Chapter 41 : Microbiological Constraints for Use of Reclaimed and Reconditioned Water in Food Production and Processing Operations

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Microbiological Constraints for Use of Reclaimed and Reconditioned Water in Food Production and Processing Operations, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819972/9781555819965.ch41-1.gif /docserver/preview/fulltext/10.1128/9781555819972/9781555819965.ch41-2.gif


Water is an essential part of human life; however, it is also used for a number of other purposes. Based on climate change and an anticipated growth in population, the demand for water is expected to increase and strain our limited water resources, especially in arid regions. Treating wastewater to produce reclaimed water provides a sustainable alternative to the finite supply of fresh water. In addition to the standard treatments applied to wastewater, this chapter discusses both advanced and low-cost treatments that are available to produce reclaimed/reconditioned water. Included in the discussion is an overview of the regulations and guidelines that are available to ensure that microbiological contaminants are reduced to a level that is deemed safe for the water’s intended use. Critical to the implementation of these guidelines is the availability of reliable tools to detect the microbiological contaminants that may contribute to human illness. Within the food industry, the two main uses of reclaimed water include irrigation of agricultural crops and reuse within the processing sector for operations not contacting ready-to-eat food products. Several limitations to the use of reclaimed water in these applications are examined; the primary ones include exacerbation of antibiotic-resistant microorganisms, regrowth of enteric pathogens not completely eliminated during treatment, and the public's negative opinion associated with the idea of recycling sewage. To offset these limitations and provide perspective on the level of risk associated with an application involving reclaimed water, quantitative microbial risk assessments are now routinely being conducted.

