Chapter 7 : Microbiological Issues Associated with Fruits, Vegetables, Nuts, and Grains

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Microbiological Issues Associated with Fruits, Vegetables, Nuts, and Grains, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819972/9781555819965.ch7-1.gif /docserver/preview/fulltext/10.1128/9781555819972/9781555819965.ch7-2.gif


Concerted efforts of scientists to enhance food productivity and nutrition are important to mitigate hunger and malnutrition. At the same time, it is essential that crops be microbiologically safe. This chapter addresses various microbiological issues associated with several types of agricultural crops, including fruits, vegetables, nuts, and grains. One common attribute of such crops is that they are primarily grown in open fields, where sources of microbial contamination may be difficult to control. Hence, the microbiological profile of a crop will vary by the plant type, the region in which it is grown, and the management and processing practices applied to it. To systematically address this topic, this chapter first provides a short description of the food groups discussed. After reviewing some of the major microbial groups associated with each crop group, the chapter addresses (i) quality and safety repercussions associated with microbial contamination of these food groups; (ii) sources of contamination; (iii) detection of contamination; (iv) interventions available to reduce microbial contamination, including physical, chemical, biological, and hurdle treatments; and (v) quantitative microbial risk assessment. Over the past decade, considerable research has been directed toward understanding and mitigating spoilage and pathogen risks associated with these crops, which should lead to extended shelf lives and reduced risk of illnesses associated with these plant-based foods.

