Chapter 14 : Carbohydrate Utilization in Bacteria: Making the Most Out of Sugars with the Help of Small Regulatory RNAs

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Carbohydrate Utilization in Bacteria: Making the Most Out of Sugars with the Help of Small Regulatory RNAs, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781683670247/9781683670230_Chap14-1.gif /docserver/preview/fulltext/10.1128/9781683670247/9781683670230_Chap14-2.gif


Carbohydrates are degraded in central metabolic pathways, namely, glycolysis, the pentose phosphate pathway, and the tricarboxylic acid (TCA) cycle, to fuel cells with energy and building blocks to synthesize all biomolecules. A functional carbohydrate metabolism requires sufficient supply with carbon sources but also coordination with the availability of other nutrients and cellular activities. Hence, bacterial carbohydrate metabolism is controlled at all levels by large and densely interconnected regulatory networks ( ). In recent years, posttranscriptional mechanisms involving small regulatory RNAs (sRNAs) have emerged as an additional layer in these networks. Extensive cross talk of sRNAs with transcriptional regulators ensures a fine-tuned and coordinated metabolism.

Citation: Durica-Mitic* S, Göpel* Y, Görke B. 2019. Carbohydrate Utilization in Bacteria: Making the Most Out of Sugars with the Help of Small Regulatory RNAs, p 229-248. In Storz G, Papenfort K (ed), Regulating with RNA in Bacteria and Archaea. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.RWR-0013-2017
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Manifold roles of sRNAs in regulation of carbohydrate metabolism in bacteria. The figure summarizes the major roles of sRNAs (depicted in red) in regulation of carbohydrate metabolism in bacteria. (A) Regulation of uptake and utilization of particular carbohydrates by sRNAs in various species. In , the -encoded sRNA SgrS counteracts phosphosugar stress through repression of glucose transporters and activation of the sugar phosphatase YigL. sRNA ChiX downregulates the chitosugar-specific porin ChiP, setting the threshold concentration for induction of degrading enzymes. Further examples include regulation of host glycan and mannitol uptake by -encoded sRNAs in and species, respectively. (B) Role of sRNAs in CCR. In and , the sRNA Spot 42 represses genes for utilization of secondary carbon sources. Spot 42 is repressed by cAMP-CRP and therefore only active in the presence of preferred sugars generating low cAMP levels. In , translation of mRNAs for utilization of secondary carbon sources is repressed by Hfq. In the absence of preferred substrates, the CbrA/CbrB TCS activates expression of the decoy sRNA CrcZ, titrating Hfq from target transcripts. (C) sRNAs coordinate carbohydrate metabolism with carbohydrate, oxygen, and iron availability. The RNA-binding protein CsrA activates glycolysis and represses gluconeogenesis by binding to corresponding RNAs. CsrA activity is counteracted through sequestration by sRNAs CsrB/CsrC, whose levels are regulated by signals from metabolism. In the absence of oxygen, sRNAs such as FnrS in and RoxS in redirect metabolism from oxidative phosphorylation to anaerobic respiration or fermentation. Upon iron starvation, sRNA RyhB represses TCA cycle enzymes to save iron for essential processes. (D) Example of an anabolic pathway regulated by sRNAs. In , two homologous sRNAs regulate the key enzyme GlmS to achieve homeostasis of glucosamine-6-phosphate (glucosamine-6-P), an essential precursor for cell envelope synthesis.

Citation: Durica-Mitic* S, Göpel* Y, Görke B. 2019. Carbohydrate Utilization in Bacteria: Making the Most Out of Sugars with the Help of Small Regulatory RNAs, p 229-248. In Storz G, Papenfort K (ed), Regulating with RNA in Bacteria and Archaea. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.RWR-0013-2017
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

The transcriptional regulator cAMP-CRP and sRNA Spot 42 cooperate to trigger CCR in . (A) CRP and Spot 42 participate in coherent feedforward loops to prevent utilization of the indicated secondary carbon sources when the preferred carbon source glucose is present. In addition to cAMP-CRP, Spot 42 is regulated by base-pairing with the sponge RNA PspH. (B) The validated Spot 42 regulon to date. Target genes that are also positively controlled by cAMP-CRP at the level of transcription are boxed. Microarray analysis of Spot 42 pulse expression ( ) and improved software prediction algorithms ( ) fostered the identification of most targets. Additional targets were identified by human inference or by a CLIP-seq approach mapping Hfq binding sites on a global scale ( ). Several of these targets were recovered by RIL-seq ( ).

Citation: Durica-Mitic* S, Göpel* Y, Görke B. 2019. Carbohydrate Utilization in Bacteria: Making the Most Out of Sugars with the Help of Small Regulatory RNAs, p 229-248. In Storz G, Papenfort K (ed), Regulating with RNA in Bacteria and Archaea. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.RWR-0013-2017
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Posttranscriptional regulation of central carbon metabolic pathways in . Effects of sRNAs (depicted in red) and of the RNA-binding protein CsrA (blue) on synthesis of enzymes involved in glycolysis, gluconeogenesis, and the TCA cycle. A green asterisk and bold letters indicate direct regulation by CsrA ( ). Anabolic pathways directing synthesis of glycogen, UDP-sugars, and the biofilm compound PGA are also shown.