Citation: Erickson M, Habteselassie M. 2019. Microbiological Constraints for Use of Reclaimed and Reconditioned Water in Food Production and Processing Operations, p 1021-1047. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch41
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Vörösmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A, Green P, Glidden S, Bunn SE, Sullivan CA, Liermann CR, Davies PM . 2010. Global threats to human water security and river biodiversity. Nature 467 : 555 561.[CrossRef][PubMed]
2. European Environment Agency . 2015. Use of freshwater resources. European Environment Agency, Copenhagen, Denmark. https://www.eea.europa.eu/data-and-maps/indicators/use-of-freshwater-resources-2. Accessed 24 July 2017.
3. Meneses YE, Stratton J, Flores RA . 2017. Water reconditioning and reuse in the food processing industry: current situation and challenges. Trends Food Sci Technol 61 : 72 79.[CrossRef].
4. Boland MJ, Rae AN, Vereijken JM, Meuwissen MPM, Fischer ARH, van Boekel MAJS, Rutherfurd SM, Gruppen H, Moughan PJ, Hendriks WH . 2013. The future supply of animal-derived protein for human consumption. Trends Food Sci Technol 29 : 62 73.[CrossRef].
5. Oki T, Kanae S . 2006. Global hydrological cycles and world water resources. Science 313 : 1068 1072.[CrossRef][PubMed]
6. U. S. Environmental Protection Agency . 2012. Guidelines for water reuse. USEPA/600/R-12/618. Environmental Protection Agency, Washington, DC. http://nepis.epa.gov/Adobe/PDF/P100FS7K.pdf. Accessed 11 July 2017.
7. The Pacific Institute , Morrison J, Morikawa M, Murphy M, Schulte P . 2009. Water scarcity & climate change: growing risks for businesses and investors. Ceres, Boston, MA. http://www2.pacinst.org/wp-content/uploads/2013/02/full_report30.pdf. Accessed 24 July 2017.
8. European Commission . 2016. EU-level instruments on water reuse. Final report to support the Commission's Impact Assessment. European Union, Luxembourg, Luxembourg. http://ec.europa.eu/environment/water/blueprint/pdf/EU_level_instruments_on_water-2nd-IA_support-study_AMEC.pdf. Accessed 24 July 2017.
9. Mujeriego R, Asano T . 1999. The role of advanced treatment in wastewater reclamation and reuse. Water Sci Technol 40 : 1 9.[CrossRef].
10. Grant SB, Saphores J-D, Feldman DL, Hamilton AJ, Fletcher TD, Cook PLM, Stewardson M, Sanders BF, Levin LA, Ambrose RF, Deletic A, Brown R, Jiang SC, Rosso D, Cooper WJ, Marusic I . 2012. Taking the “waste” out of “wastewater” for human water security and ecosystem sustainability. Science 337 : 681 686.[CrossRef][PubMed]
11. Haarhoff J, VanderMerwe B . 1996. Twenty-five years of wastewater reclamation in Windhoek, Namibia. Water Sci Technol 33 : 25 35.[CrossRef].
12. Lee J, Lee S, Jiang X . 2017. Cyanobacterial toxins in freshwater and food: important sources of exposure to humans. Annu Rev Food Sci Technol 8 : 281 304.[CrossRef][PubMed]
13. World Health Organization . 2017. Guidelines for drinking-water quality. Fourth edition incorporating the first addendum. World Health Organization, Geneva, Switzerland. http://apps.who.int/iris/bitstream/10665/254637/1/9789241549950-eng.pdf. Accessed 8 August 2017.
14. Crook J, MacDonald JA, Trussell RR . 1999. Potable reuse of reclaimed water. J Am Water Works Assoc 91 : 40 49.[CrossRef].
15. Levine DA, Tchobanoglous G, Asano T . 1985. Characterization of the size distribution on contaminants in wastewater treatment and reuse implications. J Water Pollut Control Fed 57 : 805 816.
16. Adin A, Asano T . 1998. The role of physical-chemical treatment in wastewater reclamation and reuse. Water Sci Technol 37 : 79 90.[CrossRef].
17. El Samrani AG, Lartiges BS, Montargès-Pelletier E, Kazpard V, Barrès O, Ghanbaja J . 2004. Clarification of municipal sewage with ferric chloride: the nature of coagulant species. Water Res 38 : 756 768.[CrossRef][PubMed]
18. Bustamante HA, , Shanker SR, , Pashley RM, , Karaman ME . 2001. Interaction between Cryptosporidium oocysts and water treatment coagulants. Wat Res 35: 3179 3189.
19. Plummer JD, Edzwald JK, Kelley MB . 1995. Removing Cryptosporidium by dissolved-air flotation. J Am Water Works Assoc 87 : 85 95.[CrossRef].
20. Rachwal AJ, Bauer MJ, Chipps MJ, Colbourne JS, Foster DM, . 1996. Comparisons between slow sand and high rate biofiltration, p 3 10. In Graham N, Collins R (ed), Advances in Slow Sand and Alternative Biological Filtration. John Wiley & Sons, Chichester, United Kingdom.
21. Len S-V, Hung Y-C, Erickson M, Kim C . 2000. Ultraviolet spectrophotometric characterization and bactericidal properties of electrolyzed oxidizing water as influenced by amperage and pH. J Food Prot 63 : 1534 1537.[CrossRef][PubMed]
22. United States Environmental Protection Agency . 2001. Controlling disinfection by-products and microbial contaminants in drinking water. EPA/600/R-01/110. Environmental Protection Agency, Washington, DC. https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=30002I5A.TXT. Accessed 7 July 2017.
23. Keswick BH, Satterwhite TK, Johnson PC, DuPont HL, Secor SL, Bitsura JA, Gary GW, Hoff JC . 1985. Inactivation of Norwalk virus in drinking water by chlorine. Appl Environ Microbiol 50 : 261 264.[PubMed]
24. Korich DG, Mead JR, Madore MS, Sinclair NA, Sterling CR . 1990. Effects of ozone, chlorine dioxide, chlorine, and monochloramine on Cryptosporidium parvum oocyst viability. Appl Environ Microbiol 56 : 1423 1428.[PubMed]
25. Quintero-Betancourt W, Gennaccaro AL, Scott TM, Rose JB . 2003. Assessment of methods for detection of infectious Cryptosporidium oocysts and Giardia cysts in reclaimed effluents. Appl Environ Microbiol 69 : 5380 5388.[CrossRef][PubMed]
26. Galván AL, Magnet A, Izquierdo F, Fenoy S, Rueda C, Fernández Vadillo C, Henriques-Gil N, del Aguila C . 2013. Molecular characterization of human-pathogenic microsporidia and Cyclospora cayetanensis isolated from various water sources in Spain: a year-long longitudinal study. Appl Environ Microbiol 79 : 449 459.[CrossRef][PubMed]
27. Kitajima M, Haramoto E, Iker BC, Gerba CP . 2014. Occurrence of Cryptosporidium, Giardia, and Cyclospora in influent and effluent water at wastewater treatment plants in Arizona. Sci Total Environ 484 : 129 136.[CrossRef][PubMed]
28. Gyürék LL, Finch GR, Belosevic M . 1997. Modeling chlorine inactivation requirements of Cryptosporidium parvum oocysts. J Environ Eng 123 : 865 875.[CrossRef].
29. Haas CN, Aturaliye DN . 1999. Kinetics of electroporation—assisted chlorination of Giardia muris. Water Res 33 : 1761 1766.[CrossRef].
