1887

Chapter 6 : Meat and Poultry

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Meat and Poultry, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819972/9781555819965.ch6-1.gif /docserver/preview/fulltext/10.1128/9781555819972/9781555819965.ch6-2.gif

Abstract:

Meat and poultry are important commodities in the United States and worldwide. Given the popularity of these commodities and their high consumption rate, it is critical to understand the sources of contamination and the means to prevent cross-contamination to protect public health. Contamination of meat and poultry by microorganisms occurs naturally as a result of procedures necessary to produce foods of animal origin. In general, most foodborne illnesses and outbreaks are due to undercooking or underprocessing of these products, cross contamination, or improper handling of cooked meat and poultry. As these are highly perishable commodities, particularly fresh meat and poultry, temperature controls are critical to prevent contamination. Given the broad spectrum of variables that can cause foodborne illnesses linked to meat and poultry products, this chapter discusses microbiological issues related to these commodities and their control measures.

Citation: Singh M, Thippareddi H, Wang L, Balamurugan S. 2019. Meat and Poultry, p 125-177. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch6
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 6.1
Figure 6.1

Unit operations for pork slaughter.

Citation: Singh M, Thippareddi H, Wang L, Balamurugan S. 2019. Meat and Poultry, p 125-177. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6.2
Figure 6.2

Unit operations for beef slaughter.

Citation: Singh M, Thippareddi H, Wang L, Balamurugan S. 2019. Meat and Poultry, p 125-177. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6.3
Figure 6.3

APCs on beef cattle hides and freshly dehided carcasses. Reprinted from reference .

Citation: Singh M, Thippareddi H, Wang L, Balamurugan S. 2019. Meat and Poultry, p 125-177. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6.4
Figure 6.4

APCs on beef carcasses at various locations after dehiding (a), evisceration (b), trimming (c), washing (d), and blast chilling (e) in two beef-processing operations. Reprinted from reference 303.

Citation: Singh M, Thippareddi H, Wang L, Balamurugan S. 2019. Meat and Poultry, p 125-177. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6.5
Figure 6.5

Unit operations for primary processing of poultry. IOBW, inside-out bird washer.