Citation: Durica-Mitic* S, Göpel* Y, Görke B. 2019. Carbohydrate Utilization in Bacteria: Making the Most Out of Sugars with the Help of Small Regulatory RNAs, p 229-248. In Storz G, Papenfort K (ed), Regulating with RNA in Bacteria and Archaea. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.RWR-0013-2017
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Model of the interconnection of the CsrA system with central carbon metabolism. Decoy sRNAs CsrB and CsrC regulate CsrA activity by sequestering the protein from its target mRNAs. CsrA indirectly activates transcription, creating a negative feedback loop. In fast-growing cells, when CsrB/C levels are low, CsrA activates glycolytic genes and represses the TCA cycle, gluconeogenesis, and glycogen synthesis. Metabolism of glycolytic carbon sources causes accumulation of FBP, which activates pyruvate kinase, thereby reducing the PEP/pyruvate ratio. Intake of PTS substrates and a low PEP/pyruvate ratio trigger dephosphorylation of EIIA, leading to activation of CsrD, which triggers degradation of CsrB/CsrC by RNase E. Upon accumulation of short carboxylic acids (R-COOH) as metabolic end products, expression of / is induced by the BarA/UvrY TCS. Deceleration of glycolytic activity elevates the PEP/pyruvate level and increases EIIA phosphorylation, leading to stabilization of CsrB/CsrC and titration of CsrA. EIIA∼P stimulates adenylate cyclase CyaA, which converts ATP to cAMP. The cAMP-CRP complex inhibits transcription of . Involvement of EIIA in regulation of CsrB/CsrC synthesis as well as decay allows integration of further cues.

Citation: Durica-Mitic* S, Göpel* Y, Görke B. 2019. Carbohydrate Utilization in Bacteria: Making the Most Out of Sugars with the Help of Small Regulatory RNAs, p 229-248. In Storz G, Papenfort K (ed), Regulating with RNA in Bacteria and Archaea. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.RWR-0013-2017
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Role of RNase E adaptor protein RapZ in feedback regulation of GlmS synthesis in . When GlcN6P is plentiful in the cell, RapZ prevents upregulation by targeting its activating sRNA GlmZ to cleavage by RNase E. Within the tripartite complex formed, the sRNA is envisioned to be sandwiched between the tetrameric RapZ protein and the N-terminal domain (NTD) of RNase E, which also forms a tetramer ( ). Processing results in functional inactivation of GlmZ and subsequent decline in GlmS levels. Conversely, under GlcN6P depletion, RapZ is predominantly sequestered in complexes with the homologous sRNA GlmY, whose levels increase under this condition. Consequently, GlmZ remains in its active full-length form and stimulates expression. Higher levels of GlmS replenish GlcN6P levels in the cell. Whether RapZ has an active role in sensing GlcN6P via direct binding of the metabolite within its C-terminal domain (CTD) is currently under investigation. The unusual tetrameric structure of RapZ is schematically depicted in the box in the upper left. Each monomer is represented by one color and consists of two globular domains, NTD and CTD, connected via flexible linkers. Three distinct surfaces involved in self-interaction can be discerned: CTD-CTD, NTD-NTD, as well as CTD-NTD ( ).

Citation: Durica-Mitic* S, Göpel* Y, Görke B. 2019. Carbohydrate Utilization in Bacteria: Making the Most Out of Sugars with the Help of Small Regulatory RNAs, p 229-248. In Storz G, Papenfort K (ed), Regulating with RNA in Bacteria and Archaea. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.RWR-0013-2017
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Chubukov V,, Gerosa L,, Kochanowski K,, Sauer U . 2014. Coordination of microbial metabolism. Nat Rev Microbiol 12 : 327 340.[PubMed]
2. Georg J,, Hess WR . 2011. cis-Antisense RNA, another level of gene regulation in bacteria. Microbiol Mol Biol Rev 75 : 286 300.[PubMed]
3. Storz G,, Vogel J,, Wassarman KM . 2011. Regulation by small RNAs in bacteria: expanding frontiers. Mol Cell 43 : 880 891.[PubMed]
4. Sedlyarova N,, Shamovsky I,, Bharati BK,, Epshtein V,, Chen J,, Gottesman S,, Schroeder R,, Nudler E . 2016. sRNA-mediated control of transcription termination in E. coli. Cell 167 : 111 121.e113.[CrossRef]
5. Vogel J,, Luisi BF . 2011. Hfq and its constellation of RNA. Nat Rev Microbiol 9 : 578 589.[PubMed]
6. Kavita K,, de Mets F,, Gottesman S . 2017. New aspects of RNA-based regulation by Hfq and its partner sRNAs. Curr Opin Microbiol 42 : 53 61.[PubMed]
7. Göpel Y,, Görke B . 2012. Rewiring two-component signal transduction with small RNAs. Curr Opin Microbiol 15 : 132 139.[PubMed]
8. Mandin P,, Guillier M . 2013. Expanding control in bacteria: interplay between small RNAs and transcriptional regulators to control gene expression. Curr Opin Microbiol 16 : 125 132.[PubMed]
9. Arraiano CM,, Andrade JM,, Domingues S,, Guinote IB,, Malecki M,, Matos RG,, Moreira RN,, Pobre V,, Reis FP,, Saramago M,, Silva IJ,, Viegas SC . 2010. The critical role of RNA processing and degradation in the control of gene expression. FEMS Microbiol Rev 34 : 883 923.[PubMed]
10. Ziebuhr W,, Vogel J . 2015. The end is not the end: remnants of tRNA precursors live on to sponge up small regulatory RNAs. Mol Cell 58 : 389 390.[PubMed]
11. Baumler DJ,, Peplinski RG,, Reed JL,, Glasner JD,, Perna NT . 2011. The evolution of metabolic networks of E. coli. BMC Syst Biol 5 : 182.[CrossRef]