30. United States Environmental Protection Agency . 2009. National primary drinking water regulations. Environmental Protection Agency, Washington, DC. https://www.epa.gov/sites/production/files/2016-06/documents/npwdr_complete_table.pdf. Accessed 7 July 2017.
31. Leenheer JA, Rostad CE, Barber LB, Schroeder RA, Anders R, Davisson ML . 2001. Nature and chlorine reactivity of organic constituents from reclaimed water in groundwater, Los Angeles County, California. Environ Sci Technol 35 : 3869 3876.[CrossRef][PubMed]
32. Hoff JC . 1986. Inactivation of microbial agents by chemical disinfectants. EPA/600/2-86/067. Environmental Protection Agency, Cincinnati, OH.
33. Richardson SD, Thruston AD Jr, Caughran TV, Chen PH, Collette TW, Schenck KM, Lykins BW Jr, Rav-Acha C, Glezer V . 2000. Identification of new drinking water disinfection by-products from ozone, chlorine dioxide, chloramine, and chlorine. Water Air Soil Pollut 123 : 95 102.[CrossRef].
34. Hua G, Reckhow DA . 2007. Comparison of disinfection byproduct formation from chlorine and alternative disinfectants. Water Res 41 : 1667 1678.[CrossRef][PubMed]
35. Shin GA, Sobsey MD . 2003. Reduction of Norwalk virus, poliovirus 1, and bacteriophage MS2 by ozone disinfection of water. Appl Environ Microbiol 69 : 3975 3978.[CrossRef][PubMed]
36. Finch GR, Haas CN, Oppenheimer JA, Gordon G, Trussell RR . 2001. Design criteria for inactivation of Cryptosporidium by ozone in drinking water. Ozone Sci Eng 23 : 259 284.[CrossRef].
37. Haas CN, Kaymak B . 2003. Effect of initial microbial density on inactivation of Giardia muris by ozone. Water Res 37 : 2980 2988.[CrossRef][PubMed]
38. von Gunten U . 2003. Ozonation of drinking water: part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine. Water Res 37 : 1469 1487.[CrossRef][PubMed]
39. Ishida C, Salveson A, Robinson K, Bowman R, Snyder S . 2008. Ozone disinfection with the HiPOX reactor: streamlining an old technology for wastewater reuse. Water Sci Technol 58 : 1765 1773.[CrossRef][PubMed]
40. Jiang J-Q . 2014. Advances in the development and application of ferrate(VI) for water and wastewater treatment. J Chem Technol Biotechnol 89 : 165 177.[CrossRef].
41. Talaiekhozani A, Talaei MR, Rezania S . 2017. An overview on production and application of ferrate(VI) for chemical oxidation, coagulation and disinfection of water and wastewater. J Environ Chem Eng 5 : 1828 1842.[CrossRef].
42. Campbell AT, Robertson LJ, Snowball MR, Smith HV . 1995. Inactivation of oocysts of Cryptosporidium parvum by ultraviolet irradiation. Water Res 29 : 2583 2586.[CrossRef].
43. Harris GD, Adams VD, Sorensen DL, Curtis MS . 1987. Ultraviolet inactivation of selected bacteria and viruses with photoreactivation of the bacteria. Water Res 21 : 687 692.[CrossRef].
44. Gerba CP, Nwachuku N, Riley KR . 2003. Disinfection resistance of waterborne pathogens on the United States Environmental Protection Agency's contaminant candidate list (CCL). J Water Supply Res Technol 52 : 81 94.[CrossRef].
45. atg UV Technology. 2017. UV dose and system selection. atg UV Technology, Wigan, United Kingdom. http://www.atguv.com/uv-dose-system-selection. Accessed 9 July 2017.
46. Schwartz T, Hoffmann S, Obst U . 2003. Formation of natural biofilms during chlorine dioxide and u.v. disinfection in a public drinking water distribution system. J Appl Microbiol 95 : 591 601.[CrossRef][PubMed]
47. Oguma K, Katayama H, Mitani H, Morita S, Hirata T, Ohgaki S . 2001. Determination of pyrimidine dimers in Escherichia coli and Cryptosporidium parvum during UV light inactivation, photoreactivation, and dark repair. Appl Environ Microbiol 67 : 4630 4637.[CrossRef][PubMed]
48. Craik SA, Weldon D, Finch GR, Bolton JR, Belosevic M . 2001. Inactivation of Cryptosporidium parvum oocysts using medium- and low-pressure ultraviolet radiation. Water Res 35 : 1387 1398.[CrossRef][PubMed]
49. Linden KG, Shin G, Sobsey MD . 2001. Comparative effectiveness of UV wavelengths for the inactivation of Cryptosporidium parvum oocysts in water. Water Sci Technol 43 : 171 174.[CrossRef][PubMed]
50. McGuigan KG, Conroy RM, Mosler H-J, du Preez M, Ubomba-Jaswa E, Fernandez-Ibañez P . 2012. Solar water disinfection (SODIS): a review from bench-top to roof-top. J Hazard Mater 235-236 : 29 46.[CrossRef][PubMed]
51. Rennecker JL, Driedger AM, Rubin SA, Marinas BJ . 2000. Synergy in sequential inactivation of Cryptosporidium parvum with ozone/free chlorine and ozone/monochloramine. Water Res 34 : 4121 4130.[CrossRef].
52. Medeiros RC, Daniel LA . 2015. Study of sequential disinfection for the inactivation of protozoa and indicator microorganisms in wastewater. Acta Sci Technol 37 : 203 209.[CrossRef].
53. Bounty S, Rodriguez RA, Linden KG . 2012. Inactivation of adenovirus using low-dose UV/H 2O 2 advanced oxidation. Water Res 46 : 6273 6278.[CrossRef][PubMed]
54. Wang X, Hu X, Hu C, Wei D . 2011. Sequential use of ultraviolet light and chlorine for reclaimed water disinfection. J Environ Sci (China) 23 : 1605 1610.[CrossRef][PubMed]
55. Avula RY, Nelson HM, Singh RK . 2009. Recycling of poultry process wastewater by ultrafiltration. Innov Food Sci Emerg Technol 10 : 1 8.[CrossRef].
56. Hu JY, Ong SL, Song LF, Feng YY, Liu WT, Tan TW, Lee LY, Ng WJ . 2003. Removal of MS2 bacteriophage using membrane technologies. Water Sci Technol 47 : 163 168.[CrossRef][PubMed]
57. Madaeni SS . 1999. The application of membrane technology for water disinfection. Water Res 33 : 301 308.[CrossRef].
58. Herath G, Yamamoto K, Urase T . 1999. Removal of viruses by microfiltration membranes at different solutions environments. Water Sci Technol 40 : 331 338.[CrossRef].
59. Huang HO, Young TA, Schwab KJ, Jacangelo JG . 2012. Mechanisms of virus removal from secondary wastewater effluent by low pressure membrane filtration. J Membr Sci 409-410 : 1 8.[CrossRef].
60. Tao WD, Sauba K, Fattah KP, Smith JR . 2017. Designing constructed wetlands for reclamation of pretreated wastewater and stormwater. Rev Environ Sci Biotechnol 16 : 37 57.[CrossRef].
61. Hill VR . 2003. Prospects for pathogen reductions in livestock wastewaters: a review. Crit Rev Environ Sci Technol 33 : 187 235.[CrossRef].
62. Nasser AM, Vaizel-Ohayon D, Aharoni A, Revhun M . 2012. Prevalence and fate of Giardia cysts in wastewater treatment plants. J Appl Microbiol 113 : 477 484.[CrossRef][PubMed]
63. Graczyk TK, Lucy FE, Tamang L, Mashinski Y, Broaders MA, Connolly M, Cheng HWA . 2009. Propagation of human enteropathogens in constructed horizontal wetlands used for tertiary wastewater treatment. Appl Environ Microbiol 75 : 4531 4538.[CrossRef][PubMed]