Citation: Erickson M. 2019. Microbiological Issues Associated with Fruits, Vegetables, Nuts, and Grains, p 179-206. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch7
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Gross KC, Wang CY, Saltveit M . 2016. The commercial storage of fruits, vegetables, and florist and nursery stocks. USDA Agricultural Handbook 66. http://www.ars.usda.gov/ARSUserFiles/oc/np/CommercialStorage/CommercialStorage.pdf. Accessed 30 August 2018.
2. Leff JW, Fierer N . 2013. Bacterial communities associated with the surfaces of fresh fruits and vegetables. PLoS One 8 : e59310[CrossRef].[PubMed]
3. Ragaert P, Devlieghere F, Debevere J . 2007. Role of microbiological and physiological spoilage mechanisms during storage of minimally processed vegetables. Postharvest Biol Technol 44 : 185 194[CrossRef].
4. Ma L, Zhang M, Bhandari B, Gao Z . 2017. Recent developments in novel shelf life extension technologies of fresh-cut fruits and vegetables. Trends Food Sci Technol 64 : 23 38[CrossRef].
5. Ioannidis A-G, Kerckhof F-M, Riahi Drif Y, Vanderroost M, Boon N, Ragaert P, De Meulenaer B, Devlieghere F . 2018. Characterization of spoilage markers in modified atmosphere packaged iceberg lettuce. Int J Food Microbiol 279 : 1 13[CrossRef].[PubMed]
6. Paillart MJM, van der Vossen JMBM, Levin E, Lommen E, Otma EC, Snels JCMA, Woltering EJ . 2017. Bacterial population dynamics and sensorial quality loss in modified atmosphere packed fresh-cut iceberg lettuce. Postharvest Biol Technol 124 : 91 99[CrossRef].
7. Kim SM, Lee SM, Seo J-A, Kim Y-S . 2018. Changes in volatile compounds emitted by fungal pathogen spoilage of apples during decay. Postharvest Biol Technol 146 : 51 59[CrossRef].
8. Huang X-C, Yuan Y-H, Guo C-F, Gekas V, Yue T-L . 2015. Alicyclobacillus in the fruit juice industry: Spoilage, detection, and prevention/control. Food Rev Int 31 : 91 124[CrossRef].
9. Sauer DB, Meronuck RA, Christensen CM, . 2000. Microflora, p 313 340. In Sauer DB (ed), Storage of Cereal Grains and Their Products, 4th ed. American Association of Cereal Chemists, St. Paul, MN.
10. Legan JD, . 2000. Cereals and cereal products, p 759 783. In Lund BM, Baird-Parker TC, Gould GW (ed), The Microbiological Safety and Quality of Food. Aspen Publishers, Inc, Gaithersburg, MD.
11. Li M, Baker CA, Danyluk MD, Belanger P, Boelaert F, Cressey P, Gheorghe M, Polkinghorne B, Toyofuku H, Havelaar AH . 2018. Identification of biological hazards in produce consumed in industrialized countries: a review. J Food Prot 81 : 1171 1186[CrossRef].[PubMed]
12. Gould LH, Kline J, Monahan C, Vierk K . 2017. Outbreaks of disease associated with food imported into the United States, 1996-2014. Emerg Infect Dis 23 : 525 528[CrossRef].[PubMed]
13. Althaus D, Hofer E, Corti S, Julmi A, Stephan R . 2012. Bacteriological survey of ready-to-eat lettuce, fresh-cut fruit, and sprouts collected from the Swiss market. J Food Prot 75 : 1338 1341[CrossRef].[PubMed]
14. Castro-Ibáñez I, López-Gálvez F, Gil MI, Allende A . 2016. Identification of sampling points suitable for the detection of microbial contamination in fresh-cut processing lines. Food Control 59 : 841 848[CrossRef].
15. European Food Safety Authority . 2013. Scientific opinion on the risk posed by pathogens in food of non-animal origin. Part 1. EFSA J 11 : 3025[CrossRef].
16. Alshannaq A, Yu J-H . 2017. Occurrence, toxicity, and analysis of major mycotoxins in food. Int J Environ Res Public Health 14 : 632[CrossRef].[PubMed]
17. Marin S, Ramos AJ, Cano-Sancho G, Sanchis V . 2013. Mycotoxins: occurrence, toxicology, and exposure assessment. Food Chem Toxicol 60 : 218 237[CrossRef].[PubMed]
18. Liu Y, Wu F . 2010. Global burden of aflatoxin-induced hepatocellular carcinoma: a risk assessment. Environ Health Perspect 118 : 818 824[CrossRef].[PubMed]
19. Bryden WL . 2007. Mycotoxins in the food chain: human health implications. Asia Pac J Clin Nutr 16( Suppl 1) : 95 101.[PubMed]
20. Tournas VH, Niazi NS, Kohn JS . 2015. Fungal presence in selected tree nuts and dried fruits. Microbiol Insights 8 : MBI.S24308[CrossRef].[PubMed]
21. Luttfullah G, Hussain A . 2011. Studies on contamination level of aflatoxins in some dried fruits and nuts of Pakistan. Food Control 22 : 426 429[CrossRef].
22. European Commission . 2006. Commission regulation no. 1881/2006. Setting maximum levels of certain contaminants in foodstuffs. Off J Eur Union L 364 : 524.
23. Chulze SN . 2010. Strategies to reduce mycotoxin levels in maize during storage: a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 27 : 651 657[CrossRef].[PubMed]
24. Neme K, Mohammed A . 2017. Mycotoxin occurrence in grains and the role of postharvest management as a mitigation strategies. A review. Food Control 78 : 412 425[CrossRef].
25. Ferrigo D, Raiola A, Causin R . 2016. Fusarium toxins in cereals: occurrence, legislation, factors promoting the appearance and their management. Molecules 21 : 627[CrossRef].[PubMed]
26. Harris LJ, Yada S, Beuchat LR, Danyluk MD . 2019. Outbreaks of foodborne illness associated with the consumption of tree nuts, peanuts, and sesame seeds (version 2, update 2/15/2019) [table and references]). In Outbreaks from tree nuts, peanuts, and sesame seeds. http://ucfoodsafety.ucdavis.edu/files/169530.pdf. Accessed 22 February 2019.
27. Maserati A, Fink RC, Lourenco A, Julius ML, Diez-Gonzalez F . 2017. General response of Salmonella enterica serovar Typhimurium to desiccation: a new role for the virulence factors sopD and sseD in survival. PLoS One 12 : e0187692[CrossRef].[PubMed]
28. Brar PK, Danyluk MD . 2018. Nuts and grains: microbiology and preharvest contamination risks. Microbiol Spectr 6 : PFS-0023-2018.[PubMed]
29. U.S. Centers for Disease Control and Prevention . 2018. Multistate outbreak of Salmonella Mbandaka infections linked to Kellogg's Honey Smacks cereal (final update). https://www.cdc.gov/salmonella/mbandaka-06-18/index.html. Accessed 4 October 2018.
