Chapter 9 :

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819972/9781555819965.ch9-1.gif /docserver/preview/fulltext/10.1128/9781555819972/9781555819965.ch9-2.gif


is a ubiquitous rod-shaped member of the family . Thanks to the ability to swiftly adapt to diverse environments, this human pathogen can infect a multitude of hosts, animals, plants, and protozoa and can colonize diverse environments. This characteristic makes this pathogen a major public health threat that cannot be eradicated, only identified and contained. In developed and industrialized countries, spp. contaminate mainly animal products and produce, whereas in developing countries, waterborne transmission and person-to-person transmission play a more important role. There are as many as 130 million cases of nontyphoidal salmonellosis worldwide each year, and of those, about 80 million are foodborne. In the United States alone, nontyphoidal is responsible for approximately 1.2 million illnesses and more than 450 deaths each year. These estimates make nontyphoidal serovars the leading cause of bacterial foodborne illness. This chapter provides a detailed historical perspective on the discovery, nomenclature, and characterization of this microorganism. The discussion covers the classification of this complex taxon based on the recent concepts of core genomes and pangenomes and the most prevalent isolation and identification methods currently used. The most recent understandings of virulence mechanisms and antibiotic resistance prevalence are also covered to present a complete overview of this important human pathogen.

Citation: Lewis A, Melendrez M, Fink R. 2019. , p 225-262. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch9
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 9.1
Figure 9.1

Schematic representation of persistent infection with Typhi in humans. Bacteria invade the M cells of the Peyer's patches of the intestinal tract mucosal surface. This induces the inflammatory response, including recruitment of neutrophils and macrophages, phagocytosis of bacteria, and deployment of T and B cells. In systemic infections, such as typhoid fever, the pathogen targets host cells, such as dendritic cells and/or macrophages, which allow systemic spread through the lymphatic and blood circulatory systems to the lymph nodes present in the mesenteries. This then leads to transport to the spleen, bone marrow, liver, and gallbladder. Bacteria can colonize all these tissues and organs and periodically can restart shedding from the mucosal surface. IFN-γ, which can be secreted by T cells, has a role in maintaining persistence by controlling intracellular replication. Interleukin 12, which can increase IFN-γ production, and the proinflammatory cytokine tumor necrosis factor alpha also contribute to the control of persistent (not shown).

Citation: Lewis A, Melendrez M, Fink R. 2019. , p 225-262. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9.2
Figure 9.2

Schematic representation of the genes carried within the five SPIs and their putative virulence-related functions.

Citation: Lewis A, Melendrez M, Fink R. 2019. , p 225-262. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9.3
Figure 9.3

Diagram showing how Typhi moves through the body during systemic infection.

Citation: Lewis A, Melendrez M, Fink R. 2019. , p 225-262. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9.4
Figure 9.4

Diagrams and micrographs showing how uses the trigger (A and B) and zipper (C and D) mechanisms to enter cells. (A) Diagram of the trigger mechanism. Using a TTSS, effector proteins (SipA, SipC, SopB, SopE, and SopE2) are injected into the cell. SopE, SopE2, and SopB activate the Rho GTPases Rac, Cdc42, and RhoG to allow rearrangement of the actin cytoskeleton using the cellular proteins WASP, Scar, WAVE, and WASH, which activate the Arp2/3 complex. SipA and SipC bind to the actin. SipC and SopE, in concert with the Ras-related protein RalA, mediate formation of membrane ruffles and the recruitment of the exocyst complex. (B and D) Scanning electron microscopy images of entering cells using the trigger and zipper mechanisms. Large membrane ruffles can be seen at the entry site. (C) Diagram of the zipper mechanism. Phosphorylation of tyrosine kinase is mediated by the Rck invasin protein expressed on the outer membrane when it interacts with its receptor on the host cell membrane. The class I phosphatidylinositol 3-kinase is activated and induces phosphatidylinositol(3,4,5)-trisphosphate formation, using Akt activation. GTPase Rac1 and GTPase Cdc42 trigger actin polymerization via the Arp2/3 nucleator complex. The mechanism controlling Cdc42 during Rck-induced signaling is still unknown. Dotted arrows represent possible signaling events and/or interactions.

Citation: Lewis A, Melendrez M, Fink R. 2019. , p 225-262. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9.5
Figure 9.5

Diagram of proposed cellular responses to transition to a low-moisture environment. Responses include K uptake by the Kdp transporter, osmoprotectant transport (ProU, ProP, and OsmU), glutamate synthesis, trehalose biosynthesis, upregulation of fatty acid catabolism and RpoE and RpoS regulators, Fe-S cluster formation and filament formation, and an increase in the number of OmpC porins. There may also be a role for cellulose and curli fimbriae in survival in low-moisture environments.

Citation: Lewis A, Melendrez M, Fink R. 2019. , p 225-262. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9.6
Figure 9.6

Global distribution of antimicrobial drug resistance in Typhi. MDR, multi-drug resistant; ESBL, extended-spectrum β-lactamase. Reprinted from reference .

Citation: Lewis A, Melendrez M, Fink R. 2019. , p 225-262. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9.7
Figure 9.7

Diagram of the core sequence of IncC plasmids and SGI-1. The positions and orientations of open reading frames are indicated by arrowed boxes. Function was determined by BLAST comparisons and is indicated by colors. AcaCD binding sites are indicated by green flags. SGI-1 is flanked by the and attachment sites for integration into the 3′ end of the gene in the chromosome of Typhimurium DT104.