64. Verbyla ME, Iriarte MM, Mercado Guzmán A, Coronado O, Almanza M, Mihelcic JR . 2016. Pathogens and fecal indicators in waste stabilization pond systems with direct reuse for irrigation: fate and transport in water, soil and crops. Sci Total Environ 551-552 : 429 437.[CrossRef][PubMed]
65. King B, Fanok S, Phillips R, Lau M, van den Akker B, Monis P . 2017. Cryptosporidium attenuation across the wastewater treatment train: recycled water fit for purpose. Appl Environ Microbiol 83 : e03068-16.[CrossRef][PubMed]
66. Oron G, Armon R, Mandelbaum R, Manor Y, Campos C, Gillerman L, Saigot M, Gerba C, Klein I, Enriquez C . 2001. Secondary wastewater disposal for crop irrigation with minimal risks. Water Sci Technol 43 : 139 146.[CrossRef][PubMed]
67. Ferguson C, Husman AMD, Altavilla N, Deere D, Ashbolt N . 2003. Fate and transport of surface water pathogens in watersheds. Crit Rev Environ Sci Technol 33 : 299 361.[CrossRef].
68. Nasser AM, Glozman R, Nitzan Y . 2002. Contribution of microbial activity to virus reduction in saturated soil. Water Res 36 : 2589 2595.[CrossRef][PubMed]
69. Kato S, Jenkins MB, Fogarty EA, Bowman DD . 2002. Effects of freeze-thaw events on the viability of Cryptosporidium parvum oocysts in soil. J Parasitol 88 : 718 722.[PubMed]
70. Asano T . 2002. Water from (waste)water—the dependable water resource. Water Sci Technol 45 : 24 33.[PubMed]
71. National Resource Management Ministerial Council . 2006. Australian guidelines for water recycling: managing health and environmental risks (phase 1). National Resource Management Ministerial Council Document available on the Water Quality Australia website: http://www.waterquality.gov.au/SiteCollectionDocuments/water-recycling-guidelines-full-21.pdf. Accessed 31 March 2019.
72. United States Environmental Protection Agency . 1992. Guidelines for water reuse. USEPA/625/R/-92/004. Environmental Protection Agency, Washington, DC. http://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=30004JK8.txt. Accessed 11 July 2017.
73. Sanchez-Flores R, Conner A, Kaiser RA . 2016. The regulatory framework of reclaimed wastewater for potable reuse in the United States. Int J Water Resour Dev 32 : 536 558.[CrossRef].
74. Texas Water Development Board . 2015. Direct potable reuse resource document. Texas Water Development Board, Austin, TX. http://www.twdb.texas.gov/publications/reports/contracted_reports/doc/1248321508_Vol1.pdf. Accessed July 15, 2017.
75. California State Water Resources Control Board . 2015. Regulations related to recycled water. California State Water Resources Control Board, Sacramento, CA. http://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/documents/lawbook/RWregulations_20150716.pdf. Accessed 15 July 2017.
76. World Health Organization . 2004. Report of the 36th session of the codex committee on food hygiene. World Health Organization, Geneva, Switzerland. http://www.fao.org/input/download/report/615/al04_13e.pdf. Accessed July 11, 2017.
77. International Life Sciences Institute . 2008. Considering water quality for use in the food industry. International Life Sciences Institute, Washington, DC. http://ilsi.eu/wp-content/uploads/sites/3/2016/06/R2008Con_H2O.pdf Accessed 26 July 2017.
78. Wu J, Long SC, Das D, Dorner SM . 2011. Are microbial indicators and pathogens correlated? A statistical analysis of 40 years of research. J Water Health 9 : 265 278.[CrossRef][PubMed]
79. Agulló-Barceló M, Oliva F, Lucena F . 2013. Alternative indicators for monitoring Cryptosporidium oocysts in reclaimed water. Environ Sci Pollut Res Int 20 : 4448 4454.[CrossRef][PubMed]
80. National Research Council . 1998. Issues in potable reuse: the viability of augmenting drinking water supplies with reclaimed water. National Academy Press, Washington, DC.
81. Zimmerman BD, Korajkic A, Brinkman NE, Grimm AC, Ashbolt NJ, Garland JL . 2016. A spike cocktail approach to improve microbial performance monitoring for water reuse. Water Environ Res 88 : 824 837.[CrossRef][PubMed]
82. Deshmukh RA, Joshi K, Bhand S, Roy U . 2016. Recent developments in detection and enumeration of waterborne bacteria: a retrospective minireview. MicrobiologyOpen 5 : 901 922.[CrossRef][PubMed]
83. Seidel M, Jurzik L, Brettar I, Höfle MG, Griebler C . 2016. Microbial and viral pathogens in freshwater: current research aspects studied in Germany. Environ Earth Sci 75 : 1384.[CrossRef].
84. Rothrock MJ Jr, Hiett KL, Kiepper BH, Ingram K, Hinton A . 2013. Quantification of zoonotic bacterial pathogens within commercial poultry processing water samples using droplet digital PCR. Adv Microbiol 3 : 403 411.[CrossRef].
85. Yang R, Paparini A, Monis P, Ryan U . 2014. Comparison of next-generation droplet digital PCR (ddPCR) with quantitative PCR (qPCR) for enumeration of Cryptosporidium oocysts in faecal samples. Int J Parasitol 44 : 1105 1113.[CrossRef][PubMed]
86. Nicot F, Cazabat M, Lhomme S, Marion O, Sauné K, Chiabrando J, Dubois M, Kamar N, Abravanel F, Izopet J . 2016. Quantification of HEV RNA by droplet digital PCR. Viruses 8 : 233.[CrossRef][PubMed]
87. Rajal VB, McSwain BS, Thompson DE, Leutenegger CM, Wuertz S . 2007. Molecular quantitative analysis of human viruses in California stormwater. Water Res 41 : 4287 4298.[CrossRef][PubMed]
88. Vesey G, Slade JS, Byrne M, Shepherd K, Fricker CR . 1993. A new method for the concentration of Cryptosporidium oocysts from water. J Appl Bacteriol 75 : 82 86.[CrossRef][PubMed]
89. Shields JM, Olson BH . 2003. Cyclospora cayetanensis: a review of an emerging parasitic coccidian. Int J Parasitol 33 : 371 391.[CrossRef][PubMed]
90. Hoffman R, Chauret C, Standridge J, Peterson L . 1999. Evaluation of four commercial antibodies. J Am Water Works Assoc 91 : 69 78.[CrossRef].
91. Simmons OD III, Sobsey MD, Schaefer FW III, Francy DS, Nally RA, Heaney CD . 2001. Evaluation of USEPA method 1622 for detection of Cryptosporidium oocysts in stream waters. J Am Water Works Assoc 93 : 78 87.[CrossRef].
92. Slifko TR, Huffman DE, Dussert B, Owens JH, Jakubowski W, Haas CN, Rose JB . 2002. Comparison of tissue culture and animal models for assessment of Cryptospridium parvum infection. Exp Parasitol 101 : 97 106.[CrossRef][PubMed]
93. Birch L, Dawson CE, Cornett JH, Keer JT . 2001. A comparison of nucleic acid amplification techniques for the assessment of bacterial viability. Lett Appl Microbiol 33 : 296 301.[CrossRef][PubMed]
94. Gobet P, Toze S . 2001. Relevance of Cryptosporidium parvum hsp70 mRNA amplification as a tool to discriminate between viable and dead oocysts. J Parasitol 87 : 226 229.[CrossRef][PubMed]