12. Müller-Hill B . 1996. The lac Operon: a Short History of a Genetic Paradigm. de Gruyter, Berlin, Germany.
13. Jacob F,, Monod J . 1961. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3 : 318 356.[PubMed]
14. Mizuno T,, Chou MY,, Inouye M . 1984. A unique mechanism regulating gene expression: translational inhibition by a complementary RNA transcript (micRNA). Proc Natl Acad Sci U S A 81 : 1966 1970.[PubMed]
15. Monod J . 1942. Recherches sur la Croissance des Cultures Bacteriennes. Hermann et Cie, Paris, France.
16. Deutscher J,, Francke C,, Postma PW . 2006. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 70 : 939 1031.[PubMed]
17. Eisenreich W,, Rudel T,, Heesemann J,, Goebel W . 2017. To eat and to be eaten: mutual metabolic adaptations of immune cells and intracellular bacterial pathogens upon infection. Front Cell Infect Microbiol 7 : 316.[CrossRef]
18. Jahreis K,, Pimentel-Schmitt EF,, Brückner R,, Titgemeyer F . 2008. Ins and outs of glucose transport systems in eubacteria. FEMS Microbiol Rev 32 : 891 907.[PubMed]
19. Irani MH,, Maitra PK . 1977. Properties of Escherichia coli mutants deficient in enzymes of glycolysis. J Bacteriol 132 : 398 410.[PubMed]
20. Kadner RJ,, Murphy GP,, Stephens CM . 1992. Two mechanisms for growth inhibition by elevated transport of sugar phosphates in Escherichia coli. J Gen Microbiol 138 : 2007 2014.[PubMed]
21. Kimata K,, Tanaka Y,, Inada T,, Aiba H . 2001. Expression of the glucose transporter gene, ptsG, is regulated at the mRNA degradation step in response to glycolytic flux in Escherichia coli. EMBO J 20 : 3587 3595.[PubMed]
22. Morita T,, El-Kazzaz W,, Tanaka Y,, Inada T,, Aiba H . 2003. Accumulation of glucose 6-phosphate or fructose 6-phosphate is responsible for destabilization of glucose transporter mRNA in Escherichia coli. J Biol Chem 278 : 15608 15614.[PubMed]
23. Vanderpool CK,, Gottesman S . 2004. Involvement of a novel transcriptional activator and small RNA in post-transcriptional regulation of the glucose phosphoenolpyruvate phosphotransferase system. Mol Microbiol 54 : 1076 1089.[PubMed]
24. Vanderpool CK,, Gottesman S . 2007. The novel transcription factor SgrR coordinates the response to glucose-phosphate stress. J Bacteriol 189 : 2238 2248.[PubMed]
25. Kawamoto H,, Morita T,, Shimizu A,, Inada T,, Aiba H . 2005. Implication of membrane localization of target mRNA in the action of a small RNA: mechanism of post-transcriptional regulation of glucose transporter in Escherichia coli. Genes Dev 19 : 328 338.[PubMed]
26. Morita T,, Maki K,, Aiba H . 2005. RNase E-based ribonucleoprotein complexes: mechanical basis of mRNA destabilization mediated by bacterial noncoding RNAs. Genes Dev 19 : 2176 2186.[PubMed]
27. Morita T,, Mochizuki Y,, Aiba H . 2006. Translational repression is sufficient for gene silencing by bacterial small noncoding RNAs in the absence of mRNA destruction. Proc Natl Acad Sci U S A 103 : 4858 4863.[PubMed]
28. Wadler CS,, Vanderpool CK . 2007. A dual function for a bacterial small RNA: SgrS performs base pairing-dependent regulation and encodes a functional polypeptide. Proc Natl Acad Sci U S A 104 : 20454 20459.[PubMed]
29. Lloyd CR,, Park S,, Fei J,, Vanderpool CK . 2017. The small protein SgrT controls transport activity of the glucose-specific phosphotransferase system. J Bacteriol 199 : e00869-16.[CrossRef]
30. Kosfeld A,, Jahreis K . 2012. Characterization of the interaction between the small regulatory peptide SgrT and the EIICB Glc of the glucose-phosphotransferase system of E. coli K-12. Metabolites 2 : 756 774.[PubMed]
31. Bobrovskyy M,, Vanderpool CK . 2016. Diverse mechanisms of post-transcriptional repression by the small RNA regulator of glucose-phosphate stress. Mol Microbiol 99 : 254 273.[PubMed]
32. Wright PR,, Richter AS,, Papenfort K,, Mann M,, Vogel J,, Hess WR,, Backofen R,, Georg J . 2013. Comparative genomics boosts target prediction for bacterial small RNAs. Proc Natl Acad Sci U S A 110 : E3487 E3496.[PubMed]
33. Rice JB,, Vanderpool CK . 2011. The small RNA SgrS controls sugar-phosphate accumulation by regulating multiple PTS genes. Nucleic Acids Res 39 : 3806 3819.[PubMed]
34. Rice JB,, Balasubramanian D,, Vanderpool CK . 2012. Small RNA binding-site multiplicity involved in translational regulation of a polycistronic mRNA. Proc Natl Acad Sci U S A 109 : E2691 E2698.[PubMed]