Citation: Lewis A, Melendrez M, Fink R. 2019. , p 225-262. In Doyle M, Diez-Gonzalez F, Hill C (ed), Food Microbiology: Fundamentals and Frontiers, 5th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819972.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Spector MP, Kenyon WJ . 2012. Resistance and survival strategies of Salmonella enterica to environmental stresses. Food Res Int 45 : 455 481.[CrossRef].
2. Li J, Smith NH, Nelson K, Crichton PB, Old DC, Whittam TS, Selander RK . 1993. Evolutionary origin and radiation of the avian-adapted non-motile salmonellae. J Med Microbiol 38 : 129 139.[CrossRef][PubMed]
3. Majowicz SE, Musto J, Scallan E, Angulo FJ, Kirk M, O'Brien SJ, Jones TF, Fazil A, Hoekstra RM International Collaboration on Enteric Disease ‘Burden of Illness’ Studies . 2010. The global burden of nontyphoidal Salmonella gastroenteritis. Clin Infect Dis 50 : 882 889.[CrossRef][PubMed]
4. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Jones JL, Griffin PM . 2011. Foodborne illness acquired in the United States—major pathogens. Emerg Infect Dis 17 : 7 15.[CrossRef][PubMed]
5. Lignieres JLM. 1901. Contribution a l’étude et à la classification des septicémies hémorragiques—les pasteurelloses. Ann Inst Past 15 : 734 736.
6. Lignieres JLM. 1901. A propos du groupe des Pasteurella. Réponse à la critique de M. Professeur Boschetti. Rec Med Vet 8 : 414 417.
7. Bergey DH. 1923. Manual of Determinative Bacteriology. The Williams and Wilkins Co., Baltimore, MD.
8. Bergey DH, Breed RS, Murray EGD, Kitchens AP. 1934. Manual of Determinative Bacteriology, 4th ed. Williams and Wilkins Co., Baltimore, MD.
9. Salmonella Subcommittee of the Nomenclature Committee of the International Society for Microbiology . 1934. The genus Salmonella Lignières, 1900. J Hyg (Lond) 34 : 333350.[PubMed]
10. Kauffmann F. 1966. The Bacteriology of Enterobacteriaceae , Collected Studies of the Author and His Co-Workers. Munksgaard, Copenhagen, Denmark.
11. Le Minor L, Rohde R, Taylor J . 1970. Nomenclature des Salmonella. Ann Inst Pasteur (Paris) 119 : 206 210.[PubMed]
12. Crosa JH, Brenner DJ, Ewing WH, Falkow S . 1973. Molecular relationships among the Salmonelleae. J Bacteriol 115 : 307 315.[PubMed]
13. Ewing WH . 1972. The nomenclature of Salmonella, its usage, and definitions for the three species. Can J Microbiol 18 : 1629 1637.[CrossRef][PubMed]
14. Penner JL . 1988. International Committee on Systematic Bacteriology Taxonomic Subcommittee on Enterobacteriaceae: minutes of the meeting, 8 September 1986, Manchester, England. Int J Syst Bacteriol 38 : 223 224.[CrossRef].
15. Le Minor L, Popoff MY . 1987. Designation of Salmonella enterica sp. nov., nom. rev., as the type and only species of the genus Salmonella: request for an opinion. Int J Syst Bacteriol 37 : 465 468.[CrossRef].
16. Reeves MW, Evins GM, Heiba AA, Plikaytis BD, Farmer JJ III . 1989. Clonal nature of Salmonella typhi and its genetic relatedness to other salmonellae as shown by multilocus enzyme electrophoresis, and proposal of Salmonella bongori comb. nov. J Clin Microbiol 27 : 313 320.[PubMed]
17. Judicial Commission of the International Committee on Systematics of Prokaryotes . 2005. The type species of the genus Salmonella Lignieres 1900 is Salmonella enterica (ex Kauffmann and Edwards 1952) Le Minor and Popoff 1987, with the type strain LT2T, and conservation of the epithet enterica in Salmonella enterica over all earlier epithets that may be applied to this species. Opinion 80. Int J Syst Evol Microbiol 55 : 519520.[CrossRef][PubMed]
18. Grimont P, Weill F. 2007. Antigenic formulae of the Salmonella serovars, 9th ed. WHO Collaborating Centre for Reference and Research on Salmonella, WHO, Geneva, Switzerland.
19. Tindall BJ, Grimont PADD, Garrity GM, Euzéby JP . 2005. Nomenclature and taxonomy of the genus Salmonella. Int J Syst Evol Microbiol 55 : 521 524.[CrossRef][PubMed]
20. Andrews WA, Hammack TS,. 2007. Salmonella. In Jackson GJ, et al. (ed), Bacteriological Analytical Manual. Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Gaithersburg, MD. https://www.fda.gov/downloads/Food/FoodScienceResearch/UCM309839.pdf.
21. Torpdahl M, Skov MN, Sandvang D, Baggesen DL . 2005. Genotypic characterization of Salmonella by multilocus sequence typing, pulsed-field gel electrophoresis and amplified fragment length polymorphism. J Microbiol Methods 63 : 173 184.[CrossRef][PubMed]
22. Pérez Luz S, Rodríguez-Valera F, Lan R, Reeves PR . 1998. Variation of the ribosomal operon 16S-23S gene spacer region in representatives of Salmonella enterica subspecies. J Bacteriol 180 : 2144 2151.[PubMed]
23. Cohan FM,. 2013. Species, p 506 511. In Brenner S, Miller J (ed), Brenner's Encyclopedia of Genetics, 2nd ed. Elsevier Inc., Amsterdam, The Netherlands.[CrossRef]
24. Gordienko EN, Kazanov MD, Gelfand MS . 2013. Evolution of pan-genomes of Escherichia coli, Shigella spp., and Salmonella enterica. J Bacteriol 195 : 2786 2792.[CrossRef][PubMed]
25. Mira A, Martín-Cuadrado A-B, D'Auria G, Rodríguez-Valera F . 2010. The bacterial pan-genome:a new paradigm in microbiology. Int Microbiol 13 : 45 57.[PubMed]
26. Jacobsen A, Hendriksen RSR, Aaresturp FM, Ussery DW, Friis C . 2011. The Salmonella enterica pan-genome. Microb Ecol 62 : 487 504.[CrossRef][PubMed]
27. Asplund K, Nurmi E . 1991. The growth of salmonellae in tomatoes. Int J Food Microbiol 13 : 177 181.[CrossRef][PubMed]