Citation: Singh M, Thippareddi H, Wang L, Balamurugan S. 2019. Meat and Poultry, p 125-177. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555819972.ch6
1. Wilson SC, Morrow-Tesch J, Straus DC, Cooley JD, Wong WC, Mitlöhner FM, McGlone JJ. 2002. Airborne microbial flora in a cattle feedlot. Appl Environ Microbiol 68 : 3238 3242[CrossRef].[PubMed]
2. Miller MF, Loneragan GH, Harris DD, Adams KD, Brooks JC, Brashears MM. 2008. Environmental dust exposure as a factor contributing to an increase in Escherichia coli O157 and Salmonella populations on cattle hides in feedyards. J Food Prot 71 : 2078 2081[CrossRef].[PubMed]
3. Sofos JN, Kochevar SL, Bellinger GR, Buege DR, Hancock DD, Ingham SC, Morgan JB, Reagan JO, Smith GC. 1999. Sources and extent of microbiological contamination of beef carcasses in seven United States slaughtering plants. J Food Prot 62 : 140 145[CrossRef].[PubMed]
4. Schloss PD, Handelsman J. 2004. Status of the microbial census. Microbiol Mol Biol Rev 68 : 686 691[CrossRef].[PubMed]
5. Durso LM, Harhay GP, Smith TPL, Bono JL, Desantis TZ, Harhay DM, Andersen GL, Keen JE, Laegreid WW, Clawson ML. 2010. Animal-to-animal variation in fecal microbial diversity among beef cattle. Appl Environ Microbiol 76 : 4858 4862[CrossRef].[PubMed]
6. Bacon RT, Belk KE, Sofos JN, Clayton RP, Reagan JO, Smith GC. 2000. Microbial populations on animal hides and beef carcasses at different stages of slaughter in plants employing multiple-sequential interventions for decontamination. J Food Prot 63 : 1080 1086[CrossRef].[PubMed]
7. Pearce RA, Bolton DJ, Sheridan JJ, McDowell DA, Blair IS, Harrington D. 2004. Studies to determine the critical control points in pork slaughter hazard analysis and critical control point systems. Int J Food Microbiol 90 : 331 339[CrossRef].[PubMed]
8. Arthur TM, Bosilevac JM, Nou X, Shackelford SD, Wheeler TL, Kent MP, Jaroni D, Pauling B, Allen DM, Koohmaraie M. 2004. Escherichia coli O157 prevalence and enumeration of aerobic bacteria, Enterobacteriaceae, and Escherichia coli O157 at various steps in commercial beef processing plants. J Food Prot 67 : 658 665[CrossRef].[PubMed]
9. National Cattlemens’ Beef Association. 2005. 2005 National Beef Tenderness Survey. https://www.beefresearch.org/CMDocs/BeefResearch/2005%20National%20Beef%20Tenderness%20Survey.pdf. Accessed 3 March 2018.
10. Gill CO, McGinnis JC. 2004. Microbiological conditions of mechanically tenderized beef cuts prepared at four retail stores. Int J Food Microbiol 95 : 95 102[CrossRef].[PubMed]
11. Ercolini D, Ferrocino I, Nasi A, Ndagijimana M, Vernocchi P, La Storia A, Laghi L, Mauriello G, Guerzoni ME, Villani F. 2011. Monitoring of microbial metabolites and bacterial diversity in beef stored under different packaging conditions. Appl Environ Microbiol 77 : 7372 7381[CrossRef].[PubMed]
12. Rangel JM, Sparling PH, Crowe C, Griffin PM, Swerdlow DL. 2005. Epidemiology of Escherichia coli O157:H7 outbreaks, United States, 1982-2002. Emerg Infect Dis 11 : 603 609[CrossRef].[PubMed]
13. Laine ES, Scheftel JM, Boxrud DJ, Vought KJ, Danila RN, Elfering KM, Smith KE . 2005. Outbreak of Escherichia coli O157:H7 infections associated with nonintact blade-tenderized frozen steaks sold by door-to-door vendors. J Food Prot 68 : 1198 1202.
14. United States Department of Agriculture Food Safety and Inspection Service. 2003. Illinois firm recalls beef products for possible E. coli O157:H7. http://www.fsis.usda.gov/OA/recalls/prelease/pr028-2003.htm.
15. Food Safety and Inspection Service, USDA. 2005. HACCP plan reassessment for mechanically tenderized beef products. Fed Regist 70 : 3033130334.
16. United States Department of Agriculture-Food Safety and Inspection Service. 2007. Pennsylvania firm recalls beef products for possible E. coli O157:H7. http://www.fsis.usda.gov/PDF/Recall_019_2007_Release.pdf.
17. Olsen SJ, MacKinnon LC, Goulding JS, Bean NH, Slutsker L Centers for Disease Control and Prevention. 2000. Surveillance for foodborne-disease outbreaks—United States, 1993-1997. MMWR CDC Surveill Summ 49 : 1 62.[PubMed]
18. Lorenzen CL, Neely TR, Miller RK, Tatum JD, Wise JW, Taylor JF, Buyck MJ, Reagan JO, Savell JW. 1999. Beef customer satisfaction: cooking method and degree of doneness effects on the top loin steak. J Anim Sci 77 : 637 644[CrossRef].[PubMed]
19. Obuz E, Dikeman ME, Erickson LE, Hunt MC, Herald TJ. 2004. Predicting temperature profiles to determine degree of doneness for beef biceps femoris and longissimus lumborum steaks. Meat Sci 67 : 101 105[CrossRef].[PubMed]
20. United States Department of Agriculture Food Safety and Inspection Service. 1999. FSIS policy on non-intact raw beef products contaminated with E. coli O157:H7. http://www.fsis.usda.gov/OA/background/O157policy.htm.
21. Sporing S. 1999. Escherichia coli O157:H7 risk assessment for production and cooking of blade tenderized beef steaks. M.S. thesis. Kansas State University, Manhattan, KS.
22. Thippareddi H, Sporing S, Phebus RK, Marsden JL, Kastner CL. 2000. Escherichia coli O157:H7 risk assessment for blade-tenderized beef steaks, p 117–118. In Cattlemen's Day 2000. http://krex.k-state.edu/dspace/handle/2097/4685. Accessed 3 March 2008.
23. United States Department of Agriculture Food Safety and Inspection Service. 2002. Comparative risk assessment for intact (non-tenderized) and non-intact (tenderized) beef: technical report. http://www.fsis.usda.gov/PDF/Beef_Risk_Assess_Report_Mar2002.pdf. Accessed 31 March 2010.
24. 2013 Sanitary Equipment Design Taskforce (ed). 2014. Sanitary equipment design principles: checklist & glossary. AMI Foundation, Washington, DC. https://www.meatinstitute.org/ht/a/GetDocumentAction/i/97261.
25. Beef Industry Food Safety Council. 2006. Best practices: pathogen control during tenderizing/enhancing of whole muscle cuts. https://www.beefresearch.org/CMDocs/BeefResearch/BeefIndustryAddressestheSafetyofNon-IntactBeefProducts-Appendices.pdf. Accessed 28 February 2011.