35. Papenfort K,, Sun Y,, Miyakoshi M,, Vanderpool CK,, Vogel J . 2013. Small RNA-mediated activation of sugar phosphatase mRNA regulates glucose homeostasis. Cell 153 : 426 437.[PubMed]
36. Sun Y,, Vanderpool CK . 2013. Physiological consequences of multiple-target regulation by the small RNA SgrS in Escherichia coli. J Bacteriol 195 : 4804 4815.[PubMed]
37. Maleki S,, Hrudikova R,, Zotchev SB,, Ertesvåg H . 2016. Identification of a new phosphatase enzyme potentially involved in the sugar phosphate stress response in Pseudomonas fluorescens. Appl Environ Microbiol 83 : e02361-16.[CrossRef]
38. Tchieu JH,, Norris V,, Edwards JS,, Saier MH Jr . 2001. The complete phosphotransferase system in Escherichia coli. J Mol Microbiol Biotechnol 3 : 329 346.[PubMed]
39. Reichenbach B,, Breustedt DA,, Stülke J,, Rak B,, Görke B . 2007. Genetic dissection of specificity determinants in the interaction of HPr with enzymes II of the bacterial phosphoenolpyruvate:sugar phosphotransferase system in Escherichia coli. J Bacteriol 189 : 4603 4613.[PubMed]
40. Richards GR,, Patel MV,, Lloyd CR,, Vanderpool CK . 2013. Depletion of glycolytic intermediates plays a key role in glucose-phosphate stress in Escherichia coli. J Bacteriol 195 : 4816 4825.[PubMed]
41. Wadler CS,, Vanderpool CK . 2009. Characterization of homologs of the small RNA SgrS reveals diversity in function. Nucleic Acids Res 37 : 5477 5485.[PubMed]
42. Horler RS,, Vanderpool CK . 2009. Homologs of the small RNA SgrS are broadly distributed in enteric bacteria but have diverged in size and sequence. Nucleic Acids Res 37 : 5465 5476.[PubMed]
43. Görke B,, Stülke J . 2008. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6 : 613 624.[PubMed]
44. Lindner SN,, Petrov DP,, Hagmann CT,, Henrich A,, Krämer R,, Eikmanns BJ,, Wendisch VF,, Seibold GM . 2013. Phosphotransferase system-mediated glucose uptake is repressed in phosphoglucoisomerase-deficient Corynebacterium glutamicum strains. Appl Environ Microbiol 79 : 2588 2595.[PubMed]
45. Landmann JJ,, Busse RA,, Latz JH,, Singh KD,, Stülke J,, Görke B . 2011. Crh, the paralogue of the phosphocarrier protein HPr, controls the methylglyoxal bypass of glycolysis in Bacillus subtilis. Mol Microbiol 82 : 770 787.[PubMed]
46. Klancher CA,, Hayes CA,, Dalia AB . 2017. The nucleoid occlusion protein SlmA is a direct transcriptional activator of chitobiose utilization in Vibrio cholerae. PLoS Genet 13 : e1006877.[CrossRef]
47. Meibom KL,, Li XB,, Nielsen AT,, Wu CY,, Roseman S,, Schoolnik GK . 2004. The Vibrio cholerae chitin utilization program. Proc Natl Acad Sci U S A 101 : 2524 2529.[PubMed]
48. Dalia AB,, Lazinski DW,, Camilli A . 2014. Identification of a membrane-bound transcriptional regulator that links chitin and natural competence in Vibrio cholerae. mBio 5 : e01028-e13.[CrossRef][PubMed]
49. Yamamoto S,, Izumiya H,, Mitobe J,, Morita M,, Arakawa E,, Ohnishi M,, Watanabe H . 2011. Identification of a chitin-induced small RNA that regulates translation of the tfoX gene, encoding a positive regulator of natural competence in Vibrio cholerae. J Bacteriol 193 : 1953 1965.[PubMed]
50. Borgeaud S,, Metzger LC,, Scrignari T,, Blokesch M . 2015. The type VI secretion system of Vibrio cholerae fosters horizontal gene transfer. Science 347 : 63 67.[PubMed]
51. Göpel Y,, Görke B . 2014. Lies and deception in bacterial gene regulation: the roles of nucleic acid decoys. Mol Microbiol 92 : 641 647.[PubMed]
52. Bossi L,, Figueroa-Bossi N . 2016. Competing endogenous RNAs: a target-centric view of small RNA regulation in bacteria. Nat Rev Microbiol 14 : 775 784.[PubMed]
53. Plumbridge J,, Bossi L,, Oberto J,, Wade JT,, Figueroa-Bossi N . 2014. Interplay of transcriptional and small RNA-dependent control mechanisms regulates chitosugar uptake in Escherichia coli and Salmonella. Mol Microbiol 92 : 648 658.[PubMed]
54. Figueroa-Bossi N,, Valentini M,, Malleret L,, Fiorini F,, Bossi L . 2009. Caught at its own game: regulatory small RNA inactivated by an inducible transcript mimicking its target. Genes Dev 23 : 2004 2015.[PubMed]
55. Rasmussen AA,, Johansen J,, Nielsen JS,, Overgaard M,, Kallipolitis B,, Valentin-Hansen P . 2009. A conserved small RNA promotes silencing of the outer membrane protein YbfM. Mol Microbiol 72 : 566 577.[PubMed]