30. Beuchat LR, Komitopoulou E, Beckers H, Betts RP, Bourdichon F, Fanning S, Joosten HM, Ter Kuile BH . 2013. Low-water activity foods: increased concern as vehicles of foodborne pathogens. J Food Prot 76 : 150 172[CrossRef].[PubMed]
31. Young I, Waddell L, Cahill S, Kojima M, Clarke R, Rajić A . 2015. Application of a rapid knowledge synthesis and transfer approach to assess the microbial safety of low-moisture foods. J Food Prot 78 : 2264 2278[CrossRef].[PubMed]
32. Patel J, Sharma M . 2010. Differences in attachment of Salmonella enterica serovars to cabbage and lettuce leaves. Int J Food Microbiol 139 : 41 47[CrossRef].[PubMed]
33. Singer RS, Mayer AE, Hanson TE, Isaacson RE . 2009. Do microbial interactions and cultivation media decrease the accuracy of Salmonella surveillance systems and outbreak investigations? J Food Prot 72 : 707 713[CrossRef].[PubMed]
34. Nocker A, Sossa KE, Camper AK . 2007. Molecular monitoring of disinfection efficacy using propidium monoazide in combination with quantitative PCR. J Microbiol Methods 70 : 252 260[CrossRef].[PubMed]
35. Miller ND, Draughon FA, D'Souza DH . 2010. Real-time reverse-transcriptase–polymerase chain reaction for Salmonella enterica detection from jalapeño and serrano peppers. Foodborne Pathog Dis 7 : 367 373[CrossRef].[PubMed]
36. Ju W, Moyne A-L, Marco ML . 2016. RNA-based detection does not accurately enumerate living Escherichia coli O157:H7 cells on plants. Front Microbiol 7 : 223[CrossRef].[PubMed]
37. European Food Safety Authority . 2014. Scientific opinion on the risk posed by pathogens in food of non-animal origin. Part 2. EFSA J 11 : 3600.
38. McEgan R, Mootian G, Goodridge LD, Schaffner DW, Danyluk MD . 2013. Predicting Salmonella populations from biological, chemical, and physical indicators in Florida surface waters. Appl Environ Microbiol 79 : 4094 4105[CrossRef].[PubMed]
39. Rastogi G, Coaker GL, Leveau JHJ . 2013. New insights into the structure and function of phyllosphere microbiota through high-throughput molecular approaches. FEMS Microbiol Lett 348 : 1 10[CrossRef].[PubMed]
40. Truchado P, Gil MI, Suslow T, Allende A . 2018. Impact of chlorine dioxide disinfection of irrigation water on the epiphytic bacterial community of baby spinach and underlying soil. PLoS One 13 : e0199291[CrossRef].[PubMed]
41. Rhoades JR, Duffy G, Koutsoumanis K . 2009. Prevalence and concentration of verocytotoxigenic Escherichia coli, Salmonella enterica and Listeria monocytogenes in the beef production chain: a review. Food Microbiol 26 : 357 376[CrossRef].[PubMed]
42. Gil MI, Selma MV, Suslow T, Jacxsens L, Uyttendaele M, Allende A . 2015. Pre- and postharvest preventive measures and intervention strategies to control microbial food safety hazards of fresh leafy vegetables. Crit Rev Food Sci Nutr 55 : 453 468[CrossRef].[PubMed]
43. Uyttendaele M, Jaykus L-A, Amoah P, Chiodini A, Cunliffe D, Jacxsens L, Holvoet K, Korsten L, Lau M, McClure P, Medema G, Sampers I, Jasti PR . 2015. Microbial hazards in irrigation water: standards, norms, and testing to manage use of water in fresh produce primary production. Compr Rev Food Sci Food Saf 14 : 336 356[CrossRef].
44. Erickson MC, Ortega YR . 2006. Inactivation of protozoan parasites in food, water, and environmental systems. J Food Prot 69 : 2786 2808[CrossRef].[PubMed]
45. Song I, Stine SW, Choi CY, Gerba CP . 2006. Comparison of crop contamination by microorganisms during subsurface drip and furrow irrigation. J Environ Eng 132 : 1243 1248[CrossRef].
46. Erickson MC, . 2012. Microbial ecology, p 1 41. In Gómez-López VM (ed), Decontamination of Fresh and Minimally Processed Produce. Wiley-Blackwell, Ames, IA.[CrossRef]
47. Berry ED, Wells JE, Bono JL, Woodbury BL, Kalchayanand N, Norman KN, Suslow TV, López-Velasco G, Millner PD . 2015. Effect of proximity to a cattle feedlot on Escherichia coli O157:H7 contamination of leafy greens and evaluation of the potential for airborne transmission. Appl Environ Microbiol 81 : 1101 1110[CrossRef].[PubMed]
48. Keraita B, Drechsel P, Amoah P . 2003. Influence of urban wastewater on stream water quality and agriculture in and around Kumasi, Ghana. Environ Urban 15 : 171 178[CrossRef].
49. Pang H, McEgan R, Mishra A, Micallef SA, Pradhan AK . 2017. Identifying and modeling meteorological risk factors associated with pre-harvest contamination of Listeria species in a mixed produce and dairy farm. Food Res Int 102 : 355 363[CrossRef].[PubMed]
50. Podolak R, Enache E, Stone W, Black DG, Elliott PH . 2010. Sources and risk factors for contamination, survival, persistence, and heat resistance of Salmonella in low-moisture foods. J Food Prot 73 : 1919 1936[CrossRef].[PubMed]
51. Holvoet K, De Keuckelaere A, Sampers I, Van Haute S, Stals A, Uyttendaele M . 2014. Quantitative study of cross-contamination with Escherichia coli, E. coli O157, MS2 phage and murine norovirus in a simulated fresh-cut lettuce wash process. Food Control 37 : 218 227[CrossRef].
52. Stafford RJ, McCall BJ, Neill AS, Leon DS, Dorricott GJ, Towner CD, Micalizzi GR . 2002. A statewide outbreak of Salmonella bovismorbificans phage type 32 infection in Queensland. Commun Dis Intell Q Rep 26 : 568 573.[PubMed]
53. Buchholz AL, Davidson GR, Marks BP, Todd ECD, Ryser ET . 2012. Quantitative transfer of Escherichia coli O157:H7 to equipment during small-scale production of fresh-cut leafy greens. J Food Prot 75 : 1184 1197[CrossRef].[PubMed]
54. Castro-Ibáñez I, Gil MI, Allende A . 2017. Ready-to-eat vegetables: current problems and potential solutions to reduce microbial risk in the production chain. LWT Food Sci Technol 85 : 284 292[CrossRef].