28. Alvarez-Ordóñez A, Broussolle V, Colin P, Nguyen-The C, Prieto M . 2015. The adaptive response of bacterial food-borne pathogens in the environment, host and food: implications for food safety. Int J Food Microbiol 213 : 99 109.[CrossRef][PubMed]
29. Foster JW . 1995. Low pH adaptation and the acid tolerance response of Salmonella typhimurium. Crit Rev Microbiol 21 : 215 237.[CrossRef][PubMed]
30. Doyle ME, Mazzotta AS . 2000. Review of studies on the thermal resistance of salmonellae. J Food Prot 63 : 779 795.[CrossRef][PubMed]
31. Gruzdev N, Pinto R, Sela S . 2011. Effect of desiccation on tolerance of Salmonella enterica to multiple stresses. Appl Environ Microbiol 77 : 1667 1673.[CrossRef][PubMed]
32. Iibuchi R, Hara-Kudo Y, Hasegawa A, Kumagai S . 2010. Survival of Salmonella on a polypropylene surface under dry conditions in relation to biofilm-formation capability. J Food Prot 73 : 1506 1510.[CrossRef][PubMed]
33. Thongsomboon W, Serra DO, Possling A, Hadjineophytou C, Hengge R, Cegelski L . 2018. Phosphoethanolamine cellulose: a naturally produced chemically modified cellulose. Science 359 : 334 338.[CrossRef][PubMed]
34. Burgess CM, Gianotti A, Gruzdev N, Holah J, Knøchel S, Lehner A, Margas E, Esser SS, Sela Saldinger S, Tresse O . 2016. The response of foodborne pathogens to osmotic and desiccation stresses in the food chain. Int J Food Microbiol 221 : 37 53.[CrossRef][PubMed]
35. Lebre PH, De Maayer P, Cowan DA . 2017. Xerotolerant bacteria: surviving through a dry spell. Nat Rev Microbiol 15 : 285 296.[CrossRef][PubMed]
36. Maserati A, Fink RC, Lourenco A, Julius ML, Diez-Gonzalez F . 2017. General response of Salmonella enterica serovar Typhimurium to desiccation: a new role for the virulence factors sopD and sseD in survival. PLoS One 12 : e0187692.[CrossRef][PubMed]
37. Appert N. 1810. L'art de conserver, pendant plusieurs années, toutes les substances animales et végétales. Patris et Cie, Paris, France.
38. Sun D-W. 2012. Thermal Food Processing, 2nd ed. CRC Press, Boca Raton, FL.[CrossRef]
39. Morita MT, Kanemori M, Yanagi H, Yura T . 2000. Dynamic interplay between antagonistic pathways controlling the σ 32 level in Escherichia coli. Proc Natl Acad Sci USA 97 : 5860 5865.[CrossRef][PubMed]
40. Erickson JW, Gross CA . 1989. Identification of the sigma E subunit of Escherichia coli RNA polymerase: a second alternate sigma factor involved in high-temperature gene expression. Genes Dev 3 : 1462 1471.[CrossRef][PubMed]
41. Rowley G, Spector M, Kormanec J, Roberts M . 2006. Pushing the envelope: extracytoplasmic stress responses in bacterial pathogens. Nat Rev Microbiol 4 : 383 394.[CrossRef][PubMed]
42. Weber A, Kögl SA, Jung K . 2006. Time-dependent proteome alterations under osmotic stress during aerobic and anaerobic growth in Escherichia coli. J Bacteriol 188 : 7165 7175.[CrossRef][PubMed]
43. Viala JPM, Méresse S, Pocachard B, Guilhon AA, Aussel L, Barras F . 2011. Sensing and adaptation to low pH mediated by inducible amino acid decarboxylases in Salmonella. PLoS One 6 : e22397.[CrossRef][PubMed]
44. Lund P, Tramonti A, De Biase D . 2014. Coping with low pH: molecular strategies in neutralophilic bacteria. FEMS Microbiol Rev 38 : 1091 1125.[CrossRef][PubMed]
45. Lin J, Lee IS, Frey J, Slonczewski JL, Foster JW . 1995. Comparative analysis of extreme acid survival in Salmonella typhimurium, Shigella flexneri, and Escherichia coli. J Bacteriol 177 : 4097 4104.[CrossRef][PubMed]
46. Lee IS, Lin J, Hall HK, Bearson B, Foster JW . 1995. The stationary-phase sigma factor σ S (RpoS) is required for a sustained acid tolerance response in virulent Salmonella typhimurium. Mol Microbiol 17 : 155 167.[CrossRef][PubMed]
47. Álvarez-Ordóñez A, Prieto M, Bernardo A, Hill C, López M . 2012. The acid tolerance response of Salmonella spp.: an adaptive strategy to survive in stressful environments prevailing in foods and the host. Food Res Int 45 : 482 492.[CrossRef].
48. Bruno-Bárcena JM, Azcárate-Peril MA, Hassan HM . 2010. Role of antioxidant enzymes in bacterial resistance to organic acids. Appl Environ Microbiol 76 : 2747 2753.[CrossRef][PubMed]
49. Meyer-Hoffert U, Hornef MW, Henriques-Normark B, Axelsson LG, Midtvedt T, Pütsep K, Andersson M . 2008. Secreted enteric antimicrobial activity localises to the mucus surface layer. Gut 57 : 764 771.[CrossRef][PubMed]
50. Raffatellu M, George MD, Akiyama Y, Hornsby MJ, Nuccio SP, Paixao TA, Butler BP, Chu H, Santos RL, Berger T, Mak TW, Tsolis RM, Bevins CL, Solnick JV, Dandekar S, Bäumler AJ . 2009. Lipocalin-2 resistance confers an advantage to Salmonella enterica serotype Typhimurium for growth and survival in the inflamed intestine. Cell Host Microbe 5 : 476 486.[CrossRef][PubMed]
51. Fischbach MA, Lin H, Zhou L, Yu Y, Abergel RJ, Liu DR, Raymond KN, Wanner BL, Strong RK, Walsh CT, Aderem A, Smith KD . 2006. The pathogen-associated iroA gene cluster mediates bacterial evasion of lipocalin 2. Proc Natl Acad Sci USA 103 : 16502 16507.[CrossRef][PubMed]
52. Trent MS, Pabich W, Raetz CRH, Miller SI . 2001. A PhoP/PhoQ-induced lipase (PagL) that catalyzes 3-O-deacylation of lipid A precursors in membranes of Salmonella typhimurium. J Biol Chem 276 : 9083 9092.[CrossRef][PubMed]
53. Kawasaki K, Ernst RK, Miller SI . 2004. Deacylation and palmitoylation of lipid A by salmonellae outer membrane enzymes modulate host signaling through Toll-like receptor 4. J Endotoxin Res 10 : 439 444.[CrossRef][PubMed]