56. Bossi L,, Schwartz A,, Guillemardet B,, Boudvillain M,, Figueroa-Bossi N . 2012. A role for Rho-dependent polarity in gene regulation by a noncoding small RNA. Genes Dev 26 : 1864 1873.[PubMed]
57. Overgaard M,, Johansen J,, Møller-Jensen J,, Valentin-Hansen P . 2009. Switching off small RNA regulation with trap-mRNA. Mol Microbiol 73 : 790 800.[PubMed]
58. Suzuki K,, Shimizu M,, Sasaki N,, Ogawa C,, Minami H,, Sugimoto H,, Watanabe T . 2016. Regulation of the chitin degradation and utilization system by the ChiX small RNA in Serratia marcescens 2170. Biosci Biotechnol Biochem 80 : 376 385.[PubMed]
59. Mustachio LM,, Aksit S,, Mistry RH,, Scheffler R,, Yamada A,, Liu JM . 2012. The Vibrio cholerae mannitol transporter is regulated posttranscriptionally by the MtlS small regulatory RNA. J Bacteriol 194 : 598 606.[PubMed]
60. Chang H,, Replogle JM,, Vather N,, Tsao-Wu M,, Mistry R,, Liu JM . 2015. A cis-regulatory antisense RNA represses translation in Vibrio cholerae through extensive complementarity and proximity to the target locus. RNA Biol 12 : 136 148.[PubMed]
61. Byer T,, Wang J,, Zhang MG,, Vather N,, Blachman A,, Visser B,, Liu JM . 2017. MtlR negatively regulates mannitol utilization by Vibrio cholerae. Microbiology.[CrossRef]
62. Ymele-Leki P,, Houot L,, Watnick PI . 2013. Mannitol and the mannitol-specific enzyme IIB subunit activate Vibrio cholerae biofilm formation. Appl Environ Microbiol 79 : 4675 4683.[PubMed]
63. White BA,, Lamed R,, Bayer EA,, Flint HJ . 2014. Biomass utilization by gut microbiomes. Annu Rev Microbiol 68 : 279 296.[PubMed]
64. Grondin JM,, Tamura K,, Déjean G,, Abbott DW,, Brumer H . 2017. Polysaccharide utilization loci: fueling microbial communities. J Bacteriol 199 : e00860-16.[CrossRef]
65. Cao Y,, Förstner KU,, Vogel J,, Smith CJ . 2016. cis-Encoded small RNAs, a conserved mechanism for repression of polysaccharide utilization in Bacteroides. J Bacteriol 198 : 2410 2418.[PubMed]
66. Pudlo NA,, Urs K,, Kumar SS,, German JB,, Mills DA,, Martens EC . 2015. Symbiotic human gut bacteria with variable metabolic priorities for host mucosal glycans. mBio 6 : e01282-e15.[CrossRef]
67. Aidelberg G,, Towbin BD,, Rothschild D,, Dekel E,, Bren A,, Alon U . 2014. Hierarchy of non-glucose sugars in Escherichia coli. BMC Syst Biol 8 : 133.[CrossRef][PubMed]
68. Rothe FM,, Bahr T,, Stülke J,, Rak B,, Görke B . 2012. Activation of Escherichia coli antiterminator BglG requires its phosphorylation. Proc Natl Acad Sci U S A 109 : 15906 15911.[PubMed]
69. Borirak O,, Rolfe MD,, de Koning LJ,, Hoefsloot HC,, Bekker M,, Dekker HL,, Roseboom W,, Green J,, de Koster CG,, Hellingwerf KJ . 2015. Time-series analysis of the transcriptome and proteome of Escherichia coli upon glucose repression. Biochim Biophys Acta 1854( 10 Pt A) : 1269 1279.
70. Sonnleitner E,, Bläsi U . 2014. Regulation of Hfq by the RNA CrcZ in Pseudomonas aeruginosa carbon catabolite repression. PLoS Genet 10 : e1004440.[CrossRef]
71. Beisel CL,, Storz G . 2011. Discriminating tastes: physiological contributions of the Hfq-binding small RNA Spot 42 to catabolite repression. RNA Biol 8 : 766 770.[PubMed]
72. Rice PW,, Dahlberg JE . 1982. A gene between polA and glnA retards growth of Escherichia coli when present in multiple copies: physiological effects of the gene for spot 42 RNA. J Bacteriol 152 : 1196 1210.[PubMed]
73. Polayes DA,, Rice PW,, Garner MM,, Dahlberg JE . 1988. Cyclic AMP-cyclic AMP receptor protein as a repressor of transcription of the spf gene of Escherichia coli. J Bacteriol 170 : 3110 3114.[PubMed]
74. Møller T,, Franch T,, Udesen C,, Gerdes K,, Valentin-Hansen P . 2002. Spot 42 RNA mediates discoordinate expression of the E. coli galactose operon. Genes Dev 16 : 1696 1706.[PubMed]
75. Beisel CL,, Storz G . 2011. The base-pairing RNA spot 42 participates in a multioutput feedforward loop to help enact catabolite repression in Escherichia coli. Mol Cell 41 : 286 297.[PubMed]
76. Beisel CL,, Updegrove TB,, Janson BJ,, Storz G . 2012. Multiple factors dictate target selection by Hfq-binding small RNAs. EMBO J 31 : 1961 1974.[PubMed]
77. Melamed S,, Peer A,, Faigenbaum-Romm R,, Gatt YE,, Reiss N,, Bar A,, Altuvia Y,, Argaman L,, Margalit H . 2016. Global mapping of small RNA-target interactions in bacteria. Mol Cell 63 : 884 897.[PubMed]