55. Siroli L, Patrignani F, Serrazanetti DI, Chiavari C, Benevelli M, Grazia L, Lanciotti R . 2017. Survival of spoilage and pathogenic microorganisms on cardboard and plastic packaging materials. Front Microbiol 8 : 2606[CrossRef].[PubMed]
56. Erickson MC, Webb CC, Diaz-Perez JC, Phatak SC, Silvoy JJ, Davey L, Payton AS, Liao J, Ma L, Doyle MP . 2010. Surface and internalized Escherichia coli O157:H7 on field-grown spinach and lettuce treated with spray-contaminated irrigation water. J Food Prot 73 : 1023 1029[CrossRef].[PubMed]
57. Erickson MC, Webb CC, Davey LE, Payton AS, Flitcroft ID, Doyle MP . 2014. Internalization and fate of Escherichia coli O157:H7 in leafy green phyllosphere tissue using various spray conditions. J Food Prot 77 : 713 721[CrossRef].[PubMed]
58. Hou Z, Fink RC, Radtke C, Sadowsky MJ, Diez-Gonzalez F . 2013. Incidence of naturally internalized bacteria in lettuce leaves. Int J Food Microbiol 162 : 260 265[CrossRef].[PubMed]
59. Macarisin D, Bauchan G, Fayer R . 2010. Spinacia oleracea L. leaf stomata harboring Cryptosporidium parvum oocysts: a potential threat to food safety. Appl Environ Microbiol 76 : 555 559[CrossRef].[PubMed]
60. Burris KP, Simmons O, Webb HM, Jaykus L-A, Zheng J, Reed E, Ferreira C, Brown D, Bell RL . 2017. Colonization and internalization of Salmonella enterica in cucumber plants, abstr T1-02. In Abstr Annu Mtg IAFP 2017, Tampa, FL, 9 to 12 July 2017.
61. Zheng J, Allard S, Reynolds S, Millner P, Arce G, Blodgett RJ, Brown EW . 2013. Colonization and internalization of Salmonella enterica in tomato plants. Appl Environ Microbiol 79 : 2494 2502[CrossRef].[PubMed]
62. Martinez B, Stratton J, Bianchini A, Wegulo S, Weaver G . 2015. Transmission of Escherichia coli O157:H7 to internal tissues and its survival on flowering heads of wheat. J Food Prot 78 : 518 524[CrossRef].[PubMed]
63. Macarisin D, Patel J, Sharma VK . 2014. Role of curli and plant cultivation conditions on Escherichia coli O157:H7 internalization into spinach grown on hydroponics and in soil. Int J Food Microbiol 173 : 48 53[CrossRef].[PubMed]
64. Erickson MC . 2012. Internalization of fresh produce by foodborne pathogens. Annu Rev Food Sci Technol 3 : 283 310[CrossRef].[PubMed]
65. Erickson MC, Webb CC, Davey LE, Payton AS, Flitcroft ID, Doyle MP . 2014. Biotic and abiotic variables affecting internalization and fate of Escherichia coli O157:H7 isolates in leafy green roots. J Food Prot 77 : 872 879[CrossRef].[PubMed]
66. Monier J-M, Lindow SE . 2004. Frequency, size, and localization of bacterial aggregates on bean leaf surfaces. Appl Environ Microbiol 70 : 346 355[CrossRef].[PubMed]
67. Wang H, Feng H, Liang W, Luo Y, Malyarchuk V . 2009. Effect of surface roughness on retention and removal of Escherichia coli O157:H7 on surfaces of selected fruits. J Food Sci 74 : E8 E15[CrossRef].[PubMed]
68. Kroupitski Y, Pinto R, Belausov E, Sela S . 2011. Distribution of Salmonella typhimurium in romaine lettuce leaves. Food Microbiol 28 : 990 997[CrossRef].[PubMed]
69. Zhang B, Luo Y, Pearlstein AJ, Aplin J, Liu Y, Bauchan GR, Payne GF, Wang Q, Nou X, Millner PD . 2014. Fabrication of biomimetically patterned surfaces and their application to probing plant-bacteria interactions. ACS Appl Mater Interfaces 6 : 12467 12478[CrossRef].[PubMed]
70. Macarisin D, Patel J, Bauchan G, Giron JA, Ravishankar S . 2013. Effect of spinach cultivar and bacterial adherence factors on survival of Escherichia coli O157:H7 on spinach leaves. J Food Prot 76 : 1829 1837[CrossRef].[PubMed]
71. Monier J-M, Lindow SE . 2005. Aggregates of resident bacteria facilitate survival of immigrant bacteria on leaf surfaces. Microb Ecol 49 : 343 352[CrossRef].[PubMed]
72. Baldotto LEB, Olivares FL . 2008. Phylloepiphytic interaction between bacteria and different plant species in a tropical agricultural system. Can J Microbiol 54 : 918 931[CrossRef].[PubMed]
73. Sirinutsomboon B, Delwiche MJ, Young GM . 2011. Attachment of Escherichia coli on plant surface structures built by microfabrication. Biosyst Eng 108 : 244 252[CrossRef].
74. Warning AD, Datta AK . 2017. Mechanistic understanding of non-spherical bacterial attachment and deposition on plant surface structures. Chem Eng Sci 160 : 396 418[CrossRef].
75. Saltveit ME, . 2016. Respiratory metabolism, p 68 75. In Gross KC,, Yang CY,, Saltveit M (ed), The Commercial Storage of Fruits, Vegetables, and Florist and Nursery Stocks. USDA Agricultural Handbook 66. https://www.ars.usda.gov/ARSUserFiles/oc/np/CommercialStorage/CommercialStorage.pdf. Accessed 12 October 2018.
76. Barry CS, Giovannoni JJ . 2007. Ethylene and fruit ripening. J Plant Growth Regul 26 : 143 159[CrossRef].
77. Farakos SMS, Pouillot R, Johnson R, Spungen J, Son I, Anderson N, Davidson GR, Doren JMV . 2017. A quantitative assessment of the risk of human salmonellosis arising from the consumption of pecans in the United States. J Food Prot 80 : 1574 1591[CrossRef].[PubMed]
78. Bednarek P, Osbourn A . 2009. Plant-microbe interactions: chemical diversity in plant defense. Science 324 : 746 748[CrossRef].[PubMed]
79. Peng Y, van Wersch R, Zhang Y . 2018. Convergent and divergent signaling in PAMP-triggered immunity and effector-triggered immunity. Mol Plant Microbe Interact 31 : 403 409[CrossRef].[PubMed]
80. Nguyen-the C, Carlin F . 1994. The microbiology of minimally processed fresh fruits and vegetables. Crit Rev Food Sci Nutr 34 : 371 401[CrossRef].[PubMed]
81. Huang K, Tian Y, Salvi D, Karwe M, Nitin N . 2018. Influence of exposure time, shear stress, and surfactants on detachment of Escherichia coli O157:H7 from fresh lettuce leaf surfaces during washing process. Food Bioprocess Technol 11 : 621 633[CrossRef].
82. Chen Y, Evans P, Hammack TS, Brown EW, Macarisin D . 2016. Internalization of Listeria monocytogenes in whole avocado. J Food Prot 79 : 1440 1445[CrossRef].[PubMed]
83. Turner AN, Friedrich LM, Danyluk MD . 2016. Influence of temperature differential between tomatoes and postharvest water on Salmonella internalization. J Food Prot 79 : 922 928[CrossRef].[PubMed]