54. Kawasaki K, Ernst RK, Miller SI . 2004. 3-O-deacylation of lipid A by PagL, a PhoP/PhoQ-regulated deacylase of Salmonella typhimurium, modulates signaling through Toll-like receptor 4. J Biol Chem 279 : 20044 20048.[CrossRef][PubMed]
55. Takeuchi A . 1967. Electron microscope studies of experimental Salmonella infection. I. Penetration into the intestinal epithelium by Salmonella typhimurium. Am J Pathol 50 : 109 136.[PubMed]
56. Clark MA, Jepson MA, Simmons NL, Hirst BH . 1994. Preferential interaction of Salmonella typhimurium with mouse Peyer's patch M cells. Res Microbiol 145 : 543 552.[CrossRef][PubMed]
57. Müller AJ, Kaiser P, Dittmar KEJ, Weber TC, Haueter S, Endt K, Songhet P, Zellweger C, Kremer M, Fehling HJ, Hardt WD . 2012. Salmonella gut invasion involves TTSS-2-dependent epithelial traversal, basolateral exit, and uptake by epithelium-sampling lamina propria phagocytes. Cell Host Microbe 11 : 19 32.[CrossRef][PubMed]
58. Darwin KH, Miller VL . 1999. Molecular basis of the interaction of Salmonella with the intestinal mucosa. Clin Microbiol Rev 12 : 405 428.[CrossRef][PubMed]
59. Bueno SM, Riquelme S, Riedel CA, Kalergis AM . 2012. Mechanisms used by virulent Salmonella to impair dendritic cell function and evade adaptive immunity. Immunology 137 : 28 36.[CrossRef][PubMed]
60. Dandekar T, Astrid F, Jasmin P, Hensel M . 2012. Salmonella enterica: a surprisingly well-adapted intracellular lifestyle. Front Microbiol 3 : 164.[CrossRef][PubMed]
61. Broz P, Ohlson MB, Monack DM . 2012. Innate immune response to Salmonella typhimurium, a model enteric pathogen. Gut Microbes 3 : 62 70.[CrossRef][PubMed]
62. Bao S, Beagley KW, France MP, Shen J, Husband AJ . 2000. Interferon-γ plays a critical role in intestinal immunity against Salmonella typhimurium infection. Immunology 99 : 464 472.[CrossRef][PubMed]
63. Wood KJ, Sawitzki B . 2006. Interferon γ: a crucial role in the function of induced regulatory T cells in vivo. Trends Immunol 27 : 183 187.[CrossRef][PubMed]
64. Buchmeier NA, Heffron F . 1991. Inhibition of macrophage phagosome-lysosome fusion by Salmonella typhimurium. Infect Immun 59 : 2232 2238.[PubMed]
65. Barr TA, Brown S, Mastroeni P, Gray D . 2010. TLR and B cell receptor signals to B cells differentially program primary and memory Th1 responses to Salmonella enterica. J Immunol 185 : 2783 2789.[CrossRef][PubMed]
66. Fritsche G, Nairz M, Libby SJ, Fang FC, Weiss G . 2012. Slc11a1 (Nramp1) impairs growth of Salmonella enterica serovar typhimurium in macrophages via stimulation of lipocalin-2 expression. J Leukoc Biol 92 : 353 359.[CrossRef][PubMed]
67. Santos RL, Zhang S, Tsolis RM, Kingsley RA, Adams LG, Bäumler AJ . 2001. Animal models of Salmonella infections: enteritis versus typhoid fever. Microbes Infect 3 : 1335 1344.[CrossRef][PubMed]
68. Groisman EA, Blanc-Potard A-B, Uchiya K, . 1999. Pathogenicity islands and the evolution of Salmonella virulence, p. 127 150. In Kaper JB,, Hacker J (ed), Pathogenicity Islands and Other Mobile Virulence Elements. ASM Press, Washington, DC.
69. Winstanley C, Hart CA . 2001. Type III secretion systems and pathogenicity islands. J Med Microbiol 50 : 116 126.[CrossRef][PubMed]
70. Marcus SL, Brumell JH, Pfeifer CG, Finlay BB . 2000. Salmonella pathogenicity islands: big virulence in small packages. Microbes Infect 2 : 145 156.[CrossRef][PubMed]
71. Hensel M . 2004. Evolution of pathogenicity islands of Salmonella enterica. Int J Med Microbiol 294 : 95 102.[CrossRef][PubMed]
72. Blondel CJ, Jiménez JC, Contreras I, Santiviago CA . 2009. Comparative genomic analysis uncovers 3 novel loci encoding type six secretion systems differentially distributed in Salmonella serotypes. BMC Genomics 10 : 354.[CrossRef][PubMed]
73. Steele-Mortimer O, Brumell JH, Knodler LA, Méresse S, Lopez A, Finlay BB . 2002. The invasion-associated type III secretion system of Salmonella enterica serovar Typhimurium is necessary for intracellular proliferation and vacuole biogenesis in epithelial cells. Cell Microbiol 4 : 43 54.[CrossRef][PubMed]
74. Knodler LA, Celli J, Hardt WD, Vallance BA, Yip C, Finlay BB . 2002. Salmonella effectors within a single pathogenicity island are differentially expressed and translocated by separate type III secretion systems. Mol Microbiol 43 : 1089 1103.[CrossRef][PubMed]
75. Hapfelmeier S, Ehrbar K, Stecher B, Barthel M, Kremer M, Hardt WD . 2004. Role of the Salmonella pathogenicity island 1 effector proteins SipA, SopB, SopE, and SopE2 in Salmonella enterica subspecies 1 serovar Typhimurium colitis in streptomycin-pretreated mice. Infect Immun 72 : 795 809.[CrossRef][PubMed]
76. Ramos-Morales F . 2012. Impact of Salmonella enterica type III secretion system effectors on the eukaryotic host cell. ISRN Cell Biol 2012 : 787934.[CrossRef].
77. McGhie EJ, Brawn LC, Hume PJ, Humphreys D, Koronakis V . 2009. Salmonella takes control: effector-driven manipulation of the host. Curr Opin Microbiol 12 : 117 124.[CrossRef][PubMed]
78. Lin SL, Le TX, Cowen DS . 2003. SptP, a Salmonella typhimurium type III-secreted protein, inhibits the mitogen-activated protein kinase pathway by inhibiting Raf activation. Cell Microbiol 5 : 267 275.[CrossRef][PubMed]
79. Valdivia RH, Falkow S . 1997. Fluorescence-based isolation of bacterial genes expressed within host cells. Science 277 : 2007 2011.[CrossRef][PubMed]
80. Pfeifer CG, Marcus SL, Steele-Mortimer O, Knodler LA, Finlay BB . 1999. Salmonella typhimurium virulence genes are induced upon bacterial invasion into phagocytic and nonphagocytic cells. Infect Immun 67 : 5690 5698.[PubMed]