78. Conway T,, Cohen PS . 2015. Commensal and pathogenic Escherichia coli metabolism in the gut. Microbiol Spectr 3 : MBP-0006-2014.[CrossRef]
79. Wu J,, Li Y,, Cai Z,, Jin Y . 2014. Pyruvate-associated acid resistance in bacteria. Appl Environ Microbiol 80 : 4108 4113.[PubMed]
80. Møller T,, Franch T,, Højrup P,, Keene DR,, Bächinger HP,, Brennan RG,, Valentin-Hansen P . 2002. Hfq: a bacterial Sm-like protein that mediates RNA-RNA interaction. Mol Cell 9 : 23 30.[PubMed]
81. Wang X,, Ji SC,, Jeon HJ,, Lee Y,, Lim HM . 2015. Two-level inhibition of galK expression by Spot 42: degradation of mRNA mK2 and enhanced transcription termination before the galK gene. Proc Natl Acad Sci U S A 112 : 7581 7586.[PubMed]
82. Desnoyers G,, Massé E . 2012. Noncanonical repression of translation initiation through small RNA recruitment of the RNA chaperone Hfq. Genes Dev 26 : 726 739.[PubMed]
83. Ellis MJ,, Trussler RS,, Haniford DB . 2015. Hfq binds directly to the ribosome-binding site of IS 10 transposase mRNA to inhibit translation. Mol Microbiol 96 : 633 650.[PubMed]
84. Salvail H,, Caron MP,, Bélanger J,, Massé E . 2013. Antagonistic functions between the RNA chaperone Hfq and an sRNA regulate sensitivity to the antibiotic colicin. EMBO J 32 : 2764 2778.[PubMed]
85. Sharma CM,, Papenfort K,, Pernitzsch SR,, Mollenkopf HJ,, Hinton JC,, Vogel J . 2011. Pervasive post-transcriptional control of genes involved in amino acid metabolism by the Hfq-dependent GcvB small RNA. Mol Microbiol 81 : 1144 1165.[PubMed]
86. Durand S,, Storz G . 2010. Reprogramming of anaerobic metabolism by the FnrS small RNA. Mol Microbiol 75 : 1215 1231.[PubMed]
87. Bækkedal C,, Haugen P . 2015. The Spot 42 RNA: a regulatory small RNA with roles in the central metabolism. RNA Biol 12 : 1071 1077.[PubMed]
88. Hansen GA,, Ahmad R,, Hjerde E,, Fenton CG,, Willassen NP,, Haugen P . 2012. Expression profiling reveals Spot 42 small RNA as a key regulator in the central metabolism of Aliivibrio salmonicida. BMC Genomics 13 : 37.[CrossRef]
89. Livny J,, Zhou X,, Mandlik A,, Hubbard T,, Davis BM,, Waldor MK . 2014. Comparative RNA-Seq based dissection of the regulatory networks and environmental stimuli underlying Vibrio parahaemolyticus gene expression during infection. Nucleic Acids Res 42 : 12212 12223.[PubMed]
90. Tanabe T,, Miyamoto K,, Tsujibo H,, Yamamoto S,, Funahashi T . 2015. The small RNA Spot 42 regulates the expression of the type III secretion system 1 (T3SS1) chaperone protein VP1682 in Vibrio parahaemolyticus. FEMS Microbiol Lett 362 : fnv173.[CrossRef]
91. Rojo F . 2010. Carbon catabolite repression in Pseudomonas: optimizing metabolic versatility and interactions with the environment. FEMS Microbiol Rev 34 : 658 684.[PubMed]
92. Moreno R,, Hernández-Arranz S,, La Rosa R,, Yuste L,, Madhushani A,, Shingler V,, Rojo F . 2015. The Crc and Hfq proteins of Pseudomonas putida cooperate in catabolite repression and formation of ribonucleic acid complexes with specific target motifs. Environ Microbiol 17 : 105 118.[PubMed]
93. Sonnleitner E,, Wulf A,, Campagne S,, Pei XY,, Wolfinger MT,, Forlani G,, Prindl K,, Abdou L,, Resch A,, Allain FH,, Luisi BF,, Urlaub H,, Bläsi U . 2017. Interplay between the catabolite repression control protein Crc, Hfq and RNA in Hfq-dependent translational regulation in Pseudomonas aeruginosa. Nucleic Acids Res.[CrossRef]
94. Sonnleitner E,, Abdou L,, Haas D . 2009. Small RNA as global regulator of carbon catabolite repression in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 106 : 21866 21871.[PubMed]
95. Liu Y,, Gokhale CS,, Rainey PB,, Zhang XX . 2017. Unravelling the complexity and redundancy of carbon catabolic repression in Pseudomonas fluorescens SBW25. Mol Microbiol 105 : 589 605.[PubMed]
96. Filiatrault MJ,, Stodghill PV,, Wilson J,, Butcher BG,, Chen H,, Myers CR,, Cartinhour SW . 2013. CrcZ and CrcX regulate carbon source utilization in Pseudomonas syringae pathovar tomato strain DC3000. RNA Biol 10 : 245 255.[PubMed]
97. Valentini M,, García-Mauriño SM,, Pérez-Martínez I,, Santero E,, Canosa I,, Lapouge K . 2014. Hierarchical management of carbon sources is regulated similarly by the CbrA/B systems in Pseudomonas aeruginosa and Pseudomonas putida. Microbiology 160 : 2243 2252.[PubMed]