84. Li H, Tajkarimi M, Osburn BI . 2008. Impact of vacuum cooling on Escherichia coli O157:H7 infiltration into lettuce tissue. Appl Environ Microbiol 74 : 3138 3142[CrossRef].[PubMed]
85. Fatemi P, LaBorde LF, Patton J, Sapers GM, Annous B, Knabel SJ . 2006. Influence of punctures, cuts, and surface morphologies of Golden Delicious apples on penetration and growth of Escherichia coli O157:H7. J Food Prot 69 : 267 275[CrossRef].[PubMed]
86. Francis GA, Gallone A, Nychas GJ, Sofos JN, Colelli G, Amodio ML, Spano G . 2012. Factors affecting quality and safety of fresh-cut produce. Crit Rev Food Sci Nutr 52 : 595 610[CrossRef].[PubMed]
87. Barry-Ryan C, O'Beirne D . 1998. Quality and shelf-life of fresh cut carrot slices as affected by slicing method. J Food Sci 63 : 851 856[CrossRef].
88. Beuchat LR, Mann DA . 2010. Factors affecting infiltration and survival of Salmonella on in-shell pecans and pecan nutmeats. J Food Prot 73 : 1257 1268[CrossRef].[PubMed]
89. Sabillón L, Bianchini A . 2016. From field to table: a review on the microbiological quality and safety of wheat-based products. Cereal Chem 93 : 105 115[CrossRef].
90. Riba A, Mokrane S, Mathieu F, Lebrihi A, Sabaou N . 2008. Mycoflora and ochratoxin A producing strains of Aspergillus in Algerian wheat. Int J Food Microbiol 122 : 85 92[CrossRef].[PubMed]
91. Pascale M, Haidukowski M, Lattanzio VMT, Silvestri M, Ranieri R, Visconti A . 2011. Distribution of T-2 and HT-2 toxins in milling fractions of durum wheat. J Food Prot 74 : 1700 1707[CrossRef].[PubMed]
92. Cheli F, Pinotti L, Rossi L, Dell'Orto V . 2013. Effect of milling procedures on mycotoxin distribution in wheat fractions: a review. LWT Food Sci Technol 54 : 307 314[CrossRef].
93. Pinson-Gadais L, Barreau C, Chaurand M, Gregoire S, Monmarson M, Richard-Forget F . 2007. Distribution of toxigenic Fusarium spp. and mycotoxin production in milling fractions of durum wheat. Food Addit Contam 24 : 53 62[CrossRef].[PubMed]
94. Sloan E . 2011. Consumer trends: consumers go with the grain. Food Technol 65 : 18.
95. Scudamore KA, Guy RC, Kelleher B, MacDonald SJ . 2008. Fate of the fusarium mycotoxins, deoxynivalenol, nivalenol and zearalenone, during extrusion of wholemeal wheat grain. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 25 : 331 337[CrossRef].[PubMed]
96. Valerio F, De Bellis P, Di Biase M, Lonigro SL, Giussani B, Visconti A, Lavermicocca P, Sisto A . 2012. Diversity of spore-forming bacteria and identification of Bacillus amyloliquefaciens as a species frequently associated with the ropy spoilage of bread. Int J Food Microbiol 156 : 278 285[CrossRef].[PubMed]
97. Vidal A, Morales H, Sanchis V, Ramos AJ, Mar'in S . 2014. Stability of DON and OTA during the breadmaking process and determination of process and performance criteria. Food Control 40 : 234 242[CrossRef].
98. Brown W, Ryser E, Gorman L, Steinmaus S, Vorst K . 2016. Transit temperatures experienced by fresh-cut leafy greens during cross-country shipment. Food Control 61 : 146 155[CrossRef].
99. Zeng W, Vorst K, Brown W, Marks BP, Jeong S, Pérez-Rodríguez F, Ryser ET . 2014. Growth of Escherichia coli O157:H7 and Listeria monocytogenes in packaged fresh-cut romaine mix at fluctuating temperatures during commercial transport, retail storage, and display. J Food Prot 77 : 197 206[CrossRef].[PubMed]
100. Mannaa M, Kim KD . 2017. Influence of temperature and water activity on deleterious fungi and mycotoxin production during grain storage. Mycobiology 45 : 240 254[CrossRef].[PubMed]
101. Farakos SMS, Pouillot R, Keller SE . 2017. Salmonella survival kinetics on pecans, hazelnuts, and pine nuts at various water activities and temperatures. J Food Prot 80 : 879 885[CrossRef].[PubMed]
102. Al-Najada AR, Gherbawy YA . 2015. Molecular identification of spoilage fungi isolated from fruit and vegetables and their control with chitosan. Food Biotechnol 29 : 166 184[CrossRef].
103. Sorokulova IB, Reva ON, Smirnov VV, Pinchuk IV, Lapa SV, Urdaci MC . 2003. Genetic diversity and involvement in bread spoilage of Bacillus strains isolated from flour and ropy bread. Lett Appl Microbiol 37 : 169 173[CrossRef].[PubMed]
104. Oude Elferink SJO, Krooneman J, Gottschal JC, Spoelstra SF, Faber F, Driehuis F . 2001. Anaerobic conversion of lactic acid to acetic acid and 1,2-propanediol by Lactobacillus buchneri. Appl Environ Microbiol 67 : 125 132[CrossRef].[PubMed]
105. Daughtry KV, Johanningsmeier SD, Sanozky-Dawes R, Klaenhammer TR, Barrangou R . 2018. Phenotypic and genotypic diversity of Lactobacillus buchneri strains isolated from spoiled, fermented cucumber. Int J Food Microbiol 280 : 46 56[CrossRef].[PubMed]
106. Valerio F, Di Biase M, Huchet V, Desriac N, Lonigro SL, Lavermicocca P, Sohier D, Postollec F . 2015. Comparison of three Bacillus amyloliquefaciens strains growth behaviour and evaluation of the spoilage risk during bread shelf-life. Food Microbiol 45( Pt A) : 2 9[CrossRef].[PubMed]
107. Conway WS, Sams CE, Kelman A . 1994. Enhancing the natural resistance of plant tissues to postharvest diseases through calcium application. HortScience 29 : 751 754.
108. Mixon AC . 1980. Potential for aflatoxin contamination in peanuts ( Arachis hypogaea L.) before and after harvest—a review. J Environ Qual 9 : 344 349[CrossRef].
109. Jurick WM II, Janisiewicz WJ, Saftner RA, Vico I, Gaskins VL, Park E, Forsline PL, Fazio G, Conway SW . 2011. Identification of wild apple germplasm ( Malus spp.) accessions with resistance to the postharvest decay pathogens Penicilllium expansum and Colleotrichum acutatum. Plant Breed 130 : 481 486[CrossRef].
110. Fallik E . 2004. Prestorage hot water treatments (immersion, rinsing and brushing). Postharvest Biol Technol 32 : 125 134[CrossRef].