95. Kronlein MR, Stedtfeld RD, Samhan F, Kronlein C, Hashsham SA . 2014. Detection and occurrence of indicator organisms and pathogens. Water Environ Res 86 : 882 897.[CrossRef].
96. Tanchou V . 2014. Review of methods for the rapid identification of pathogens in water samples. Report EUR 26881 EN. Institute for the Protection and Security of the Citizen, Joint Research Centre, European Commission, Ispra, Italy. http://publications.jrc.ec.europa.eu/repository/bitstream/JRC92395/lbna26881enn.pdf. Accessed 16 August 2017.
97. Rames E, Roiko A, Stratton H, Macdonald J . 2016. Technical aspects of using human adenovirus as a viral water quality indicator. Water Res 96 : 308 326.[CrossRef][PubMed]
98. Truchado P, Lopez-Galvez F, Gil MI, Pedrero-Salcedo F, Alarcón JJ, Allende A . 2016. Suitability of different Escherichia coli enumeration techniques to assess the microbial quality of different irrigation water sources. Food Microbiol 58 : 29 35.[CrossRef][PubMed]
99. Amoah ID, Singh G, Stenström TA, Reddy P . 2017. Detection and quantification of soil-transmitted helminths in environmental samples: a review of current state-of-the-art and future perspectives. Acta Trop 169 : 187 201.[CrossRef][PubMed]
100. Leifels M, Jurzik L, Wilhelm M, Hamza IA . 2015. Use of ethidium monoazide and propidium monoazide to determine viral infectivity upon inactivation by heat, UV exposure and chlorine. Int J Hyg Environ Health 218 : 686 693 CORRIGENDUM Int J Hyg Environ Health 219 : 232.[CrossRef][PubMed]
101. Contreras JD, Meza R, Siebe C, Rodríguez-Dozal S, López-Vidal YA, Castillo-Rojas G, Amieva RI, Solano-Gálvez SG, Mazari-Hiriart M, Silva-Magaña MA, Vázquez-Salvador N, Rosas Pérez I, Martínez Romero L, Salinas Cortez E, Riojas-Rodríguez H, Eisenberg JNS . 2017. Health risks from exposure to untreated wastewater used for irrigation in the Mezquital Valley, Mexico: a 25-year update. Water Res 123 : 834 850.[CrossRef][PubMed]
102. Crook J, Jaques RS . 2005. Monterey county water recycling projects: a case study, p. 187 198. In Water Conservation, Reuse and Recycling: Proceedings of an Iranian-American Workshop. The National Academies Press, Washington, DC.
103. Cirelli GL, Consoli S, Licciardello F, Aiello R, Giuffrida F, Leonardi C . 2012. Treated municipal wastewater reuse in vegetable production. Agric Water Manage 104 : 163 170.[CrossRef].
104. Latif-Eugenín F, Beaz-Hidalgo R, Silvera-Simón C, Fernandez-Cassi X, Figueras MJ . 2017. Chlorinated and ultraviolet radiation-treated reclaimed irrigation water is the source of Aeromonas found in vegetables used for human consumption. Environ Res 154 : 190 195.[CrossRef][PubMed]
105. Bichai F, Polo-López MI, Fernández Ibañez P . 2012. Solar disinfection of wastewater to reduce contamination of lettuce crops by Escherichia coli in reclaimed water irrigation. Water Res 46 : 6040 6050.[CrossRef][PubMed]
106. Lopez-Galvez F, Allende A, Pedrero-Salcedo F, Alarcon JJ, Gil MI . 2014. Safety assessment of greenhouse hydroponic tomatoes irrigated with reclaimed and surface water. Int J Food Microbiol 191 : 97 102.[CrossRef][PubMed]
107. Christou A, Maratheftis G, Eliadou E, Michael C, Hapeshi E, Fatta-Kassinos D . 2014. Impact assessment of the reuse of two discrete treated wastewaters for the irrigation of tomato crop on the soil geochemical properties, fruit safety and crop productivity. Agric Ecosyst Environ 192 : 105 114.[CrossRef].
108. Orlofsky E, Bernstein N, Sacks M, Vonshak A, Benami M, Kundu A, Maki M, Smith W, Wuertz S, Shapiro K, Gillor O . 2016. Comparable levels of microbial contamination in soil and on tomato crops after drip irrigation with treated wastewater or potable water. Agric Ecosyst Environ 215 : 140 150.[CrossRef].
109. Erickson MC . 2012. Internalization of fresh produce by foodborne pathogens. Annu Rev Food Sci Technol 3 : 283 310.[CrossRef][PubMed]
110. Allende A, Monaghan J . 2015. Irrigation water quality for leafy crops: a perspective of risks and potential solutions. Int J Environ Res Public Health 12 : 7457 7477.[CrossRef][PubMed]
111. Rice J, Wutich A, Westerhoff P . 2013. Assessment of de facto wastewater reuse across the US: trends between 1980 and 2008. Environ Sci Technol 47 : 11099 11105.[CrossRef][PubMed]
112. Adrover M, Moyà G, Vadell J . 2017. Seasonal and depth variation of soil chemical and biological properties in alfalfa crops irrigated with treated wastewater and saline groundwater. Geoderma 286 : 54 63.[CrossRef].
113. Belaid N, Neel C, Lenain JF, Buzier R, Kallel M, Ayoub T, Ayadi A, Baudu M . 2012. Assessment of metal accumulation in calcareous soil and forage crops subjected to long-term irrigation using treated wastewater: case of El Hajeb-Sfax, Tunisia. Agric Ecosyst Environ 158 : 83 93.[CrossRef].
114. Rad SJ, Lewis MJ . 2014. Water utilisation, energy utilisation and waste water management in the dairy industry: a review. Int J Dairy Technol 67 : 1 20.[CrossRef].
115. Miyaki H, Adachi S, Suda K, Kojima Y . 2000. Water recycling by floating media filtration and nanofiltration at a soft drink factory. Desalination 131 : 47 53.[CrossRef].
116. Codex Alimentarius . 2007. Code of hygienic practice for eggs and egg products. CAC/RCP 15-1976. Joint FAO/WHO Food Standards Programme, Rome, Italy. http://www.fao.org/docrep/012/i1111e/i1111e01.pdf. Accessed 18 July 2017.
117. Codex Alimentarius . 2013. Code of hygienic practice for fresh fruits and vegetables. CAC/RCP 53-2003. Joint FAO/WHO Food Standards Programme, Rome, Italy. http://www.codexalimentarius.org/standards/list-of-standards/en/?provide=standards&orderField=fullReference&sort=asc&num1=CAC/RCP.pdf. Accessed 18 July 2017.
118. United States Food and Drug Administration . 2015. Grade “A” pasteurized milk ordinance. 2007. Appendix D. Standards for water sources. Food and Drug Administration, Washington, DC. http://www.fda.gov/downloads/food/guidanceregulation/guidancedocumentsregulatoryinformation/milk/ucm513508.pdf. Accessed 24 July 2017.
119. United States Environmental Protection Agency . 2004. Meat and poultry products effluent guidelines. Environmental Protection Agency, Washington, DC. https://www.epa.gov/eg/meat-and-poultry-products-effluent-guidelines. Accessed 24 July 2017.
120. Casani S, Rouhany M, Knøchel S . 2005. A discussion paper on challenges and limitations to water reuse and hygiene in the food industry. Water Res 39 : 1134 1146.[CrossRef][PubMed]
121. Dickin SK, Schuster-Wallace CJ, Qadir M, Pizzacalla K . 2016. A review of health risks and pathways for exposure to wastewater use in agriculture. Environ Health Perspect 124 : 900 909.[CrossRef][PubMed]