98. Sonnleitner E,, Prindl K,, Bläsi U . 2017. The Pseudomonas aeruginosa CrcZ RNA interferes with Hfq-mediated riboregulation. PLoS One 12 : e0180887.[CrossRef]
99. Kochanowski K,, Gerosa L,, Brunner SF,, Christodoulou D,, Nikolaev YV,, Sauer U . 2017. Few regulatory metabolites coordinate expression of central metabolic genes in Escherichia coli. Mol Syst Biol 13 : 903.[CrossRef]
100. Shimada T,, Yamamoto K,, Ishihama A . 2011. Novel members of the Cra regulon involved in carbon metabolism in Escherichia coli. J Bacteriol 193 : 649 659.[PubMed]
101. Saier MH Jr,, Ramseier TM . 1996. The catabolite repressor/activator (Cra) protein of enteric bacteria. J Bacteriol 178 : 3411 3417.[PubMed]
102. Hogema BM,, Arents JC,, Bader R,, Eijkemans K,, Yoshida H,, Takahashi H,, Aiba H,, Postma PW . 1998. Inducer exclusion in Escherichia coli by non-PTS substrates: the role of the PEP to pyruvate ratio in determining the phosphorylation state of enzyme IIA Glc. Mol Microbiol 30 : 487 498.[PubMed]
103. Bettenbrock K,, Sauter T,, Jahreis K,, Kremling A,, Lengeler JW,, Gilles ED . 2007. Correlation between growth rates, EIIA Crr phosphorylation, and intracellular cyclic AMP levels in Escherichia coli K-12. J Bacteriol 189 : 6891 6900.[PubMed]
104. Matsuoka Y,, Shimizu K . 2011. Metabolic regulation in Escherichia coli in response to culture environments via global regulators. Biotechnol J 6 : 1330 1341.[PubMed]
105. Vakulskas CA,, Potts AH,, Babitzke P,, Ahmer BM,, Romeo T . 2015. Regulation of bacterial virulence by Csr (Rsm) systems. Microbiol Mol Biol Rev 79 : 193 224.[PubMed]
106. Potts AH,, Vakulskas CA,, Pannuri A,, Yakhnin H,, Babitzke P,, Romeo T . 2017. Global role of the bacterial post-transcriptional regulator CsrA revealed by integrated transcriptomics. Nat Commun 8 : 1596.[CrossRef]
107. Van Assche E,, Van Puyvelde S,, Vanderleyden J,, Steenackers HP . 2015. RNA-binding proteins involved in post-transcriptional regulation in bacteria. Front Microbiol 6 : 141.[CrossRef]
108. Sabnis NA,, Yang H,, Romeo T . 1995. Pleiotropic regulation of central carbohydrate metabolism in Escherichia coli via the gene csrA. J Biol Chem 270 : 29096 29104.[PubMed]
109. Morin M,, Ropers D,, Letisse F,, Laguerre S,, Portais JC,, Cocaign-Bousquet M,, Enjalbert B . 2016. The post-transcriptional regulatory system CSR controls the balance of metabolic pools in upper glycolysis of Escherichia coli. Mol Microbiol 100 : 686 700.[PubMed]
110. Timmermans J,, Van Melderen L . 2009. Conditional essentiality of the csrA gene in Escherichia coli. J Bacteriol 191 : 1722 1724.[PubMed]
111. Weilbacher T,, Suzuki K,, Dubey AK,, Wang X,, Gudapaty S,, Morozov I,, Baker CS,, Georgellis D,, Babitzke P,, Romeo T . 2003. A novel sRNA component of the carbon storage regulatory system of Escherichia coli. Mol Microbiol 48 : 657 670.[PubMed]
112. Liu MY,, Gui G,, Wei B,, Preston JF III,, Oakford L,, Yüksel U,, Giedroc DP,, Romeo T . 1997. The RNA molecule CsrB binds to the global regulatory protein CsrA and antagonizes its activity in Escherichia coli. J Biol Chem 272 : 17502 17510.[PubMed]
113. Chavez RG,, Alvarez AF,, Romeo T,, Georgellis D . 2010. The physiological stimulus for the BarA sensor kinase. J Bacteriol 192 : 2009 2012.[PubMed]
114. Lawhon SD,, Maurer R,, Suyemoto M,, Altier C . 2002. Intestinal short-chain fatty acids alter Salmonella typhimurium invasion gene expression and virulence through BarA/SirA. Mol Microbiol 46 : 1451 1464.[PubMed]
115. Vakulskas CA,, Leng Y,, Abe H,, Amaki T,, Okayama A,, Babitzke P,, Suzuki K,, Romeo T . 2016. Antagonistic control of the turnover pathway for the global regulatory sRNA CsrB by the CsrA and CsrD proteins. Nucleic Acids Res 44 : 7896 7910.[PubMed]
116. Suzuki K,, Babitzke P,, Kushner SR,, Romeo T . 2006. Identification of a novel regulatory protein (CsrD) that targets the global regulatory RNAs CsrB and CsrC for degradation by RNase E. Genes Dev 20 : 2605 2617.[PubMed]
117. Leng Y,, Vakulskas CA,, Zere TR,, Pickering BS,, Watnick PI,, Babitzke P,, Romeo T . 2016. Regulation of CsrB/C sRNA decay by EIIA Glc of the phosphoenolpyruvate: carbohydrate phosphotransferase system. Mol Microbiol 99 : 627 639.[PubMed]
118. Morin M,, Ropers D,, Cinquemani E,, Portais JC,, Enjalbert B,, Cocaign-Bousquet M . 2017. The Csr system regulates Escherichia coli fitness by controlling glycogen accumulation and energy levels. mBio 8 : e01628-17.[CrossRef]