81. van der Heijden J, Finlay BB . 2012. Type III effector-mediated processes in Salmonella infection. Future Microbiol 7 : 685 703.[CrossRef][PubMed]
82. Blanc-Potard AB, Groisman EA . 1997. The Salmonella selC locus contains a pathogenicity island mediating intramacrophage survival. EMBO J 16 : 5376 5385.[CrossRef][PubMed]
83. Lee E-J, Groisman EA . 2010. An antisense RNA that governs the expression kinetics of a multifunctional virulence gene. Mol Microbiol 76 : 1020 1033.[CrossRef][PubMed]
84. Seth-Smith HM . 2008. SPI-7: Salmonella's Vi-encoding pathogenicity island. J Infect Dev Ctries 2 : 267 271.[CrossRef][PubMed]
85. Pickard D, Wain J, Baker S, Line A, Chohan S, Fookes M, Barron A, Ó Gaora P, Chabalgoity JA, Thanky N, Scholes C, Thomson N, Quail M, Parkhill J, Dougan G . 2003. Composition, acquisition, and distribution of the Vi exopolysaccharide-encoding Salmonella enterica pathogenicity island SPI-7. J Bacteriol 185 : 5055 5065.[CrossRef][PubMed]
86. Johnson R, Mylona E, Frankel G . 2018. Typhoidal Salmonella: distinctive virulence factors and pathogenesis. Cell Microbiol 20 : e12939.[CrossRef][PubMed]
87. Kiss T, Morgan E, Nagy G . 2007. Contribution of SPI-4 genes to the virulence of Salmonella enterica. FEMS Microbiol Lett 275 : 153 159.[CrossRef][PubMed]
88. Miller SI, Kukral AM, Mekalanos JJ . 1989. A two-component regulatory system ( phoP phoQ) controls Salmonella typhimurium virulence. Proc Natl Acad Sci USA 86 : 5054 5058.[CrossRef][PubMed]
89. Hong KH, Miller VL . 1998. Identification of a novel Salmonella invasion locus homologous to Shigella ipgDE. J Bacteriol 180 : 1793 1802.[PubMed]
90. Folkesson A, Advani A, Sukupolvi S, Pfeifer JD, Normark S, Löfdahl S . 1999. Multiple insertions of fimbrial operons correlate with the evolution of Salmonella serovars responsible for human disease. Mol Microbiol 33 : 612 622.[CrossRef][PubMed]
91. Folkesson A, Löfdahl S, Normark S . 2002. The Salmonella enterica subspecies I specific centisome 7 genomic island encodes novel protein families present in bacteria living in close contact with eukaryotic cells. Res Microbiol 153 : 537 545.[CrossRef][PubMed]
92. Vernikos GS, Parkhill J . 2006. Interpolated variable order motifs for identification of horizontally acquired DNA: revisiting the Salmonella pathogenicity islands. Bioinformatics 22 : 2196 2203.[CrossRef][PubMed]
93. Tobar HE, Salazar-Echegarai FJ, Nieto PA, Palavecino CE, Sebastian VP, Riedel CA, Kalergis AM, Bueno SM . 2013. Chromosomal excision of a new pathogenicity island modulates Salmonella virulence in vivo. Curr Gene Ther 13 : 240 249.[CrossRef][PubMed]
94. Piña-Iturbe A, Ulloa-Allendes D, Pardo-Roa C, Coronado-Arrázola I, Salazar-Echegarai FJ, Sclavi B, González PA, Bueno SM . 2018. Comparative and phylogenetic analysis of a novel family of Enterobacteriaceae-associated genomic islands that share a conserved excision/integration module. Sci Rep 8 : 10292.[CrossRef][PubMed]
95. Feng Y, Liu J, Li Y-GG, Cao F-LL, Johnston RN, Zhou J, Liu G-RR, Liu S-LL . 2012. Inheritance of the Salmonella virulence plasmids: mostly vertical and rarely horizontal. Infect Genet Evol 12 : 1058 1063.[CrossRef][PubMed]
96. Li J, Overall CC, Johnson RC, Jones MB, McDermott JE, Heffron F, Adkins JN, Cambronne ED . 2015. ChIP-Seq analysis of the σ E regulon of Salmonella enterica serovar Typhimurium reveals new genes implicated in heat shock and oxidative stress response. PLoS One 10 : e0138466.[CrossRef][PubMed]
97. Ou JT, Baron LS . 1991. Strain differences in expression of virulence by the 90 kilobase pair virulence plasmid of Salmonella serovar Typhimurium. Microb Pathog 10 : 247 251.[CrossRef][PubMed]
98. Olsen JE, Brown DJ, Thomsen LE, Platt DJ, Chadfield MS . 2004. Differences in the carriage and the ability to utilize the serotype associated virulence plasmid in strains of Salmonella enterica serotype Typhimurium investigated by use of a self-transferable virulence plasmid, pOG669. Microb Pathog 36 : 337 347.[CrossRef][PubMed]
99. Guiney DG, Fierer J . 2011. The role of the spv genes in Salmonella pathogenesis. Front Microbiol 2 : 129.[CrossRef][PubMed]
100. Eriksson S, Lucchini S, Thompson A, Rhen M, Hinton JCD . 2003. Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. Mol Microbiol 47 : 103 118.[CrossRef][PubMed]
101. Matsui H, Bacot CM, Garlington WA, Doyle TJ, Roberts S, Gulig PA . 2001. Virulence plasmid-borne spvB and spvC genes can replace the 90-kilobase plasmid in conferring virulence to Salmonella enterica serovar Typhimurium in subcutaneously inoculated mice. J Bacteriol 183 : 4652 4658.[CrossRef][PubMed]
102. Ashkenazi S, Cleary TG, Murray BE, Wanger A, Pickering LK . 1988. Quantitative analysis and partial characterization of cytotoxin production by Salmonella strains. Infect Immun 56 : 3089 3094.[PubMed]
103. Kétyi I, Pácsa S, Emödy L, Vertényi A, Kocsis B, Kuch B . 1979. Shigella dysenteriae 1-like cytotoxic enterotoxins produced by Salmonella strains. Acta Microbiol Acad Sci Hung 26 : 217 223.[PubMed]
104. Paton AW, Srimanote P, Talbot UM, Wang H, Paton JC . 2004. A new family of potent AB(5) cytotoxins produced by Shiga toxigenic Escherichia coli. J Exp Med 200 : 35 46. CORRECTION J Exp Med 200 : 1525.[CrossRef][PubMed]
105. Saitoh M, Tanaka K, Nishimori K, Makino S, Kanno T, Ishihara R, Hatama S, Kitano R, Kishima M, Sameshima T, Akiba M, Nakazawa M, Yokomizo Y, Uchida I . 2005. The artAB genes encode a putative ADP-ribosyltransferase toxin homologue associated with Salmonella enterica serovar Typhimurium DT104. Microbiology 151 : 3089 3096.[CrossRef][PubMed]