122. Rosenberg Goldstein RE, Micallef SA, Gibbs SG, He X, George A, Sapkota A, Joseph SW, Sapkota AR . 2014. Occupational exposure to Staphylococcus aureus and Enterococcus spp. among spray irrigation workers using reclaimed water. Int J Environ Res Public Health 11 : 4340 4355.[CrossRef][PubMed]
123. Courault D, Albert I, Perelle S, Fraisse A, Renault P, Salemkour A, Amato P . 2017. Assessment and risk modeling of airborne enteric viruses emitted from wastewater reused for irrigation. Sci Total Environ 592 : 512 526.[CrossRef][PubMed]
124. California Stormwater Quality Association . 2003. Stormwater best management practice handbook. California Stormwater Quality Association, Menlo Park, CA. https://www.casqa.org/sites/default/files/BMPHandbooks/BMP_Municipal_Complete.pdf. Accessed 6 August 2017.
125. Florida Department of Environmental Protection . 2008. Florida friendly best management practices for protection of water resources by the green industries. Florida Department of Environmental Protection, Tallahassee, FL. https://fyn.ifas.ufl.edu/pdf/grn-ind-bmp-en-12-2008.pdf. Accessed on August 6, 2017.
126. Miller WA, Lewis DJ, Lennox M, Pereira MGC, Tate KW, Conrad PA, Atwill ER . 2007. Climate and on-farm risk factors associated with Giardia duodenalis cysts in storm runoff from California coastal dairies. Appl Environ Microbiol 73 : 6972 6979.[CrossRef][PubMed]
127. Lewis DJ, Atwill ER, Lennox MS, Pereira MDG, Miller WA, Conrad PA, Tate KW . 2009. Reducing microbial contamination in storm runoff from high use areas on California coastal dairies. Water Sci Technol 60 : 1731 1743.[CrossRef][PubMed]
128. Becerra-Castro C, Lopes AR, Vaz-Moreira I, Silva EF, Manaia CM, Nunes OC . 2015. Wastewater reuse in irrigation: a microbiological perspective on implications in soil fertility and human and environmental health. Environ Int 75 : 117 135.[CrossRef][PubMed]
129. van Elsas JD, Semenov AV, Costa R, Trevors JT . 2011. Survival of Escherichia coli in the environment: fundamental and public health aspects. ISME J 5 : 173 183 CORRIGENDUM ISME J 5 : 367.[CrossRef][PubMed]
130. Erickson MC, Habteselassie MY, Liao J, Webb CC, Mantripragada V, Davey LE, Doyle MP . 2014. Examination of factors for use as potential predictors of human enteric pathogen survival in soil. J Appl Microbiol 116 : 335 349.[CrossRef][PubMed]
131. García-Orenes F, Caravaca F, Morugán-Coronado A, Roldán A . 2015. Prolonged irrigation with municipal wastewater promotes a persistent and active soil microbial community in a semiarid agroecosystem. Agric Water Manage 149 : 115 122.[CrossRef].
132. Bastida F, Torres IF, Romero-Trigueros C, Baldrian P, Vĕtrovský T, Bayona JM, Alarcón JJ, Hernández T, García C, Nicolás E . 2017. Combined effects of reduced irrigation and water quality on the soil microbial community of a citrus orchard under semi-arid conditions. Soil Biol Biochem 104 : 226 237.[CrossRef].
133. Frenk S, Hadar Y, Minz D . 2014. Resilience of soil bacterial community to irrigation with water of different qualities under Mediterranean climate. Environ Microbiol 16 : 559 569.[CrossRef][PubMed]
134. Alguacil MM, Torrecillas E, Torres P, García-Orenes F, Roldán A . 2012. Long-term effects of irrigation with waste water on soil AM fungi diversity and microbial activities: the implications for agro-ecosystem resilience. PLoS One 7 : e47680.[CrossRef][PubMed]
135. Hanjra MA, Blackwell J, Carr G, Zhang F, Jackson TM . 2012. Wastewater irrigation and environmental health: implications for water governance and public policy. Int J Hyg Environ Health 215 : 255 269.[CrossRef][PubMed]
136. Chen J, He F, Zhang X, Sun X, Zheng J, Zheng J . 2014. Heavy metal pollution decreases microbial abundance, diversity and activity within particle-size fractions of a paddy soil. FEMS Microbiol Ecol 87 : 164 181.[CrossRef][PubMed]
137. Rath KM, Rousk J . 2015. Salt effects on soil microbial decomposer community and their role in organic carbon cycling: a review. Soil Biol Biochem 81 : 108 123.[CrossRef].
138. Seiler C, Berendonk TU . 2012. Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Front Microbiol 3 : 399.[CrossRef][PubMed]
139. Michael I, Rizzo L, McArdell CS, Manaia CM, Merlin C, Schwartz T, Dagot C, Fatta-Kassinos D . 2013. Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review. Water Res 47 : 957 995.[CrossRef][PubMed]
140. Carey SA, Goldstein RER, Gibbs SG, Claye E, He X, Sapkota AR . 2016. Occurrence of vancomycin-resistant and -susceptible Enterococcus spp. in reclaimed water used for spray irrigation. Environ Res 147 : 350 355.[CrossRef][PubMed]
141. Al-Jassim N, Ansari MI, Harb M, Hong P-Y . 2015. Removal of bacterial contaminants and antibiotic resistance genes by conventional wastewater treatment processes in Saudi Arabia: is the treated wastewater safe to reuse for agricultural irrigation? Water Res 73 : 277 290.[CrossRef][PubMed]
142. Zhang CM, Xu LM, Wang XC, Zhuang K, Liu QQ . 2017. Effects of ultraviolet disinfection on antibiotic-resistant Escherichia coli from wastewater: inactivation, antibiotic resistance profiles and antibiotic resistance genes. J Appl Microbiol 123 : 295 306.[CrossRef][PubMed]
143. Zhang Y, Gu AZ, He M, Li D, Chen J . 2017. Subinhibitory concentrations of disinfectants promote the horizontal transfer of multidrug resistance genes within and across genera. Environ Sci Technol 51 : 570 580.[CrossRef][PubMed]
144. Han X-M, Hu H-W, Shi X-Z, Wang J-T, Han L-L, Chen D, He J-Z . 2016. Impacts of reclaimed water irrigation on soil antibiotic resistome in urban parks of Victoria, Australia. Environ Pollut 211 : 48 57.[CrossRef][PubMed]
145. Negreanu Y, Pasternak Z, Jurkevitch E, Cytryn E . 2012. Impact of treated wastewater irrigation on antibiotic resistance in agricultural soils. Environ Sci Technol 46 : 4800 4808.[CrossRef][PubMed]
146. van der Kooij D, Visser A, Hijnen WAM . 1982. Determining the concentration of easily assimilable organic carbon in drinking water. J Am Water Works Assoc 74 : 540 545.[CrossRef].
147. Ng WJ, Ong SL, Hu JY . 2001. The effects of water reclamation technologies on biological stability of industrial water. Water Sci Technol 43 : 327 334.[CrossRef][PubMed]
148. Thayanukul P, Kurisu F, Kasuga I, Furumai H . 2013. Evaluation of microbial regrowth potential by assimilable organic carbon in various reclaimed water and distribution systems. Water Res 47 : 225 232.[CrossRef][PubMed]
149. Lechevallier MW, Shaw NE, Kaplan LA, Bott TL . 1993. Development of a rapid assimilable organic carbon method for water. Appl Environ Microbiol 59 : 1526 1531.[PubMed]