26. Food and Agricultural Organization. 2011. Global food losses and food waste: extent, causes and prevention. Food and Agricultural Organization, Rome, Italy.
27. Crowley KM, Prendergast DM, Sheridan JJ, McDowell DA. 2010. Survival of Pseudomonas fluorescens on beef carcass surfaces in a commercial abattoir. Meat Sci 85 : 550 554[CrossRef].[PubMed]
28. Nychas GJE, Marshall DL, Sofos JN,. 2007. Meat, poultry, and seafood, p 105 140. In Doyle MP, Beuchat LR (ed), Food Microbiology: Fundamentals and Frontiers, 3rd ed. ASM Press, Washington, DC.
29. Pennacchia C, Ercolini D, Villani F. 2011. Spoilage-related microbiota associated with chilled beef stored in air or vacuum pack. Food Microbiol 28 : 84 93[CrossRef].[PubMed]
30. Ercolini D, Russo F, Nasi A, Ferranti P, Villani F. 2009. Mesophilic and psychrotrophic bacteria from meat and their spoilage potential in vitro and in beef. Appl Environ Microbiol 75 : 1990 2001[CrossRef].[PubMed]
31. Doulgeraki AI, Paramithiotis S, Kagkli DM, Nychas GJE. 2010. Lactic acid bacteria population dynamics during minced beef storage under aerobic or modified atmosphere packaging conditions. Food Microbiol 27 : 1028 1034[CrossRef].[PubMed]
32. Adzitey F, Nurul H. 2011. Pale soft exudative (PSE) and dark firm dry (DFD) meats: causes and measures to reduce these incidences—a mini review. Int Food Res J 18 : 11 20.
33. Newton KG, Gill CO. 1981. The microbiology of DFD fresh meats: a review. Meat Sci 5 : 223 232[CrossRef].[PubMed]
34. Gill CO, Newton KG. 1979. Spoilage of vacuum-packaged dark, firm, dry meat at chill temperatures. Appl Environ Microbiol 37 : 362 364.[PubMed]
35. Koutsoumanis KP, Geornaras I, Sofos JN,. 2006. Microbiology of land muscle food, p 52.1–52.43. In Hui YH (ed), Handbook of Food Science, Technology, and Engineering, vol 1. CRC Press, Taylor & Francis Group, Boca Raton, FL.
36. Koutsoumanis KP, Sofos JN,. 2004. Microbial contamination of carcasses and cuts, p 727 737. In Jensens WK (ed), Encyclopedia of Meat Sciences. Elsevier Academic Press, Amsterdam, The Netherlands.[CrossRef]
37. Adam KH, Flint SH, Brightwell G. 2010. Psychrophilic and psychrotrophic clostridia: sporulation and germination processes and their role in the spoilage of chilled, vacuum-packaged beef, lamb and venison. Int J Food Sci Technol 45 : 1539 1544[CrossRef].
38. Broda DM, Saul DJ, Bell RG, Musgrave DR. 2000. Clostridium algidixylanolyticum sp. nov., a psychrotolerant, xylan-degrading, spore-forming bacterium. Int J Syst Evol Microbiol 50 : 623 631[CrossRef].[PubMed]
39. Kalchayanand N, Ray B, Field RA. 1993. Characteristics of psychrotrophic Clostridium laramie causing spoilage of vacuum-packaged refrigerated fresh and roasted beef. J Food Prot 56 : 13 17[CrossRef].
40. Moschonas G, Bolton DJ, Sheridan JJ, McDowell DA. 2010. The effect of storage temperature and inoculum level on the time of onset of ‘blown pack’ spoilage. J Appl Microbiol 108 : 532 539[CrossRef].[PubMed]
41. Moschonas G, Bolton DJ, Sheridan JJ, McDowell DA. 2011. The effect of heat shrink treatment and storage temperature on the time of onset of “blown pack” spoilage. Meat Sci 87 : 115 118[CrossRef].[PubMed]
42. Yang X, Balamurugan S, Gill CO. 2009. Substrate utilization by Clostridium estertheticum cultivated in meat juice medium. Int J Food Microbiol 128 : 501 505[CrossRef].[PubMed]
43. Ingram M, Simonsen B,. 1980. Meats and meat products, p 333–409. In Silliker JH, Elliot RP, Baird-Parker AC, Bryan FL, Christian JHB, Clark DS, Olsen, JC,, Jr, Roberts TA (ed.), Microbial Ecology of Foods, vol 2. Food Commodities. Academic Press, New York, NY.
44. Tompkin RB,. 1986. Microbiology of ready-to-eat meat and poultry products, p 89–121. In Pearson AM, Dutson TR (ed), Advances in Meat Research, vol 2. Meat and Poultry Microbiology. AVI Publishing Co., Westport, CT.
45. Bacon RT, Sofos JN,. 2003. Food hazards: biological food; characteristics of biological hazards in foods, p 157 195. In Schmidt RH, Rodrick G (ed), Food Safety Handbook. Wiley Interscience, New York, NY.
46. International Commission for Microbiological Specifications in Foods. 2005. Microorganisms in Foods 6: Microbial Ecology of Food Commodities. Blackie Academic and Professional, London, United Kingdom.
47. International Commission for Microbiological Specifications in Foods. 1996. Microorganisms in Foods 5: Characteristics of Microbial Pathogens. Blackie Academic & Professional, London, United Kingdom.
48. Scallan E, Griffin PM, Angulo FJ, Tauxe RV, Hoekstra RM. 2011. Foodborne illness acquired in the United States—unspecified agents. Emerg Infect Dis 17 : 16 22[CrossRef].[PubMed]
49. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Jones JL, Griffin PM. 2011. Foodborne illness acquired in the United States—major pathogens. Emerg Infect Dis 17 : 7 15[CrossRef].[PubMed]
50. Sofos JN. 2008. Challenges to meat safety in the 21st century. Meat Sci 78 : 3 13[CrossRef].[PubMed]
51. Sofos JN. 2009. ASAS Centennial Paper: developments and future outlook for postslaughter food safety. J Anim Sci 87 : 2448 2457[CrossRef].[PubMed]
52. Sofos JN, Geornaras I. 2010. Overview of current meat hygiene and safety risks and summary of recent studies on biofilms, and control of Escherichia coli O157:H7 in nonintact, and Listeria monocytogenes in ready-to-eat, meat products. Meat Sci 86 : 2 14[CrossRef].[PubMed]
53. Weiss J, Gibis M, Schuh V, Salminen H. 2010. Advances in ingredient and processing systems for meat and meat products. Meat Sci 86 : 196 213[CrossRef].[PubMed]
54. Kalač P. 2006. Biologically active polyamines in beef, pork and meat products: a review. Meat Sci 73 : 1 11[CrossRef].[PubMed]
55. Sofos JN. 2005. Improving the Safety of Fresh Meat. CRC/Woodhead Publishing, Ltd., Cambridge, United Kingdom.
56. Burgess CM, Rivas L, McDonnell MJ, Duffy G,. 2008. Biocontrol of pathogens in the meat chain, p 253 288. In Toldra F (ed), Meat Biotechnology. Springer, New York, NY.[CrossRef]
