Tate J, Punta M . 2014. Pfam: the protein families database. Nucleic Acids Res 42( D1) : D222 D230[CrossRef].[PubMed]
43. Segata N, Waldron L, Ballarini A, Narasimhan V, Jousson O, Huttenhower C . 2012. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat Methods 9 : 811 814[CrossRef].[PubMed]
44. Menzel P, Ng KL, Krogh A . 2016. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat Commun 7 : 11257[CrossRef].[PubMed]
45. Wood DE, Salzberg SL . 2014. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol 15 : R46[CrossRef].[PubMed]
46. Quigley L, O'Sullivan DJ, Daly D, O'Sullivan O, Burdikova Z, Vana R, Beresford TP, Ross RP, Fitzgerald GF, McSweeney PL, Giblin L, Sheehan JJ, Cotter PD . 2016. Thermus and the pink discoloration defect in cheese. mSystems 1 : e00023-16[CrossRef].[PubMed]
47. Walsh AM, Crispie F, Daari K, O'Sullivan O, Martin JC, Arthur CT, Claesson MJ, Scott KP, Cotter PD . 2017. Strain-level metagenomic analysis of the fermented dairy beverage nunu highlights potential food safety risks. Appl Environ Microbiol 83 : e01144-17[CrossRef].[PubMed]
48. Yang X, Noyes NR, Doster E, Martin JN, Linke LM, Magnuson RJ, Yang H, Geornaras I, Woerner DR, Jones KL, Ruiz J, Boucher C, Morley PS, Belk KE . 2016. Use of metagenomic shotgun sequencing technology to detect foodborne pathogens within the microbiome of the beef production chain. Appl Environ Microbiol 82 : 2433 2443[CrossRef].[PubMed]
49. Aw TG, Howe A, Rose JB . 2014. Metagenomic approaches for direct and cell culture evaluation of the virological quality of wastewater. J Virol Methods 210 : 15 21[CrossRef].[PubMed]
50. Scholz M, Ward DV, Pasolli E, Tolio T, Zolfo M, Asnicar F, Truong DT, Tett A, Morrow AL, Segata N . 2016. Strain-level microbial epidemiology and population genomics from shotgun metagenomics. Nat Methods 13 : 435 438[CrossRef].[PubMed]
51. Wang Z, Gerstein M, Snyder M . 2009. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10 : 57 63[CrossRef].[PubMed]
52. Ward TJ, Ducey TF, Usgaard T, Dunn KA, Bielawski JP . 2008. Multilocus genotyping assays for single nucleotide polymorphism-based subtyping of Listeria monocytogenes isolates. Appl Environ Microbiol 74 : 7629 7642[CrossRef].[PubMed]
53. Liu JM, Livny J, Lawrence MS, Kimball MD, Waldor MK, Camilli A . 2009. Experimental discovery of sRNAs in Vibrio cholerae by direct cloning, 5S/tRNA depletion and parallel sequencing. Nucleic Acids Res 37 : e46[CrossRef].[PubMed]
54. Love MI, Huber W, Anders S . 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15 : 550[CrossRef].[PubMed]
55. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JY, Zhang J . 2004. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5 : R80[CrossRef].[PubMed]
56. McCarthy DJ, Chen Y, Smyth GK . 2012. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res 40 : 4288 4297[CrossRef].[PubMed]
57. Anders S, Huber W . 2010. Differential expression analysis for sequence count data. Genome Biol 11 : R106[CrossRef].[PubMed]
58. Zhou YH, Xia K, Wright FA . 2011. A powerful and flexible approach to the analysis of RNA sequence count data. Bioinformatics 27 : 2672 2678[CrossRef].[PubMed]
59. Hardcastle TJ, Kelly KA . 2010. baySeq: empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinformatics 11 : 422[CrossRef].[PubMed]
60. Van De Wiel MA, Leday GG, Pardo L, Rue H, Van Der Vaart AW, Van Wieringen WN . 2013. Bayesian analysis of RNA sequencing data by estimating multiple shrinkage priors. Biostatistics 14 : 113 128[CrossRef].[PubMed]
61. Fox EM, Leonard N, Jordan K . 2011. Physiological and transcriptional characterization of persistent and nonpersistent Listeria monocytogenes isolates. Appl Environ Microbiol 77 : 6559 6569[CrossRef].[PubMed]
62. Casey A, Fox EM, Schmitz-Esser S, Coffey A, McAuliffe O, Jordan K . 2014. Transcriptome analysis of Listeria monocytogenes exposed to biocide stress reveals a multi-system response involving cell wall synthesis, sugar uptake, and motility. Front Microbiol 5 : 68[CrossRef].[PubMed]
63. Wang B, Guo G, Wang C, Lin Y, Wang X, Zhao M, Guo Y, He M, Zhang Y, Pan L . 2010. Survey of the transcriptome of Aspergillus oryzae via massively parallel mRNA sequencing. Nucleic Acids Res 38 : 5075 5087[CrossRef].[PubMed]
64. Dong Y, Hu J, Fan L, Chen Q . 2017. RNA-Seq-based transcriptomic and metabolomic analysis reveal stress responses and programmed cell death induced by acetic acid in Saccharomyces cerevisiae. Sci Rep 7 : 42659[CrossRef].[PubMed]
65. Jung JY, Lee SH, Jin HM, Hahn Y, Madsen EL, Jeon CO . 2013. Metatranscriptomic analysis of lactic acid bacterial gene expression during kimchi fermentation. Int J Food Microbiol 163 : 171 179[CrossRef].[PubMed]
66. De Filippis F, Genovese A, Ferranti P, Gilbert JA, Ercolini D . 2016. Metatranscriptomics reveals temperature-driven functional changes in microbiome impacting cheese maturation rate. Sci Rep 6 : 21871[CrossRef].[PubMed]
67. Dugat-Bony E, Straub C, Teissandier A, Onésime D, Loux V, Monnet C, Irlinger F, Landaud S, Leclercq-Perlat MN, Bento P, Fraud S, Gibrat JF, Aubert J, Fer F, Guédon E, Pons N, Kennedy S, Beckerich JM, Swennen D, Bonnarme P . 2015. Overview of a surface-ripened cheese community functioning by meta-omics analyses. PLoS One 10 : e0124360[CrossRef].[PubMed]

Tables

Generic image for table
Table 35.1

Summary of the strengths and limitations of genomic technologies

Citation: Guinane C, Walsh C, Cotter P. 2019. Genomics of Foodborne Microorganisms, p 927-937. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch35

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error