106. Spanò S, Ugalde JE, Galán JE . 2008. Delivery of a Salmonella Typhi exotoxin from a host intracellular compartment. Cell Host Microbe 3 : 30 38.[CrossRef][PubMed]
107. Grasso F, Frisan T . 2015. Bacterial genotoxins: merging the DNA damage response into infection biology. Biomolecules 5 : 1762 1782.[CrossRef][PubMed]
108. Smith JL, Bayles DO . 2006. The contribution of cytolethal distending toxin to bacterial pathogenesis. Crit Rev Microbiol 32 : 227 248.[CrossRef][PubMed]
109. Miller R, Wiedmann M . 2016. Dynamic duo—the salmonella cytolethal distending toxin combines ADP-ribosyltransferase and nuclease activities in a novel form of the cytolethal distending toxin. Toxins (Basel) 8 : 121.[CrossRef][PubMed]
110. von Rhein C, Bauer S, López Sanjurjo EJ, Benz R, Goebel W, Ludwig A . 2009. ClyA cytolysin from Salmonella: distribution within the genus, regulation of expression by SlyA, and pore-forming characteristics. Int J Med Microbiol 299 : 21 35.[CrossRef][PubMed]
111. Chary P, Prasad R, Chopra AK, Peterson JW . 1993. Location of the enterotoxin gene from Salmonella Typhimurium and characterization of the gene products. FEMS Microbiol Lett 111 : 87 92.[CrossRef][PubMed]
112. Chopra AK, Huang JH, Xu X, Burden K, Niesel DW, Rosenbaum MW, Popov VL, Peterson JW . 1999. Role of Salmonella enterotoxin in overall virulence of the organism. Microb Pathog 27 : 155 171.[CrossRef][PubMed]
113. Nakano M, Yamasaki E, Ichinose A, Shimohata T, Takahashi A, Akada JK, Nakamura K, Moss J, Hirayama T, Kurazono H . 2012. Salmonella enterotoxin (Stn) regulates membrane composition and integrity. Dis Model Mech 5 : 515 521.[CrossRef][PubMed]
114. Simm R, Ahmad I, Rhen M, Le Guyon S, Römling U . 2014. Regulation of biofilm formation in Salmonella enterica serovar Typhimurium. Future Microbiol 9 : 1261 1282.[CrossRef][PubMed]
115. Prouty AM, Schwesinger WH, Gunn JS . 2002. Biofilm formation and interaction with the surfaces of gallstones by Salmonella spp. Infect Immun 70 : 2640 2649.[CrossRef][PubMed]
116. Cheverton AM, Gollan B, Przydacz M, Wong CT, Mylona A, Hare SA, Helaine S . 2016. A Salmonella toxin promotes persister formation through acetylation of tRNA. Mol Cell 63 : 86 96.[CrossRef][PubMed]
117. Leclerc J-M, Dozois CM, Daigle F . 2017. Salmonella enterica serovar Typhi siderophore production is elevated and Fur inactivation causes cell filamentation and attenuation in macrophages. FEMS Microbiol Lett 364 : fnx147.[CrossRef][PubMed]
118. Sano G, Takada Y, Goto S, Maruyama K, Shindo Y, Oka K, Matsui H, Matsuo K . 2007. Flagella facilitate escape of Salmonella from oncotic macrophages. J Bacteriol 189 : 8224 8232.[CrossRef][PubMed]
119. Krishnakumar R, Kim B, Mollo EA, Imlay JA, Slauch JM . 2007. Structural properties of periplasmic SodCI that correlate with virulence in Salmonella enterica serovar Typhimurium. J Bacteriol 189 : 4343 4352.[CrossRef][PubMed]
120. Pacello F, Ceci P, Ammendola S, Pasquali P, Chiancone E, Battistoni A . 2008. Periplasmic Cu,Zn superoxide dismutase and cytoplasmic Dps concur in protecting Salmonella enterica serovar Typhimurium from extracellular reactive oxygen species. Biochim Biophys Acta 1780 : 226 232.[CrossRef][PubMed]
121. Ammendola S, Pasquali P, Pistoia C, Petrucci P, Petrarca P, Rotilio G, Battistoni A . 2007. High-affinity Zn 2+ uptake system ZnuABC is required for bacterial zinc homeostasis in intracellular environments and contributes to the virulence of Salmonella enterica. Infect Immun 75 : 5867 5876.[CrossRef][PubMed]
122. Parra-Lopez C, Lin R, Aspedon A, Groisman EAA . 1994. A Salmonella protein that is required for resistance to antimicrobial peptides and transport of potassium. EMBO J 13 : 3964 3972.[CrossRef][PubMed]
123. Aguirre A, Cabeza ML, Spinelli SV, McClelland M, García Véscovi E, Soncini FC . 2006. PhoP-induced genes within Salmonella pathogenicity island 1. J Bacteriol 188 : 6889 6898.[CrossRef][PubMed]
124. Altier C . 2005. Genetic and environmental control of Salmonella invasion. J Microbiol 43 : 85 92.[PubMed]
125. Lee AK, Detweiler CS, Falkow S . 2000. OmpR regulates the two-component system SsrA-SsrB in Salmonella pathogenicity island 2. J Bacteriol 182 : 771 781.[CrossRef][PubMed]
126. Garmendia J, Beuzón CR, Ruiz-Albert J, Holden DW . 2003. The roles of SsrA-SsrB and OmpR-EnvZ in the regulation of genes encoding the Salmonella typhimurium SPI-2 type III secretion system. Microbiology 149 : 2385 2396.[CrossRef][PubMed]
127. Gerstel U, Park C, Römling U . 2003. Complex regulation of csgD promoter activity by global regulatory proteins. Mol Microbiol 49 : 639 654.[CrossRef][PubMed]
128. Liu Z, Niu H, Wu S, Huang R . 2014. CsgD regulatory network in a bacterial trait-altering biofilm formation. Emerg Microbes Infect 3 : e1.[CrossRef][PubMed]
129. Lee EJ, Groisman EA . 2012. Tandem attenuators control expression of the Salmonella mgtCBR virulence operon. Mol Microbiol 86 : 212 224.[CrossRef][PubMed]
130. Troxell B, Sikes ML, Fink RC, Vazquez-Torres A, Jones-Carson J, Hassan HM . 2011. Fur negatively regulates hns and is required for the expression of HilA and virulence in Salmonella enterica serovar Typhimurium. J Bacteriol 193 : 497 505.[CrossRef][PubMed]