57. Byelashov OA, Sofos JN,. 2009. Strategies for on-line decontamination of carcasses, p 149 182. In Toldrá F (ed), Safety of Meat and Processed Meat. Springer, New York, NY.[CrossRef]
58. Loretz M, Stephan R, Zweifel C. 2011. Antibacterial activity of decontamination treatments for cattle hides and beef carcasses. Food Control 22 : 347 359[CrossRef].
59. Loretz M, Stephan R, Zweifel C. 2010. Antimicrobial activity of decontamination treatments for poultry carcasses: a literature survey. Food Control 21 : 791 804[CrossRef].
60. Skandamis PN, Nychas GJE, Sofos JN,. 2010. Meat decontamination, p 43 85. In Toldrá F (ed), Handbook of Meat Processing. Wiley-Blackwell, Ames, IA.[CrossRef]
61. Sofos JN, Smith GC. 1998. Nonacid meat decontamination technologies: model studies and commercial applications. Int J Food Microbiol 44 : 171 188[CrossRef].[PubMed]
62. Stopforth JD, Sofos JN,. 2006. Recent advances in pre- and post-slaughter intervention strategies for control of meat contamination, p 66–86. In Juneja VK, Cherry JP, Tunick MH (ed.), Advances in Microbial Food Safety. American Chemical Society, Oxford University Press, Washington, DC.
63. Sofos JN,. 2002. Approaches to pre-harvest food safety assurance, p. 23–48. In Smulders FJM, Collins JD (ed.), Food Safety Assurance and Veterinary Public Health, vol. 1. Food Safety Assurance in the Pre-Harvest Phase. Wageningen Academic Publishers, Wageningen, The Netherlands.
64. Bolder NM. 1997. Decontamination of meat and poultry carcasses. Trends Food Sci Technol 8 : 221 227[CrossRef].
65. European Food Safety Authority. 2010. Analysis of the baseline survey of the prevalence of Campylobacter in broiler batches and of Campylobacter and Salmonella on broiler carcasses in the EU, 2008. Part A: Campylobacter and Salmonella prevalence estimates. EFSA J 8 : 1503.
66. Hugas M, Tsigarida E. 2008. Pros and cons of carcass decontamination: the role of the European Food Safety Authority. Meat Sci 78 : 43 52[CrossRef].[PubMed]
67. Samelis J, Sofos JN,. 2003. Strategies to control stress-adapted pathogens, p 303 351. In Yousef AE, Juneja VK (ed), Microbial Stress Adaptation and Food Safety. CRC Press, Boca Raton, FL.
68. Waldroup AL. 1996. Contamination of raw poultry with pathogens. W Poult Sci 52 : 7 25[CrossRef].
69. Praveen PK, Debnath C, Shekhar S, Dalai N, Ganguly S. 2016. Incidence of Aeromonas spp. infection in fish and chicken meat and its related public health hazards: a review. Vet World 9 : 6 11[CrossRef].[PubMed]
70. Hastings R, Colles FM, McCarthy ND, Maiden MC, Sheppard SK. 2011. Campylobacter genotypes from poultry transportation crates indicate a source of contamination and transmission. J Appl Microbiol 110 : 266 276[CrossRef].[PubMed]
71. Mollenkopf DF, De Wolf B, Feicht SM, Cenera JK, King CA, van Balen JC, Wittum TE. 2018. Salmonella spp. and extended-spectrum cephalosporin-resistant Escherichia coli frequently contaminate broiler chicken transport cages of an organic production company. Foodborne Pathog Dis 15 : 583 588[CrossRef].[PubMed]
72. Newell DG, Shreeve JE, Toszeghy M, Domingue G, Bull S, Humphrey T, Mead G. 2001. Changes in the carriage of Campylobacter strains by poultry carcasses during processing in abattoirs. Appl Environ Microbiol 67 : 2636 2640[CrossRef].[PubMed]
73. Stern NJ, Fedorka-Cray P, Bailey JS, Cox NA, Craven SE, Hiett KL, Musgrove MT, Ladely S, Cosby D, Mead GC. 2001. Distribution of Campylobacter spp. in selected U.S. poultry production and processing operations. J Food Prot 64 : 1705 1710[CrossRef].[PubMed]
74. Berrang ME, Northcutt JK, Fletcher DL, Cox NA. 2003. Role of dump cage fecal contamination in the transfer of Campylobacter to carcasses of previously negative broilers. J Appl Poult Res 12 : 190 195[CrossRef].
75. Rigby CE, Pettit JR, Baker MF, Bentley AH, Salomons MO, Lior H. 1980. Flock infection and transport as sources of salmonellae in broiler chickens and carcasses. Can J Comp Med 44 : 328 337.[PubMed]
76. United States Department of Agriculture Food Safety and Inspection Service. 2015. Draft FSIS compliance guideline for controlling Salmonella and Campylobacter in raw poultry. https://www.fsis.usda.gov/wps/wcm/connect/6732c082-af40-415e-9b57-90533ea4c252/Controlling-Salmonella-Campylobacter-Poultry-2015.pdf?MOD=AJPERES
77. Ramesh N, Joseph SW, Carr LE, Douglass LW, Wheaton FW. 2004. A prototype poultry transport container decontamination system: II. Evaluation of cleaning and disinfecting efficiency. Trans Am Soc Agric Biol Eng 47 : 549 556[CrossRef].
78. Allen VM, Burton CH, Wilkinson DJ, Whyte RT, Harris JA, Howell M, Tinker DB. 2008. Evaluation of the performance of different cleaning treatments in reducing microbial contamination of poultry transport crates. Br Poult Sci 49 : 233 240[CrossRef].[PubMed]
79. Corry JE, Allen VM, Hudson WR, Breslin MF, Davies RH. 2002. Sources of Salmonella on broiler carcasses during transportation and processing: modes of contamination and methods of control. J Appl Microbiol 92 : 424 432[CrossRef].[PubMed]
80. Hinojosa C, Caldwell D, Byrd J, Droleskey R, Lee J, Stayer P, Resendiz E, Garcia J, Klein S, Caldwell D, Pineda M, Farnell M. 2018. Use of foaming disinfectants and cleaners to reduce aerobic bacteria and Salmonella on poultry transport coops. Animals (Basel) 8 : 195[CrossRef].[PubMed]
81. Slader J, Domingue G, Jørgensen F, McAlpine K, Owen RJ, Bolton FJ, Humphrey TJ. 2002. Impact of transport crate reuse and of catching and processing on Campylobacter and Salmonella contamination of broiler chickens. Appl Environ Microbiol 68 : 713 719[CrossRef].[PubMed]
82. Fluckey WM, Sanchez MX, McKee SR, Smith D, Pendleton E, Brashears MM. 2003. Establishment of a microbiological profile for an air-chilling poultry operation in the United States. J Food Prot 66 : 272 279[CrossRef].[PubMed]
83. Berg C, Raj M. 2015. A review of different stunning methods for poultry—animal welfare aspects (stunning methods for poultry). Animals (Basel) 5 : 1207 1219[CrossRef].[PubMed]