111. Schirra M, D'hallewin G, Ben-Yehoshua S, Fallik E . 2000. Host-pathogen interactions modulated by heat treatment. Postharvest Biol Technol 21 : 71 85[CrossRef].
112. Bezanson GS, Ells TC, Fan L, Forney CF, LeBlanc DI . 2018. Aerated steam sanitization of whole fresh cantaloupes reduces and controls rind-associated Listeria but enhances fruit susceptibility to secondary colonization. J Food Sci 83 : 1025 1031[CrossRef].[PubMed]
113. Beuchat LR, Mann DA . 2011. Inactivation of Salmonella on pecan nutmeats by hot air treatment and oil roasting. J Food Prot 74 : 1441 1450[CrossRef].[PubMed]
114. Venkitasamy C, Brandl MT, Wang B, McHugh TH, Zhang R, Pan Z . 2017. Drying and decontamination of raw pistachios with sequential infrared drying, tempering and hot air drying. Int J Food Microbiol 246 : 85 91[CrossRef].[PubMed]
115. Schmidt M, Zannini E, Arendt EK . 2018. Recent advances in physical post-harvest treatments for shelf-life extension of cereal crops. Foods 7 : 45[CrossRef].[PubMed]
116. Chang Y, Li X-P, Liu L, Ma Z, Hu X-Z, Zhao W-Q, Gao G-T . 2015. Effect of processing in superheated steam on surface microbes and enzyme activity of naked oats. J Food Process Preserv 39 : 2753 2761[CrossRef].
117. Hu Y, Nie W, Hu X, Li Z . 2016. Microbial decontamination of wheat grain with superheated steam. Food Control 62 : 264 269[CrossRef].
118. Cenkowski S, Pronyk C, Zmidzinska D, Muir WE . 2007. Decontamination of food products with superheated steam. J Food Eng 83 : 68 75[CrossRef].
119. Oliveira M, Abadias M, Usall J, Torres R, Teixidó N, Viñas I . 2015. Application of modified atmosphere packaging as a safety approach to fresh-cut fruits and vegetables—a review. Trends Food Sci Technol 46 : 13 26[CrossRef].
120. Silveira AC, Araneda C, Hinojosa A, Escalona VH . 2014. Effect of nonconventional modified atmosphere packaging on fresh cut watercress ( Nasturtium officinale R. Br.) quality. Postharvest Biol Technol 92 : 114 120[CrossRef].
121. Zhang B-Y, Samapundo S, Pothakos V, Sürengil G, Devlieghere F . 2013. Effect of high oxygen and high carbon dioxide atmosphere packaging on the microbial spoilage and shelf-life of fresh-cut honeydew melon. Int J Food Microbiol 166 : 378 390[CrossRef].[PubMed]
122. Moosekian SR, Jeong S, Marks BP, Ryser ET . 2012. X-ray irradiation as a microbial intervention strategy for food. Annu Rev Food Sci Technol 3 : 493 510[CrossRef].[PubMed]
123. Palekar MP, Taylor TM, Maxim JE, Castillo A . 2015. Reduction of Salmonella enterica serotype Poona and background microbiota on fresh-cut cantaloupe by electron beam irradiation. Int J Food Microbiol 202 : 66 72[CrossRef].[PubMed]
124. Murray K, Wu F, Shi J, Xue SJ, Warriner K . 2017. Challenges in the microbiological food safety of fresh produce: limitations of post-harvest washing and the need for alternative interventions. Food Qual Saf 1 : 289 301.
125. Gomes C, Moreira RG, Castell-Perez ME, Kim J, Da Silva P, Castillo A . 2008. E-beam irradiation of bagged, ready-to-eat spinach leaves ( Spinacea oleracea): an engineering approach. J Food Sci 73 : E95 E102[CrossRef].[PubMed]
126. Espinosa AC, Jesudhasan P, Arredondo R, Cepeda M, Mazari-Hiriart M, Mena KD, Pillai SD . 2012. Quantifying the reduction in potential health risks by determining the sensitivity of poliovirus type 1 chat strain and rotavirus SA-11 to electron beam irradiation of iceberg lettuce and spinach. Appl Environ Microbiol 78 : 988 993[CrossRef].[PubMed]
127. Ic E, Kottapalli B, Maxim J, Pillai SD . 2007. Electron beam radiation of dried fruits and nuts to reduce yeast and mold bioburden. J Food Prot 70 : 981 985[CrossRef].[PubMed]
128. Karagöz I, Moreira RG, Castell-Perez ME . 2014. Radiation D 10 values for Salmonella Typhimurium LT2 and an Escherichia coli cocktail in pecan nuts (Kanza cultivar) exposed to different atmospheres. Food Control 39 : 146 153[CrossRef].
129. Mohapatra D, Kumar S, Kotwaliwale N, Singh KK . 2017. Critical factors responsible for fungi growth in stored food grains and non-chemical approaches for their control. Ind Crops Prod 108 : 162 182[CrossRef].
130. He J, Zhou T, Young JC, Boland GJ, Scott PM . 2010. Chemical and biological transformations for detoxification of trichothecene mycotoxins in human and animal food chains: a review. Trends Food Sci Technol 21 : 67 76[CrossRef].
131. Pinela J, Ferreira IC . 2017. Nonthermal physical technologies to decontaminate and extend the shelf-life of fruits and vegetables: trends aiming at quality and safety. Crit Rev Food Sci Nutr 57 : 2095 2111[CrossRef].[PubMed]
132. Los A, Ziuzina D, Bourke P . 2018. Current and future technologies for microbiological decontamination of cereal grains. J Food Sci 83 : 1484 1493[CrossRef].[PubMed]
133. Hertwig C, Leslie A, Meneses N, Reineke K, Rauh C, Schlüter O . 2017. Inactivation of Salmonella Enteritidis PT30 on the surface of unpeeled almonds by cold plasma. Innov Food Sci Emerg Technol 44 : 242 248[CrossRef].
134. Moon AY, Noh S, Moon SY, You S . 2016. Feasibility study of atmospheric-pressure plasma treated air gas package for grape's shelf-life improvement. Curr Appl Phys 16 : 440 445[CrossRef].
135. Siciliano I, Spadaro D, Prelle A, Vallauri D, Cavallero MC, Garibaldi A, Gullino ML . 2016. Use of cold atmospheric plasma to detoxify hazelnuts from aflatoxins. Toxins (Basel) 8 : 125[CrossRef].[PubMed]
136. Pignata C, D'Angelo D, Fea E, Gilli G . 2017. A review on microbiological decontamination of fresh produce with nonthermal plasma. J Appl Microbiol 122 : 1438 1455[CrossRef].[PubMed]
137. Gayán E, Condón S, Álvarez I . 2014. Biological aspects in food preservation by ultraviolet light: a review. Food Bioprocess Technol 7 : 1 20[CrossRef].
138. Adhikari A, Syamaladevi RM, Killinger K, Sablani SS . 2015. Ultraviolet-C light inactivation of Escherichia coli O157:H7 and Listeria monocytogenes on organic fruit surfaces. Int J Food Microbiol 210 : 136 142[CrossRef].[PubMed]