150. Thayanukul P, Kurisu F, Kasuga I, Kanaya K, Furumai H . 2016. Characterisation of biodegradable organic matter in reclaimed water using a bacterial growth fingerprint assay. Water Sci Technol 16 : 1255 1265.[CrossRef].
151. Jjemba PK, Weinrich LA, Cheng W, Giraldo E, Lechevallier MW . 2010. Regrowth of potential opportunistic pathogens and algae in reclaimed-water distribution systems. Appl Environ Microbiol 76 : 4169 4178.[CrossRef][PubMed]
152. Ajibode OM, Rock C, Bright K, McLain JET, Gerba CP, Pepper IL . 2013. Influence of residence time of reclaimed water within distribution systems on water quality. J Water Reuse Desalin 3 : 185 196.[CrossRef].
153. Lin YW, Li D, Gu AZ, Zeng SY, He M . 2016. Bacterial regrowth in water reclamation and distribution systems revealed by viable bacterial detection assays. Chemosphere 144 : 2165 2174.[CrossRef][PubMed]
154. Li D, Zeng S, Gu AZ, He M, Shi H . 2013. Inactivation, reactivation and regrowth of indigenous bacteria in reclaimed water after chlorine disinfection of a municipal wastewater treatment plant. J Environ Sci (China) 25 : 1319 1325.[CrossRef][PubMed]
155. Madany IM, Al-Shiryan A, Lori I, Al-Khalifa H . 1992. Public awareness and attitudes toward various uses of renovated water. Environ Int 18 : 489 495.[CrossRef].
156. Rock C, Solop FI, Gerrity D . 2012. Survey of statewide public perceptions regarding water reuse in Arizona. J Water Supply Resour Technol 61 : 506 517.
157. Garcia-Cuerva L, Berglund EZ, Binder AR . 2016. Public perceptions of water shortages, conservation behaviors, and support for water reuse in the U.S. Resour Conserv Recycling 113 : 106 115.[CrossRef].
158. Po M, Kaercher JD, Nancarrow BE . 2003. Literature review of factors influencing public perceptions of water reuse. CSIRO Land and Water Technical Report 54/03. CSIRO, Canberra, Australia.
159. Higgins J, Warnken J, Sherman PP, Teasdale PR . 2002. Survey of users and providers of recycled water: quality concerns and directions for applied research. Water Res 36 : 5045 5056.[CrossRef][PubMed]
160. Slovic P . 1998. The risk game. Reliab Eng Syst Saf 59 : 73 77.[CrossRef].
161. Frewer LJ, Howard C, Hedderley D, Shepherd R . 1996. What determines trust in information about food-related risks? Underlying psychological constructs. Risk Anal 16 : 473 486.[CrossRef][PubMed]
162. Hartley T . 2006. Public perception and participation in water reuse. Desalination 187 : 115 126.[CrossRef].
163. Marks JS . 2006. Taking the public seriously: the case of potable and non potable reuse. Desalination 187 : 137 147.[CrossRef].
164. Dear M . 1992. Understanding and overcoming the NIMBY syndrome. J Am Plann Assoc 58 : 288 300.[CrossRef].
165. Owusu-Ansah EDJ, Sampson A, Amponsah SK, Abaidoo RC, Dalsgaard A, Hald T . 2017. Probabilistic quantitative microbial risk assessment model of norovirus from wastewater irrigated vegetables in Ghana using genome copies and fecal indicator ratio conversion for estimating exposure dose. Sci Total Environ 601-602 : 1712 1719.[CrossRef][PubMed]
166. United States Microbiological Risk Assessment Workgroup . 2012. Microbial risk assessment guideline. Pathogenic microorganisms with focus on food and water. EPA/100/J-12/001 and USDA/FSIS/2012-001. Environmental Protection Agency, Washington, DC. https://www.epa.gov/sites/production/files/2013-09/documents/mra-guideline-final.pdf. Accessed 26 July 2017.
167. Shin GA, Linden KG, Arrowood MJ, Sobsey MD . 2001. Low-pressure UV inactivation and DNA repair potential of Cryptosporidium parvum oocysts. Appl Environ Microbiol 67 : 3029 3032.[CrossRef][PubMed]
168. Clancy JL, Bukhari Z, Hargy TM, Bolton JR, Dussert BW, Marshall MM . 2000. Using UV to inactivate Cryptosporidium. J Am Water Works Assoc 92 : 97 104.[CrossRef].
169. Huffman DE, Gennaccaro A, Rose JB, Dussert BW . 2002. Low- and medium-pressure UV inactivation of microsporidia Encephalitozoon intestinalis. Water Res 36 : 3161 3164.[CrossRef][PubMed]
170. Thurston-Enriquez JA, Haas CN, Jacangelo J, Riley K, Gerba CP . 2003. Inactivation of feline calicivirus and adenovirus type 40 by UV radiation. Appl Environ Microbiol 69 : 577 582.[CrossRef][PubMed]
171. Tsai L-S, Hernlem B, Huxsoll CC . 2002. Disinfection and solids removal of poultry chiller water by electroflotation. J Food Sci 67 : 2160 2164.[CrossRef].
172. Nelson HM, Singh RK, Avula RM, Toledo RT . 2014. Flux behavior and quality of effluent from a poultry processing plant treated by membrane bioreactor. Int J Food Eng 10 : 51 57.[CrossRef].
173. Mannapperuma JD, Santos MR . 2004. Reconditioning of poultry chiller overflow by ultrafiltration. J Food Process Eng 27 : 497 516.[CrossRef].
174. Skou PB, Berg TA, Aunsbjerg SD, Thaysen D, Rasmussen MA, van den Berg F . 2017. Monitoring process water quality using near infrared spectroscopy and partial least squares regression with prediction uncertainty estimation. Appl Spectrosc 71 : 410 421.[CrossRef][PubMed]
175. Gómez-López VM, Gil MI, Allende A, Vanhee B, Selma MV . 2015. Water reconditioning by high power ultrasound combined with residual chemical sanitizers to inactivate foodborne pathogens associated with fresh-cut products. Food Control 53 : 29 34.[CrossRef].
176. Millan-Sango D, Allende A, Spiteri D, Van Impe JF, Valdramidis VP . 2017. Treatment of fresh produce water effluents by non-thermal technologies. J Food Eng 199 : 77 81.[CrossRef].
177. Olivieri AW, Seto E, Cooper RC, Cahn MD, Colford J, Crook J, Debroux J-F, Mandrell R, Suslow T, Tchobanoglous G, Hultquist RA, Spath DP, Mosher JJ . 2014. Risk-based review of California's water-recycling criteria for agricultural irrigation. J Environ Eng 140 : 04014015.[CrossRef].
178. Sales-Ortells H, Fernandez-Cassi X, Timoneda N, Dürig W, Girones R, Medema G . 2015. Health risks derived from consumption of lettuces irrigated with tertiary effluent containing norovirus. Food Res Int 68 : 70 77.[CrossRef].
179. Amha YM, Kumaraswamy R, Ahmad F . 2015. A probabilistic QMRA of Salmonella in direct agricultural reuse of treated municipal wastewater. Water Sci Technol 71 : 1203 1211.[CrossRef][PubMed]
180. Mok H-F, Hamilton AJ . 2014. Exposure factors for wastewater-irrigated Asian vegetables and a probabilistic rotavirus disease burden model for their consumption. Risk Anal 34 : 602 613.[CrossRef][PubMed]
181. Mok H-F, Barker SF, Hamilton AJ . 2014. A probabilistic quantitative microbial risk assessment model of norovirus disease burden from wastewater irrigation of vegetables in Shepparton, Australia. Water Res 54 : 347 362.[CrossRef][PubMed]