84. Russell SM. 2012. Controlling Salmonella in Poultry Production and Processing. CRC Press, New York, NY.[CrossRef]
85. Berrang ME, Dickens JA. 2000. Presence and level of Campylobacter spp. on broiler carcasses throughout the processing plant. J. Appl. Poult Sci. 9 : 43 47[CrossRef].
86. Sarlin LL, Barnhart ET, Caldwell DJ, Moore RW, Byrd JA, Caldwell DY, Corrier DE, Deloach JR, Hargis BM. 1998. Evaluation of alternative sampling methods for Salmonella critical control point determination at broiler processing. Poult Sci 77 : 1253 1257[CrossRef].[PubMed]
87. United States Department of Agriculture Food Safety and Inspection Service. 2014. FSIS compliance guide: modernization of poultry slaughter inspection: chilling requirements. https://www.fsis.usda.gov/wps/wcm/connect/7a0a728e-3b29-49e9-9c1b-ec55f2f04887/Chilling-Requirements-1014.pdf?MOD=AJPERES.
88. Nychas GJE, Panagou EZ, Mohareb F. 2016. Novel approaches for food safety management and communication. Curr Opin Food Sci 12 : 13 20[CrossRef].
89. Gram L, Dalgaard P. 2002. Fish spoilage bacteria—problems and solutions. Curr Opin Biotechnol 13 : 262 266[CrossRef].[PubMed]
90. Meredith H, Valdramidis V, Rotabakk BT, Sivertsvik M, McDowell D, Bolton DJ. 2014. Effect of different modified atmospheric packaging (MAP) gaseous combinations on Campylobacter and the shelf-life of chilled poultry fillets. Food Microbiol 44 : 196 203[CrossRef].[PubMed]
91. Pothakos V, Devlieghere F, Villani F, Björkroth J, Ercolini D. 2015. Lactic acid bacteria and their controversial role in fresh meat spoilage. Meat Sci 109 : 66 74[CrossRef].[PubMed]
92. Jackson TC, Acuff GR, Dickson JS,. 1997. Meat, poultry, and seafood, p 83–100. In Doyle MP, Beuchat LR, Montville TJ (ed), Food Microbiology Fundamentals and Frontiers. ASM Press, Washington, DC.
93. Davis AD, Singh M, Conner DE,. 2010. Poultry-borne pathogens: plant considerations, p 175 203. In Owens CM, Alvarado CZ, Sams AR (ed), Poultry Meat Processing, 2nd ed. CRC Press, New York, NY.
94. Venter P, Shale K, Lues JFR, Buys EM. 2006. Microbial proliferation and mathematical indices of vacuum-packed bovine meat. J Food Process Preserv 30 : 433 448.
95. Foster JW, Spector MP. 1995. How Salmonella survive against the odds. Annu Rev Microbiol 49 : 145 174[CrossRef].[PubMed]
96. Centers for Disease Control and Prevention. 2013. Surveillance for foodborne disease outbreaks—United States, 2009–2010. MMWR Morb Mortal Wkly Rep 62 : 4147.[PubMed]
97. Centers for Disease Control and Prevention. 2014. Foodborne Diseases Active Surveillance Network (FoodNet): FoodNet Surveillance Report for 2014 (final report). http://www.cdc.gov/foodnet/pdfs/2014-foodnet-surveillance-report.pdf. Accessed 16 April 2016.
98. United States Department of Agriculture Food Safety and Inspection Service. 2015. Serotypes profile of Salmonella isolates from meat and poultry products January 1998 through December 2014. U.S. Department of Agriculture, Washington, DC.
99. Bäumler AJ, Tsolis RM, Ficht TA, Adams LG. 1998. Evolution of host adaptation in Salmonella enterica. Infect Immun 66 : 4579 4587.[PubMed]
100. Chen HM, Wang Y, Su LH, Chiu CH. 2013. Nontyphoid salmonella infection: microbiology, clinical features, and antimicrobial therapy. Pediatr Neonatol 54 : 147 152[CrossRef].[PubMed]
101. Bäumler AJ, Hargis BM, Tsolis RM. 2000. Tracing the origins of Salmonella outbreaks. Science 287 : 50 52[CrossRef].[PubMed]
102. Food and Agriculture Organization. 2003. World agriculture: towards 2015/2030. FAO, Rome, Italy.
103. Kim MH, Yang JY, Upadhaya SD, Lee HJ, Yun CH, Ha JK. 2011. The stress of weaning influences serum levels of acute-phase proteins, iron-binding proteins, inflammatory cytokines, cortisol, and leukocyte subsets in Holstein calves. J Vet Sci 12 : 151 157[CrossRef].[PubMed]
104. Park SF. 2002. The physiology of Campylobacter species and its relevance to their role as foodborne pathogens. Int J Food Microbiol 74 : 177 188[CrossRef].[PubMed]
105. World Health Organization. 2013. The global view of campylobacteriosis: report of an expert consultation. World Health Organization, Geneva, Switzerland. http://apps.who.int/iris/bitstream/10665/80751/1/9789241564601_eng.pdf.
106. Blaser MJ. 1997. Epidemiologic and clinical features of Campylobacter jejuni infections. J Infect Dis 176( Suppl 2) : S103 S105[CrossRef].[PubMed]
107. Black RE, Levine MM, Clements ML, Hughes TP, Blaser MJ. 1988. Experimental Campylobacter jejuni infection in humans. J Infect Dis 157 : 472 479[CrossRef].[PubMed]
108. Hoffmann SA, Maculloch B, Batz M. 2015. Economic burden of major foodborne illnesses acquired in the United States. Economic Information Bulletin 205081. United States Department of Agriculture, Economic Research Service, Washington, DC.
109. EFSA Panel on Biological Hazards (BIOHAZ), EFSA Panel on Contaminants in the Food Chain (CONTAM), EFSA Panel on Animal Health and Welfare (AHAW). 2012. Scientific opinion on the public health hazards to be covered by inspection of meat (poultry). EFSA J 10 : 2741.
110. Skarp CPA, Hänninen ML, Rautelin HIK. 2016. Campylobacteriosis: the role of poultry meat. Clin Microbiol Infect 22 : 103 109[CrossRef].[PubMed]
111. Butterworth A. 1999. Infectious components of broiler lameness: a review. Worlds Poult Sci J 55 : 327 352[CrossRef].
112. Hill JE, Rowland GN, Glisson JR, Villegas P. 1989. Comparative microscopic lesions in reoviral and staphylococcal tenosynovitis. Avian Dis 33 : 401 410[CrossRef].[PubMed]
113. Evans JB, Ananaba GA, Pate CA, Bergdoll MS. 1983. Enterotoxin production by atypical Staphylococcus aureus from poultry. J Appl Bacteriol 54 : 257 261[CrossRef].[PubMed]
114. Gibbs PA, Patterson JT, Harvey J. 1978. Biochemical characteristics and enterotoxigenicity of Staphylococcus aureus strains isolated from poultry. J Appl Bacteriol 44 : 57 74[CrossRef].[PubMed]
115. National Advisory Committee on Microbiological Criteria for Foods. 1997. Generic HACCP application in broiler slaughter and processing. J Food Prot 60 : 579604[CrossRef].