139. Yaun BR, Sumner SS, Eifert JD, Marcy JE . 2004. Inhibition of pathogens on fresh produce by ultraviolet energy. Int J Food Microbiol 90 : 1 8[CrossRef].[PubMed]
140. Pan Y-G, Zu H . 2012. Effect of UV-C radiation on the quality of fresh-cut pineapples. Proc Engr 37 : 113 119[CrossRef].
141. Kramer B, Wunderlich J, Muranyi P . 2017. Recent findings in pulsed light disinfection. J Appl Microbiol 122 : 830 856[CrossRef].[PubMed]
142. Gómez-López VM, Devlieghere F, Bonduelle V, Debevere J . 2005. Intense light pulses decontamination of minimally processed vegetables and their shelf-life. Int J Food Microbiol 103 : 79 89[CrossRef].[PubMed]
143. Huang Y, Chen H . 2015. Inactivation of Escherichia coli O157:H7, Salmonella and human norovirus surrogate on artificially contaminated strawberries and raspberries by water-assisted pulsed light treatment. Food Res Int 72 : 1 7[CrossRef].
144. Chen J, Loeb S, Kim JH . 2017. LED revolution: fundamentals and prospects for UV disinfection applications. Environ Sci Water Res Technol 3 : 188 202[CrossRef].
145. Kim DK, Kim SJ, Kang DH . 2017. Bactericidal effect of 266 to 279nm wavelength UVC-LEDs for inactivation of Gram positive and Gram negative foodborne pathogenic bacteria and yeasts. Food Res Int 97 : 280 287[CrossRef].[PubMed]
146. Rivalain N, Roquain J, Demazeau G . 2010. Development of high hydrostatic pressure in biosciences: pressure effect on biological structures and potential applications in biotechnologies. Biotechnol Adv 28 : 659 672[CrossRef].[PubMed]
147. Erickson MC . 2010. Microbial risks associated with cabbage, carrots, celery, onions, and deli salads made with these produce items. Compr Food Sci Food Saf 9 : 602 619[CrossRef].
148. Ramos B, Miller FA, Brandão TRS, Teixeira P, Silva CLM . 2013. Fresh fruits and vegetables—an overview on applied methodologies to improve its quality and safety. Innov Food Sci Emerg Technol 20 : 1 15[CrossRef].
149. Van Haute S, Sampers I, Holvoet K, Uyttendaele M . 2013. Physicochemical quality and chemical safety of chlorine as a reconditioning agent and wash water disinfectant for fresh-cut lettuce washing. Appl Environ Microbiol 79 : 2850 2861[CrossRef].[PubMed]
150. Hoff JC . 1986. Inactivation of Microbial Agents by Chemical Disinfection. EPA/600/2-86/067. US Environmental Protection Agency, Washington, DC.
151. World Health Organization . 2016. Chlorine dioxide, chlorite and chlorate in drinking water. WHO/FWC/WSH/16.49. http://www.who.int/water_sanitation_health/water-quality/guidelines/chemicals/chlorine-dioxide-chlorite-chlorate-background-jan17.pdf. Accessed 23 October 2018.
152. European Food Safety Authority . 2015. Risks for public health related to the presence of chlorate in food. EFSA J 13 : 4135[CrossRef].
153. Banach JL, van Overbeek LS, Nierop Groot MN, van der Zouwen PS, van der Fels-Klerx HJ . 2018. Efficacy of chlorine dioxide on Escherichia coli inactivation during pilot-scale fresh-cut lettuce processing. Int J Food Microbiol 269 : 128 136[CrossRef].[PubMed]
154. U.S. Food and Drug Administration . 2016. Chlorine dioxide, p 128. Code of Federal Regulations, section 173.300. https://www.gpo.gov/fdsys/pkg/CFR-2000-title21-vol3/pdf/CFR-2000-title21-vol3-sec173-300.pdf. Accessed 23 October 2018.
155. Goodburn C, Wallace CA . 2013. The microbiological efficacy of decontamination methodologies for fresh produce: a review. Food Control 32 : 418 427[CrossRef].
156. U.S. Food and Drug Administration . 2001. Title 21. Secondary direct food additives permitted in food for human consumption. Subpart D—Specific usage additives, section 173.368: ozone. Federal Register 21CFR173.368. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=173.368. Accessed 23 October 2018.
157. Perry JJ, Yousef AE . 2011. Decontamination of raw foods using ozone-based sanitization techniques. Annu Rev Food Sci Technol 2 : 281 298[CrossRef].[PubMed]
158. Shynkaryk MV, Pyatkovskyy T, Mohamed HM, Yousef AE, Sastry SK . 2015. Physics of fresh produce safety: role of diffusion and tissue reaction in sanitization of leafy green vegetables with liquid and gaseous ozone-based sanitizers. J Food Prot 78 : 2108 2116[CrossRef].[PubMed]
159. Vurma M, Pandit RB, Sastry SK, Yousef AE . 2009. Inactivation of Escherichia coli O157:H7 and natural microbiota on spinach leaves using gaseous ozone during vacuum cooling and simulated transportation. J Food Prot 72 : 1538 1546[CrossRef].[PubMed]
160. Wu J, Doan H, Cuenca MA . 2006. Investigation of gaseous ozone as an anti-fungal fumigant for stored wheat. J Chem Technol Biotechnol 81 : 1288 1293[CrossRef].
161. Pandiselvam R, Sunoj S, Manikantan MR, Kothakota A, Hebbar KB . 2017. Application and kinetics of ozone in food preservation. Ozone Sci Eng 39 : 115 126[CrossRef].
162. Sun C, Ji J, Wu S, Sun C, Pi F, Zhang Y, Tang L, Sun X . 2016. Saturated aqueous ozone degradation of deoxynivalenol and its application in contaminated grains. Food Control 69 : 185 190[CrossRef].
163. Pandey AK, Kumar P, Singh P, Tripathi NN, Bajpai VK . 2017. Essential oils: sources of antimicrobials and food preservatives. Front Microbiol 7 : 2161[CrossRef].[PubMed]
164. Patrignani F, Siroli L, Serrazanetti DI, Gardini F, Lanciotti R . 2015. Innovative strategies based on the use of essential oils and their components to improve safety, shelf-life and quality of minimally processed fruits and vegetables. Trends Food Sci Technol 46 : 311 319[CrossRef].
165. Ncama K, Magwaza LS, Mditshwa A, Tesfay SZ . 2018. Plant-based edible coatings for managing postharvest quality of fresh horticultural produce: a review. Food Packag Shelf Life 16 : 157 167[CrossRef].
166. Rizzello CG, Verni M, Bordignon S, Gramaglia V, Gobbetti M . 2017. Hydrolysate from a mixture of legume flours with antifungal activity as an ingredient for prolonging the shelf-life of wheat bread. Food Microbiol 64 : 72 82[CrossRef].[PubMed]