131. Troxell B, Fink RC, Porwollik S, McClelland M, Hassan HM . 2011. The Fur regulon in anaerobically grown Salmonella enterica sv. Typhimurium: identification of new Fur targets. BMC Microbiol 11 : 236.[CrossRef][PubMed]
132. Schellhorn HE, Hassan HM . 1988. Transcriptional regulation of katE in Escherichia coli K-12. J Bacteriol 170 : 4286 4292.[CrossRef][PubMed]
133. Fang FC, Libby SJ, Buchmeier NA, Loewen PC, Switala J, Harwood J, Guiney DG . 1992. The alternative sigma factor katF ( rpoS) regulates Salmonella virulence. Proc Natl Acad Sci USA 89 : 11978 11982.[CrossRef][PubMed]
134. Bader MW, Navarre WW, Shiau W, Nikaido H, Frye JG, McClelland M, Fang FC, Miller SI . 2003. Regulation of Salmonella typhimurium virulence gene expression by cationic antimicrobial peptides. Mol Microbiol 50 : 219 230.[CrossRef][PubMed]
135. Ibanez-Ruiz M, Robbe-Saule V, Hermant D, Labrude S, Norel F . 2000. Identification of RpoS (σ S)-regulated genes in Salmonella enterica serovar Typhimurium. J Bacteriol 182 : 5749 5756.[CrossRef][PubMed]
136. McCullen CA, Benhammou JN, Majdalani N, Gottesman S . 2010. Mechanism of positive regulation by DsrA and RprA small noncoding RNAs: pairing increases translation and protects rpoS mRNA from degradation. J Bacteriol 192 : 5559 5571.[CrossRef][PubMed]
137. Jones AM, Goodwill AG, Elliott T . 2006. Limited role for the DsrA and RprA regulatory RNAs in rpoS regulation in Salmonella enterica. J Bacteriol 188 : 5077 5088.[CrossRef][PubMed]
138. Storz G, Tartaglia LA . 1992. OxyR: a regulator of antioxidant genes. J Nutr 122( Suppl) : 627 630.[CrossRef][PubMed]
139. Fàbrega A, Vila J . 2013. Salmonella enterica serovar Typhimurium skills to succeed in the host: virulence and regulation. Clin Microbiol Rev 26 : 308 341.[CrossRef][PubMed]
140. Boore AL, Hoekstra RM, Iwamoto M, Fields PI, Bishop RD, Swerdlow DL . 2015. Salmonella enterica infections in the United States and assessment of coefficients of variation: a novel approach to identify epidemiologic characteristics of individual serotypes, 1996-2011. PLoS One 10 : e0145416.[CrossRef][PubMed]
141. Micallef SA, Rosenberg Goldstein RE, George A, Kleinfelter L, Boyer MS, McLaughlin CR, Estrin A, Ewing L, Jean-Gilles Beaubrun J, Hanes DE, Kothary MH, Tall BD, Razeq JH, Joseph SW, Sapkota AR . 2012. Occurrence and antibiotic resistance of multiple Salmonella serotypes recovered from water, sediment and soil on mid-Atlantic tomato farms. Environ Res 114 : 31 39.[CrossRef][PubMed]
142. Truchado P, Hernandez N, Gil MI, Ivanek R, Allende A . 2018. Correlation between E. coli levels and the presence of foodborne pathogens in surface irrigation water: establishment of a sampling program. Water Res 128 : 226 233.[CrossRef][PubMed]
143. Miller T, Brockmann S, Spackova M, Wetzig J, Frank C, Pfeifer Y, Braun PG, Prager R, Rabsch W . 2018. Recurrent outbreaks caused by the same Salmonella enterica serovar Infantis clone in a German rehabilitation oncology clinic from 2002 to 2009. J Hosp Infect 100 : e233 e238.[CrossRef][PubMed]
144. Velge P, Wiedemann A, Rosselin M, Abed N, Boumart Z, Chaussé AM, Grépinet O, Namdari F, Roche SM, Rossignol A, Virlogeux-Payant I . 2012. Multiplicity of Salmonella entry mechanisms, a new paradigm for Salmonella pathogenesis. MicrobiologyOpen 1 : 243 258.[CrossRef][PubMed]
145. Elhadad D, Desai P, Grassl GA, McClelland M, Rahav G, Gal-Mor O . 2016. Differences in host cell invasion and Salmonella pathogenicity island 1 expression between Salmonella enterica serovar Paratyphi A and nontyphoidal S. Typhimurium. Infect Immun 84 : 1150 1165.[CrossRef][PubMed]
146. WHO, Food and Agriculture Organization of the United Nations. 2002. Risk assessments of Salmonella in eggs and broiler chickens. Microbiological Risk Assessment Series 1. Food and Agriculture Organization of the United Nations, Rome, Italy. http://www.who.int/foodsafety/publications/salmonella/en/ Accessed 30 November 2018.
147. Crump JA, Sjölund-Karlsson M, Gordon MA, Parry CM . 2015. Epidemiology, clinical presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial management of invasive S almonella infections. Clin Microbiol Rev 28 : 901 937.[CrossRef][PubMed]
148. de la Cruz ML, Conrado I, Nault A, Perez A, Dominguez L, Alvarez J . 2017. Vaccination as a control strategy against Salmonella infection in pigs: a systematic review and meta-analysis of the literature. Res Vet Sci 114 : 86 94.[CrossRef][PubMed]
149. Islam K, Sayeed MA, Hossen E, Khanam F, Charles RC, Andrews J, Ryan ET, Qadri F . 2016. Comparison of the performance of the TP test, Tubex, Typhidot and Widal immunodiagnostic assays and blood cultures in detecting patients with typhoid fever in Bangladesh, including using a Bayesian latent class modeling approach. PLoS Negl Trop Dis 10 : e0004558.[CrossRef][PubMed]
150. WHO . 2017. Salmonella (non-typhoidal). http://www.who.int/news-room/fact-sheets/detail/salmonella-(non-typhoidal). Accessed 30 November 2018.
151. Marder EP, Cieslak PR, Cronquist AB, Dunn J, Lathrop S, Rabatsky-Ehr T, Ryan P, Smith K, Tobin-D'Angelo M, Vugia DJ, Zansky S, Holt KG, Wolpert BJ, Lynch M, Tauxe R, Geissler AL . 2017. Incidence and trends of infections with pathogens transmitted commonly through food and the effect of increasing use of culture-independent diagnostic tests on surveillance—Foodborne Diseases Active Surveillance Network, 10 U.S. sites, 2013-2016. MMWR Morb Mortal Wkly Rep 66 : 397 403.[CrossRef][PubMed]