116. Notermans S, Dufrenne J, van Leeuwen WJ. 1982. Contamination of broiler chickens by Staphylococcus aureus during processing; incidence and origin. J Appl Bacteriol 52 : 275 280[CrossRef].[PubMed]
117. Waters AE, Contente-Cuomo T, Buchhagen J, Liu CM, Watson L, Pearce K, Foster JT, Bowers J, Driebe EM, Engelthaler DM, Keim PS, Price LB. 2011. Multidrug-resistant Staphylococcus aureus in US meat and poultry. Clin Infect Dis 52 : 1227 1230[CrossRef].[PubMed]
118. Van Immerseel F, De Buck J, Pasmans F, Huyghebaert G, Haesebrouck F, Ducatelle R. 2004. Clostridium perfringens in poultry: an emerging threat for animal and public health. Avian Pathol 33 : 537 549[CrossRef].[PubMed]
119. Buzby JC, Roberts T, Lin CTJ, MacDonald JM. 1996. Bacterial foodborne disease: medical costs and productivity losses. Agricultural Economic Report AER-741. USDA/ERS, Washington, DC.
120. Chiarini E, Tyler K, Farber JM, Pagotto F, Destro MT. 2009. Listeria monocytogenes in two different poultry facilities: manual and automatic evisceration. Poult Sci 88 : 791 797[CrossRef].[PubMed]
121. Drevets DA, Bronze MS. 2008. Listeria monocytogenes: epidemiology, human disease, and mechanisms of brain invasion. FEMS Immunol Med Microbiol 53 : 151 165[CrossRef].[PubMed]
122. Berrang ME, Meinersmann RJ, Northcutt JK, Smith DP. 2002. Molecular characterization of Listeria monocytogenes isolated from a poultry further processing facility and from fully cooked product. J Food Prot 65 : 1574 1579[CrossRef].[PubMed]
123. Lundén JM, Autio TJ, Sjöberg AM, Korkeala HJ. 2003. Persistent and nonpersistent Listeria monocytogenes contamination in meat and poultry processing plants. J Food Prot 66 : 2062 2069[CrossRef].[PubMed]
124. United States Department of Agriculture Food Safety and Inspection Service. 2013. Safe and suitable ingredients used in the production of meat, poultry, and egg products. U.S. Department of Agriculture, Washington, DC. https://www.fsis.usda.gov/wps/wcm/connect/7f981741-94f1-468c-b60d-b428c971152d/7120_68.pdf?MOD=AJPERES. Accessed 2 May 2019.
125. Northcutt JK, Jones DR. 2004. A survey of water use and common industry practices in commercial broiler processing facilities. J Appl Poult Res 13 : 48 54[CrossRef].
126. Mead GC, Adams BW, Parry RT. 1975. The effectiveness of in-plant chlorination in poultry processing. Br Poult Sci 16 : 517 526[CrossRef].[PubMed]
127. Bauermeister LJ, Bowers JW, Townsend JC, McKee SR. 2008. The microbial and quality properties of poultry carcasses treated with peracetic acid as an antimicrobial treatment. Poult Sci 87 : 2390 2398[CrossRef].[PubMed]
128. Nagel GM, Bauermeister LJ, Bratcher CL, Singh M, McKee SR. 2013. Salmonella and Campylobacter reduction and quality characteristics of poultry carcasses treated with various antimicrobials in a post-chill immersion tank. Int J Food Microbiol 165 : 281 286[CrossRef].[PubMed]
129. Oyarzabal OA. 2005. Reduction of Campylobacter spp. by commercial antimicrobials applied during the processing of broiler chickens: a review from the United States perspective. J Food Prot 68 : 1752 1760[CrossRef].[PubMed]
130. Arritt FM, Eifert JD, Pierson MD, Sumner SS. 2002. Efficacy of antimicrobials against Campylobacter jejuni on chicken breast skin. J Appl Poult Res 11 : 358 366[CrossRef].
131. Beers K, Rheingans J, Chinault K, Cook P, Smith B, Waldroup A. 2006. Microbial efficacy of commercial application of Cecure® CPC antimicrobial to ingesta-contaminated pre-chill broiler carcasses. Int J Poult Sci 5 : 698 703[CrossRef].
132. World Health Organization. 1995. Surveillance program. Sixth report of WHO surveillance program for control of foodborne infections and intoxications in Europe. FAO/WHO Collaborating Center for Research and Training in Food Hygiene and Zoonoses, Berlin, Germany.
133. Borch E, Kant-Muermans ML, Blixt Y. 1996. Bacterial spoilage of meat and cured meat products. Int J Food Microbiol 33 : 103 120[CrossRef].[PubMed]
134. Gombas DE, Chen Y, Clavero RS, Scott VN. 2003. Survey of Listeria monocytogenes in ready-to-eat foods. J Food Prot 66 : 559 569[CrossRef].[PubMed]
135. Chen Y, Ross WH, Scott VN, Gombas DE. 2003. Listeria monocytogenes: low levels equal low risk. J Food Prot 66 : 570 577[CrossRef].[PubMed]
136. Norton T, Sun DW. 2008. Recent advances in the use of high pressure as an effective processing technique in the food industry. Food Bioprocess Technol 1 : 2 34[CrossRef].
137. Omer MK, Alvseike O, Holck A, Axelsson L, Prieto M, Skjerve E, Heir E. 2010. Application of high pressure processing to reduce verotoxigenic E. coli in two types of dry-fermented sausage. Meat Sci 86 : 1005 1009[CrossRef].[PubMed]
138. Mbandi E, Shelef LA. 2001. Enhanced inhibition of Listeria monocytogenes and Salmonella Enteritidis in meat by combinations of sodium lactate and diacetate. J Food Prot 64 : 640 644[CrossRef].[PubMed]
139. Glass K, Preston D, Veesenmeyer J. 2007. Inhibition of Listeria monocytogenes in turkey and pork-beef bologna by combinations of sorbate, benzoate, and propionate. J Food Prot 70 : 214 217[CrossRef].[PubMed]
140. Islam M, Chen J, Doyle MP, Chinnan M. 2002. Control of Listeria monocytogenes on turkey frankfurters by generally-recognized-as-safe preservatives. J Food Prot 65 : 1411 1416[CrossRef].[PubMed]
141. Thippareddi H, Juneja VK, Phebus RK, Marsden JL, Kastner CL. 2003. Control of Clostridium perfringens germination and outgrowth by buffered sodium citrate during chilling of roast beef and injected pork. J Food Prot 66 : 376 381[CrossRef].[PubMed]
142. United States Department of Agriculture Food Safety and Inspection Service. 2014. FSIS compliance guideline for meat and poultry jerky produced by small and very small establishments: 2014 compliance guideline. https://meathaccp.wisc.edu/doc_support/asset/Compliance-Guideline-Jerky-2014.pdf
143. Nickelson R II Blue Ribbon Task Force. 1996. Dry fermented Sausage and E. coli O157:H7. Nationl Cattlemen's Beef Association, Chicago, IL.