167. Bhargava K, Conti DS, da Rocha SRP, Zhang Y . 2015. Application of an oregano oil nanoemulsion to the control of foodborne bacteria on fresh lettuce. Food Microbiol 47 : 69 73[CrossRef].[PubMed]
168. Barbosa AAT, Silva de Araújo HG, Matos PN, Carnelossi MAG, Almeida de Castro A . 2013. Effects of nisin-incorporated films on the microbiological and physicochemical quality of minimally processed mangoes. Int J Food Microbiol 164 : 135 140[CrossRef].[PubMed]
169. Wieczynska J, Luca A, Kidmose U, Cavoski I, Edelenbos M . 2016. The use of antimicrobial sachets in the packaging of organic wild rocket: impact on microorganisms and sensory quality. Postharvest Biol Technol 121 : 126 134[CrossRef].
170. Li X, Li W, Jiang Y, Ding Y, Yun J, Tang Y, Zhang P . 2011. Effect of nano-ZnO-coated active packaging on quality of fresh-cut ‘Fuji’ apple. Int J Food Sci Technol 46 : 1947 1955[CrossRef].
171. Gupta R, Srivastava S . 2014. Antifungal effect of antimicrobial peptides (AMPs LR14) derived from Lactobacillus plantarum strain LR/14 and their applications in prevention of grain spoilage. Food Microbiol 42 : 1 7[CrossRef].[PubMed]
172. Russo P, Pena N, deChiara MLV, Amodio ML, Colelli G, Spano G . 2015. Probiotic lactic acid bacteria for the production of multifunctional fresh-cut cantaloupe. Food Res Int 77 : 762 772[CrossRef].
173. Oliveira M, Viñas I, Colàs P, Anguera M, Usall J, Abadias M . 2014. Effectiveness of a bacteriophage in reducing Listeria monocytogenes on fresh-cut fruits and fruit juices. Food Microbiol 38 : 137 142[CrossRef].[PubMed]
174. Daniel C, Poiret S, Goudercourt D, Dennin V, Leyer G, Pot B . 2006. Selecting lactic acid bacteria for their safety and functionality by use of a mouse colitis model. Appl Environ Microbiol 72 : 5799 5805[CrossRef].[PubMed]
175. Hwang C-A, Huang L, Wu VC-H . 2017. In situ generation of chlorine dioxide for surface decontamination of produce. J Food Prot 80 : 567 572[CrossRef].[PubMed]
176. Allende A, Truchado P, Lindqvist R, Jacxsens L . 2018. Quantitative microbial exposure modelling as a tool to evaluate the impact of contamination level of surface irrigation water and seasonality on fecal hygiene indicator E. coli in leafy green production. Food Microbiol 75 : 82 89[CrossRef].[PubMed]
177. Danyluk MD, Schaffner DW . 2011. Quantitative assessment of the microbial risk of leafy greens from farm to consumption: preliminary framework, data, and risk estimates. J Food Prot 74 : 700 708[CrossRef].[PubMed]
178. Kundu A, Wuertz S, Smith WA . 2018. Quantitative microbial risk assessment to estimate the risk of diarrheal diseases from fresh produce consumption in India. Food Microbiol 75 : 95 102[CrossRef].[PubMed]
179. Farakos SMS, Pouillot R, Davidson GR, Johnson R, Spungen J, Son I, Anderson N, Doren JMV . 2018. A quantitative risk assessment of human salmonellosis from consumption of pistachios in the United States. J Food Prot 81 : 1001 1014[CrossRef].[PubMed]
180. Mogren L, Windstam S, Boqvist S, Vågsholm I, Söderqvist K, Rosberg AK, Lindén J, Mulaosmanovic E, Karlsson M, Uhlig E, Håkansson A, Alsanius B . 2018. The hurdle approach—a holistic concept for controlling food safety risks associated with pathogenic bacterial contamination of leafy green vegetables. A review. Front Microbiol 9 : 01965.
181. Tzortzakis N, Chrysargyris A . 2017. Postharvest ozone application for the preservation of fruits and vegetables. Food Rev Int 33 : 270 315[CrossRef].
182. Barbosa AAT, Mantovani HC, Jain S . 2017. Bacteriocins from lactic acid bacteria and their potential in the preservation of fruit products. Crit Rev Biotechnol 37 : 852 864[CrossRef].[PubMed]
183. Axel C, Zannini E, Arendt EK . 2017. Mold spoilage of bread and its biopreservation: a review of current strategies for bread shelf life extension. Crit Rev Food Sci Nutr 57 : 3528 3542[CrossRef].[PubMed]
184. Medina A, Mohale S, Samsudin NIP, Rodriguez-Sixtos A, Rodriguez A, Magan N . 2017. Biocontrol of mycotoxins: dynamics and mechanisms of action. Curr Opin Food Sci 17 : 41 48[CrossRef].
185. Khaneghah AM, Martins LM, von Hertwig AM, Bertoldo R, Sant'Ana AS . 2018. Deoxynivalenol and its masked forms: characteristics, incidence, control and fate during wheat and wheat based products processing—a review. Trends Food Sci Technol 71 : 13 24[CrossRef].


Generic image for table
Table 7.1

Fruit classification

Citation: Erickson M. 2019. Microbiological Issues Associated with Fruits, Vegetables, Nuts, and Grains, p 179-206. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch7
Generic image for table
Table 7.2

Vegetable classification

Citation: Erickson M. 2019. Microbiological Issues Associated with Fruits, Vegetables, Nuts, and Grains, p 179-206. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch7
Generic image for table
Table 7.3

Examples of bacterial genera contaminating crops at harvest and processed foods from those crops

Citation: Erickson M. 2019. Microbiological Issues Associated with Fruits, Vegetables, Nuts, and Grains, p 179-206. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch7
Generic image for table
Table 7.4

Examples of fungal (yeast and mold) genera contaminating crops at harvest and processed foods from those crops

Citation: Erickson M. 2019. Microbiological Issues Associated with Fruits, Vegetables, Nuts, and Grains, p 179-206. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch7
Generic image for table
Table 7.5

Selected review articles (2017 to 2018) that address the efficacy of postharvest interventions applied to fruits, vegetables, nuts, and grains

Citation: Erickson M. 2019. Microbiological Issues Associated with Fruits, Vegetables, Nuts, and Grains, p 179-206. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch7

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error