Generic image for table
Table 41.1

Definitions of terms used to describe water status or the activities to alter that status

Citation: Erickson M, Habteselassie M. 2019. Microbiological Constraints for Use of Reclaimed and Reconditioned Water in Food Production and Processing Operations, p 1021-1047. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch41
Generic image for table
Table 41.2

Waterborne pathogens and relevant characteristics associated with risk of causing human illness

Citation: Erickson M, Habteselassie M. 2019. Microbiological Constraints for Use of Reclaimed and Reconditioned Water in Food Production and Processing Operations, p 1021-1047. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch41
Generic image for table
Table 41.3

Effectiveness of filtration for removal of pathogens from coagulant-treated water

Citation: Erickson M, Habteselassie M. 2019. Microbiological Constraints for Use of Reclaimed and Reconditioned Water in Food Production and Processing Operations, p 1021-1047. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch41
Generic image for table
Table 41.4

Comparison of effectiveness of UV disinfection for inactivation of several types of waterborne pathogens

Citation: Erickson M, Habteselassie M. 2019. Microbiological Constraints for Use of Reclaimed and Reconditioned Water in Food Production and Processing Operations, p 1021-1047. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch41
Generic image for table
Table 41.5

Membrane filter type characteristics

Citation: Erickson M, Habteselassie M. 2019. Microbiological Constraints for Use of Reclaimed and Reconditioned Water in Food Production and Processing Operations, p 1021-1047. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch41
Generic image for table
Table 41.6

Selected research studies addressing processes and treatments applied to food processing wastewater for the purposes of water conservation

Citation: Erickson M, Habteselassie M. 2019. Microbiological Constraints for Use of Reclaimed and Reconditioned Water in Food Production and Processing Operations, p 1021-1047. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch41
Generic image for table
Table 41.7

Selected examples of QMRAs conducted to assess the microbial risk from consumption of ready-to-eat food crops that were overhead-spray irrigated with wastewater or reclaimed water

Citation: Erickson M, Habteselassie M. 2019. Microbiological Constraints for Use of Reclaimed and Reconditioned Water in Food Production and Processing Operations, p 1021-1047. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch41

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error