144. Centers for Disease Control and Prevention. 1995. Outbreak of Salmonellosis associated with beef jerky—New Mexico, 1995. MMWR Morbid Mortal Wkly Rep 44: 785788.
145. Burfoot D, Everis L, Mulvey L, Wood A, Betts R. 2010. Literature review on microbiological hazards associated with biltong and similar dried meat products. Food Standards Agency, London, United Kingdom. https://www.food.gov.uk/sites/default/files/media/document/574-1-1007_B13015_Final_Report.pdf. Accessed 15 March 2019.
146. Porto-Fett AC, Call JE, Shoyer BE, Hill DE, Pshebniski C, Cocoma GJ, Luchansky JB. 2010. Evaluation of fermentation, drying, and/or high pressure processing on viability of Listeria monocytogenes, Escherichia coli O157:H7, Salmonella spp., and Trichinella spiralis in raw pork and Genoa salami. Int J Food Microbiol 140 : 61 75[CrossRef].[PubMed]
147. Doulgeraki AI, Ercolini D, Villani F, Nychas GJ. 2012. Spoilage microbiota associated to the storage of raw meat in different conditions. Int J Food Microbiol 157 : 130 141[CrossRef].[PubMed]
148. Ismail MA, Abou Elala AH, Nassar A, Michail DG. 1995. Fungal contamination of beef carcasses and the environment in a slaughterhouse. Food Microbiol 12 : 441 445[CrossRef].
149. Larsen MH, Dalmasso M, Ingmer H, Langsrud S, Malakauskas M, Mader A, Møretrø T, Možina S, Rychli K, Wagner M, Wallace JR, Zentek J, Jordan K. 2014. Persistence of foodborne pathogens and their control in primary and secondary food production chains. Food Control 44 : 92 109[CrossRef].
150. Yang X, Noyes NR, Doster E, Martin JN, Linke LM, Magnuson RJ, Yang H, Geornaras I, Woerner DR, Jones KL, Ruiz J, Boucher C, Morley PS, Belk KE. 2016. Use of metagenomics shotgun sequencing technology to detect foodborne pathogens within the microbiome of the beef production chain. Appl Environ Microbiol 82 : 2433 2443[CrossRef].[PubMed]
151. Olofsson TC, Ahrné S, Molin G. 2007. Composition of the bacterial population of refrigerated beef, identified with direct 16S rRNA gene analysis and pure culture technique. Int J Food Microbiol 118 : 233 240[CrossRef].[PubMed]
152. von Wintzingerode F, Göbel UB, Stackebrandt E. 1997. Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21 : 213 229[CrossRef].[PubMed]
153. Han D, Hung YC, Bratcher CL, Monu EA, Wang Y, Wang L. 2018. Formation of sublethally injured Yersinia enterocolitica, Escherichia coli O157:H7, and Salmonella enterica Serovar Enteritidis cells after neutral electrolyzed oxidizing water treatments. Appl Environ Microbiol 84 : e01066-18[CrossRef].[PubMed]
154. Lleó MDM, Tafi MC, Canepari P. 1998. Nonculturable Enterococcus faecalis cells are metabolically active and capable of resuming active growth. Syst Appl Microbiol 21 : 333 339[CrossRef].[PubMed]
155. Bell T, Newman JA, Silverman BW, Turner SL, Lilley AK. 2005. The contribution of species richness and composition to bacterial services. Nature 436 : 1157 1160[CrossRef].[PubMed]
156. Wittebolle L, Marzorati M, Clement L, Balloi A, Daffonchio D, Heylen K, De Vos P, Verstraete W, Boon N. 2009. Initial community evenness favours functionality under selective stress. Nature 458 : 623 626[CrossRef].[PubMed]
157. Chao A, Chiu CH, Hsieh TC. 2012. Proposing a resolution to debates on diversity partitioning. Ecology 93 : 2037 2051[CrossRef].[PubMed]
158. Vane-Wright RI, Humphries CJ, Williams PH. 1991. What to protect? Systematics and the agony of choice. Biol Conserv 55 : 235 254[CrossRef].
159. Aizenberg-Gershtein Y, Izhaki I, Halpern M. 2013. Do honeybees shape the bacterial community composition in floral nectar? PLoS One 8 : e67556[CrossRef].[PubMed]
160. MacArthur RH, MacArthur JW. 1961. On bird species diversity. Ecology 42 : 594 598[CrossRef].
161. Mantel N. 1967. The detection of disease clustering and a generalized regression approach. Cancer Res 27 : 209 220.[PubMed]
162. Mielke PW Jr, Berry KJ, Johnson ES. 1976. Multi-response permutation procedures for a priori classifications. Commun Stat Theory Methods 5 : 1409 1424[CrossRef].
163. Hamady M, Lozupone C, Knight R. 2010. Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J 4 : 17 27[CrossRef].[PubMed]
164. Jay JM, Loessner MJ, Golden DA. 2005. Modern Food Microbiology, 7th ed, p 63–99. Springer Science+Business Media, New York, NY.
165. Clavijo V, Flórez MJV. 2018. The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: a review. Poult Sci 97 : 1006 1021[CrossRef].[PubMed]
166. Shanks OC, Kelty CA, Archibeque S, Jenkins M, Newton RJ, McLellan SL, Huse SM, Sogin ML. 2011. Community structures of fecal bacteria in cattle from different animal feeding operations. Appl Environ Microbiol 77 : 2992 3001[CrossRef].[PubMed]
167. Rice WC, Galyean ML, Cox SB, Dowd SE, Cole NA. 2012. Influence of wet distillers grains diets on beef cattle fecal bacterial community structure. BMC Microbiol 12 : 25[CrossRef].[PubMed]
168. Durso LM, Wells JE, Harhay GP, Rice WC, Kuehn L, Bono JL, Shackelford S, Wheeler T, Smith TPL. 2012. Comparison of bacterial communities in faeces of beef cattle fed diets containing corn and wet distillers’ grain with solubles. Lett Appl Microbiol 55 : 109 114[CrossRef].[PubMed]
169. Zhao L, Tyler PJ, Starnes J, Rankins D, McCaskey TA, Wang L. 2014. Evaluation of the effects of weaning diets on Escherichia coli O157 shedding, body weight, and fecal bacterial communities in beef calves. Foodborne Pathog Dis 11 : 55 60[CrossRef].[PubMed]
170. Zhao L, Tyler PJ, Starnes J, Bratcher CL, Rankins D, McCaskey TA, Wang L. 2013. Correlation analysis of Shiga toxin-producing Escherichia coli shedding and faecal bacterial composition in beef cattle. J Appl Microbiol 115 : 591 603[CrossRef].[PubMed]
171. Hancock DD, Besser TE, Kinsel ML, Tarr PI, Rice DH, Paros MG. 1994. The prevalence of Escherichia coli O157.H7 in dairy and beef cattle in Washington State. Epidemiol Infect 113 : 199 207[CrossRef].[PubMed]