152. Hassing RJ, Goessens WHF, van Pelt W, Mevius DJ, Stricker BH, Molhoek N, Verbon A, van Genderen PJJ . 2014. Salmonella subtypes with increased MICs for azithromycin in travelers returned to The Netherlands. Emerg Infect Dis 20 : 705 708.[CrossRef][PubMed]
153. Crump JA, Luby SP, Mintz ED . 2004. The global burden of typhoid fever. Bull World Health Organ 82 : 346 353.[PubMed]
154. Phu Huong Lan N, Le Thi Phuong T, Nguyen Huu H, Thuy L, Mather AE, Park SE, Marks F, Thwaites GE, Van Vinh Chau N, Thompson CN, Baker S . 2016. Invasive non-typhoidal Salmonella infections in Asia: clinical observations, disease outcome and dominant serovars from an infectious disease hospital in Vietnam. PLoS Negl Trop Dis 10 : e0004857.[CrossRef][PubMed]
155. Marks F . et al . 2017. Incidence of invasive Salmonella disease in sub-Saharan Africa: a multicentre population-based surveillance study. Lancet Glob Health 5 : e310 e323.[CrossRef][PubMed]
156. Andino A, Hanning I . 2015. Salmonella enterica: survival, colonization, and virulence differences among serovars. Sci World J 2015 : 520179.[CrossRef][PubMed]
157. Beuchat LR, Mann DA . 2015. Survival of Salmonella in cookie and cracker sandwiches containing inoculated, low–water activity fillings. J Food Prot 78 : 1828 1834.[CrossRef][PubMed]
158. Rivera-Chávez F, Bäumler AJ . 2015. The pyromaniac inside you: Salmonella metabolism in the host gut. Annu Rev Microbiol 69 : 31 48.[CrossRef][PubMed]
159. Hurley D, McCusker MP, Fanning S, Martins M . 2014. Salmonella-host interactions—modulation of the host innate immune system. Front Immunol 5 : 481.[CrossRef][PubMed]
160. WHO . 2014. Antimicrobial resistance: global report on surveillance 2014. World Health Organization, Geneva, Switzerland. https://www.who.int/drugresistance/documents/surveillancereport/en/. Accessed 30 November 2018.
161. Aserkoff B, Bennett JV . 1969. Effect of antibiotic therapy in acute salmonellosis on the fecal excretion of salmonellae. N Engl J Med 281 : 636 640.[CrossRef][PubMed]
162. Woodward TE, Smadel JE, Ley HL, Green R, Mankikar DS . 1948. Preliminary report on the beneficial effect of chloromycetin in the treatment of typhoid fever. Ann Intern Med 29 : 131 134.[CrossRef][PubMed]
163. Olarte J, Galindo E . 1973. Salmonella typhi resistant to chloramphenicol, ampicillin, and other antimicrobial agents: strains isolated during an extensive typhoid fever epidemic in Mexico. Antimicrob Agents Chemother 4 : 597 601.[CrossRef][PubMed]
164. Voogd CE, Guinèe PAM, Manten A, Valkenburg JJ . 1973. Incidence of resistance of tetracycline, chloramphenicol and ampicillin among Salmonella species isolated in the Netherlands in 1969, 1970 and 1971. Antonie van Leeuwenhoek 39 : 321 329.[CrossRef][PubMed]
165. Acheson D, Hohmann EL . 2001. Nontyphoidal salmonellosis. Clin Infect Dis 32 : 263 269.[CrossRef][PubMed]
166. Parry CM . 2003. Antimicrobial drug resistance in Salmonella enterica. Curr Opin Infect Dis 16 : 467 472.[CrossRef][PubMed]
167. Wen SCH, Best E, Nourse C . 2017. Non-typhoidal Salmonella infections in children: review of literature and recommendations for management. J Paediatr Child Health 53 : 936 941.[CrossRef][PubMed]
168. Eng SK, Pusparajah P, Ab Mutalib NS, Ser HL, Chan KG, Lee LH . 2015. Salmonella: a review on pathogenesis, epidemiology and antibiotic resistance. Front Life Sci 8 : 284 293.[CrossRef].
169. Zhao S, Datta AR, Ayers S, Friedman S, Walker RD, White DG . 2003. Antimicrobial-resistant Salmonella serovars isolated from imported foods. Int J Food Microbiol 84 : 87 92.[CrossRef][PubMed]
170. Lai J, Wu C, Wu C, Qi J, Wang Y, Wang H, Liu Y, Shen J . 2014. Serotype distribution and antibiotic resistance of Salmonella in food-producing animals in Shandong Province of China, 2009 and 2012. Int J Food Microbiol 180 : 30 38.[CrossRef][PubMed]
171. European Centers for Disease Control . 2018. Communicable disease threats report (CDTR), 25 February–3 March 2018, week 9. https://ecdc.europa.eu/en/publications-data/communicable-disease-threats-report-25-february-3-march-2018-week-9. Accessed 30 November 2018
172. Leekitcharoenphon P, Hendriksen RS, Le Hello S, Weill FX, Baggesen DL, Jun SR, Ussery DW, Lund O, Crook DW, Wilson DJ, Aarestrup FM . 2016. Global genomic epidemiology of Salmonella enterica serovar Typhimurium DT104. Appl Environ Microbiol 82 : 2516 2526.[CrossRef][PubMed]
173. Parisi A, Crump JA, Glass K, Howden BP, Furuya-Kanamori L, Vilkins S, Gray DJ, Kirk MD . 2018. Health outcomes from multidrug-resistant Salmonella infections in high-income countries: a systematic review and meta-analysis. Foodborne Pathog Dis 15 : 428 436.[CrossRef][PubMed]
174. Butaye P, Michael GB, Schwarz S, Barrett TJ, Brisabois A, White DG . 2006. The clonal spread of multidrug-resistant non-typhi Salmonella serotypes. Microbes Infect 8 : 1891 1897.[CrossRef][PubMed]
175. Us E, Erdem B, Tekeli A, Dolapci I, Bayramova M, Saran B, Sahin F . 2009. Molecular investigation of Salmonella choleraesuis and Salmonella hadar strains isolated from humans in Turkey. Jpn J Infect Dis 62 : 362 367.[PubMed]
176. Miriagou V, Tassios PT, Legakis NJ, Tzouvelekis LS . 2004. Expanded-spectrum cephalosporin resistance in non-typhoid Salmonella. Int J Antimicrob Agents 23 : 547 555.[CrossRef][PubMed]
177. Politi L, Tassios PT, Lambiri M, Kansouzidou A, Pasiotou M, Vatopoulos AC, Mellou K, Legakis NJ, Tzouvelekis LS . 2005. Repeated occurrence of diverse extended-spectrum β-lactamases in minor serotypes of food-borne Salmonella enterica subsp. enterica. J Clin Microbiol 43 : 3453 3456.[CrossRef][PubMed]