172. Barkocy-Gallagher GA, Arthur TM, Rivera-Betancourt M, Nou X, Shackelford SD, Wheeler TL, Koohmaraie M. 2003. Seasonal prevalence of Shiga toxin-producing Escherichia coli, including O157:H7 and non-O157 serotypes, and Salmonella in commercial beef processing plants. J Food Prot 66 : 1978 1986[CrossRef].[PubMed]
173. Gautam R, Bani-Yaghoub M, Neill WH, Döpfer D, Kaspar C, Ivanek R. 2011. Modeling the effect of seasonal variation in ambient temperature on the transmission dynamics of a pathogen with a free-living stage: example of Escherichia coli O157:H7 in a dairy herd. Prev Vet Med 102 : 10 21[CrossRef].[PubMed]
174. Mechie SC, Chapman PA, Siddons CA. 1997. A fifteen month study of Escherichia coli O157:H7 in a dairy herd. Epidemiol Infect 118 : 17 25[CrossRef].[PubMed]
175. Vital M, Hammes F, Egli T. 2008. Escherichia coli O157 can grow in natural freshwater at low carbon concentrations. Environ Microbiol 10 : 2387 2396[CrossRef].[PubMed]
176. Enríquez D, Hötzel MJ, Ungerfeld R. 2011. Minimising the stress of weaning of beef calves: a review. Acta Vet Scand 53 : 28[CrossRef].[PubMed]
177. Edrington TS, Carter BH, Farrow RL, Islas A, Hagevoort GR, Friend TH, Callaway TR, Anderson RC, Nisbet DJ. 2011. Influence of weaning on fecal shedding of pathogenic bacteria in dairy calves. Foodborne Pathog Dis 8 : 395 401[CrossRef].[PubMed]
178. McWhorter TJ, Caviedes-Vidal E, Karasov WH. 2009. The integration of digestion and osmoregulation in the avian gut. Biol Rev Camb Philos Soc 84 : 533 565[CrossRef].[PubMed]
179. Xu Y, Yang H, Zhang L, Su Y, Shi D, Xiao H, Tian Y. 2016. High-throughput sequencing technology to reveal the composition and function of cecal microbiota in Dagu chicken. BMC Microbiol 16 : 259[CrossRef].[PubMed]
180. Rinttilä T, Apajalahti J. 2013. Intestinal microbiota and metabolites-implications for broiler chicken health and performance. J Appl Poult Res 22 : 647 658[CrossRef].
181. Zhou W, Wang Y, Lin J. 2012. Functional cloning and characterization of antibiotic resistance genes from the chicken gut microbiome. Appl Environ Microbiol 78 : 3028 3032[CrossRef].[PubMed]
182. Stavric S, D'Aoust JY. 1993. Undefined and defined bacterial preparations for the competitive exclusion of Salmonella in poultry-A review. J Food Prot 56 : 173 180[CrossRef].
183. Wagner RD. 2006. Efficacy and food safety considerations of poultry competitive exclusion products. Mol Nutr Food Res 50 : 1061 1071[CrossRef].[PubMed]
184. Schneitz C. 2005. Competitive exclusion in poultry-30 years of research. Food Control 16 : 657 667[CrossRef].
185. Hugas M, Garriga M, Monfort JM. 2002. New mild technologies in meat processing: high pressure as a model technology. Meat Sci 62 : 359–371.
186. La Ragione RM, Woodward MJ. 2003. Competitive exclusion by Bacillus subtilis spores of Salmonella enterica serotype Enteritidis and Clostridium perfringens in young chickens. Vet Microbiol 94 : 245 256[CrossRef].[PubMed]
187. Bilal T, Özpinar H, Kutay C, Eseceli H, Abas I. 2000. The effects of Broilact on the performance and feed digestibility of broilers. Arch Geflugelkd 64 : 134 138.
188. Schneitz C, Koivunen E, Tuunainen P, Valaja J. 2016. The effects of a competitive exclusion product and two probiotics on Salmonella colonization and nutrient digestibility in broiler chickens. J Appl Poult Res 25 : 396 406[CrossRef].
189. Barnes EM. 1979. The intestinal microflora of poultry and game birds during life and after storage. J Appl Bacteriol 46 : 407 419[CrossRef].[PubMed]
190. Oakley BB, Morales CA, Line J, Berrang ME, Meinersmann RJ, Tillman GE, Wise MG, Siragusa GR, Hiett KL, Seal BS. 2013. The poultry-associated microbiome: network analysis and farm-to-fork characterizations. PLoS One 8 : e57190[CrossRef].[PubMed]
191. Sakaridis I, Ellis RJ, Cawthraw SA, van Vliet AHM, Stekel DJ, Penell J, Chambers M, L, Ragione RM, Cook A. 2018. Investigating the association between the caecal microbiomes of broilers and Campylobacter burden. Front Microbiol 9 : 927.
192. Mead GC. 1989. Microbes of the avian cecum-types present and substrates utilized. J Exp Zool 252( S3) : 48 54[CrossRef].
193. Salanitro JP, Blake IG, Muirhead PA. 1974. Studies on the cecal microflora of commercial broiler chickens. Appl Microbiol 28 : 439 447.[PubMed]
194. Oakley BB, Vasconcelos EJR, Diniz PPVP, Calloway KN, Richardson E, Meinersmann RJ, Cox NA, Berrang ME. 2018. The cecal microbiome of commercial broiler chickens varies significantly by season. Poult Sci 97 : 3635 3644[CrossRef].[PubMed]
195. Awad WA, Mann E, Dzieciol M, Hess C, Schmitz-Esser S, Wagner M, Hess M. 2016. Age-related differences in the luminal and mucosa-associated gut microbiome of broiler chickens and shifts associated with Campylobacter jejuni infection. Front Cell Infect Microbiol 6 : 154[CrossRef].[PubMed]
196. Clench MH, Mathias JR. 1995. The avian cecum: a review. Wilson Bull 107 : 93 121.
197. Chen WL, Tang SGH, Jahromi MF, Candyrine SCL, Idrus Z, Abdullah N, Liang JB. 2019. Metagenomics analysis reveals significant modulation of cecal microbiota of broilers fed palm kernel expeller diets. Poult Sci 98 : 56 68.[PubMed]
198. Corrigan A, de Leeuw M, Penaud-Frézet S, Dimova D, Murphy RA. 2015. Phylogenetic and functional alterations in bacterial community compositions in broiler ceca as a result of mannan oligosaccharide supplementation. Appl Environ Microbiol 81 : 3460 3470[CrossRef].[PubMed]
199. Park SH, Perrotta A, Hanning I, Diaz-Sanchez S, Pendleton S, Alm E, Ricke SC. 2017. Pasture flock chicken cecal microbiome responses to prebiotics and plum fiber feed amendments. Poult Sci 96 : 1820 1830[CrossRef].[PubMed]
200. Pourabedin M, Xu Z, Baurhoo B, Chevaux E, Zhao X. 2014. Effects of mannan oligosaccharide and virginiamycin on the cecal microbial community and intestinal morphology of chickens raised under suboptimal conditions. Can J Microbiol 60 : 255 266[CrossRef].[PubMed]
201. Hugenholtz P, Goebel BM, Pace NR. 1998. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180 : 4765 4774.[PubMed]