119. Pannuri A,, Vakulskas CA,, Zere T,, McGibbon LC,, Edwards AN,, Georgellis D,, Babitzke P,, Romeo T . 2016. Circuitry linking the catabolite repression and Csr global regulatory systems of Escherichia coli. J Bacteriol 198 : 3000 3015.[PubMed]
120. You C,, Okano H,, Hui S,, Zhang Z,, Kim M,, Gunderson CW,, Wang YP,, Lenz P,, Yan D,, Hwa T . 2013. Coordination of bacterial proteome with metabolism by cyclic AMP signalling. Nature 500 : 301 306.[PubMed]
121. Nuss AM,, Schuster F,, Kathrin Heroven A,, Heine W,, Pisano F,, Dersch P . 2014. A direct link between the global regulator PhoP and the Csr regulon in Y. pseudotuberculosis through the small regulatory RNA CsrC. RNA Biol 11 : 580 593.[PubMed]
122. Pannekoek Y,, Huis In ’t Veld RA,, Schipper K,, Bovenkerk S,, Kramer G,, Brouwer MC,, van de Beek D,, Speijer D,, van der Ende A . 2017. Neisseria meningitidis uses sibling small regulatory RNAs to switch from cataplerotic to anaplerotic metabolism. mBio 8 : e02293-16.[CrossRef]
123. Bauer S,, Helmreich J,, Zachary M,, Kaethner M,, Heinrichs E,, Rudel T,, Beier D . 2017. The sibling sRNAs NgncR_162 and NgncR_163 of Neisseria gonorrhoeae participate in the expression control of metabolic, transport and regulatory proteins. Microbiology 163 : 1720 1734.[PubMed]
124. Oglesby-Sherrouse AG,, Murphy ER . 2013. Iron-responsive bacterial small RNAs: variations on a theme. Metallomics 5 : 276 286.[PubMed]
125. Salvail H,, Massé E . 2012. Regulating iron storage and metabolism with RNA: an overview of posttranscriptional controls of intracellular iron homeostasis. Wiley Interdiscip Rev RNA 3 : 26 36.[PubMed]
126. Massé E,, Gottesman S . 2002. A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc Natl Acad Sci U S A 99 : 4620 4625.[PubMed]
127. Seo SW,, Kim D,, Latif H,, O’Brien EJ,, Szubin R,, Palsson BO . 2014. Deciphering Fur transcriptional regulatory network highlights its complex role beyond iron metabolism in Escherichia coli. Nat Commun 5 : 4910.[CrossRef]
128. Porcheron G,, Dozois CM . 2015. Interplay between iron homeostasis and virulence: Fur and RyhB as major regulators of bacterial pathogenicity. Vet Microbiol 179 : 2 14.[PubMed]
129. Friedman DB,, Stauff DL,, Pishchany G,, Whitwell CW,, Torres VJ,, Skaar EP . 2006. Staphylococcus aureus redirects central metabolism to increase iron availability. PLoS Pathog 2 : e87.[CrossRef]
130. Jung YS,, Kwon YM . 2008. Small RNA ArrF regulates the expression of sodB and feSII genes in Azotobacter vinelandii. Curr Microbiol 57 : 593 597.[PubMed]
131. de Graef MR,, Alexeeva S,, Snoep JL,, Teixeira de Mattos MJ . 1999. The steady-state internal redox state (NADH/NAD) reflects the external redox state and is correlated with catabolic adaptation in Escherichia coli. J Bacteriol 181 : 2351 2357.[PubMed]
132. Green J,, Paget MS . 2004. Bacterial redox sensors. Nat Rev Microbiol 2 : 954 966.[PubMed]
133. Sawers G . 1999. The aerobic/anaerobic interface. Curr Opin Microbiol 2 : 181 187.[PubMed]
134. Constantinidou C,, Hobman JL,, Griffiths L,, Patel MD,, Penn CW,, Cole JA,, Overton TW . 2006. A reassessment of the FNR regulon and transcriptomic analysis of the effects of nitrate, nitrite, NarXL, and NarQP as Escherichia coli K12 adapts from aerobic to anaerobic growth. J Biol Chem 281 : 4802 4815.[PubMed]
135. Myers KS,, Yan H,, Ong IM,, Chung D,, Liang K,, Tran F,, Keleş S,, Landick R,, Kiley PJ . 2013. Genome-scale analysis of Escherichia coli FNR reveals complex features of transcription factor binding. PLoS Genet 9 : e1003565.[CrossRef]
136. Liu X,, De Wulf P . 2004. Probing the ArcA-P modulon of Escherichia coli by whole genome transcriptional analysis and sequence recognition profiling. J Biol Chem 279 : 12588 12597.[PubMed]
137. Park DM,, Akhtar MS,, Ansari AZ,, Landick R,, Kiley PJ . 2013. The bacterial response regulator ArcA uses a diverse binding site architecture to regulate carbon oxidation globally. PLoS Genet 9 : e1003839.[CrossRef]
138. Boysen A,, Møller-Jensen J,, Kallipolitis B,, Valentin-Hansen P,, Overgaard M . 2010. Translational regulation of gene expression by an anaerobically induced small non-coding RNA in Escherichia coli. J Biol Chem 285 : 10690 10702.
139. van der Rest ME,, Frank C,, Molenaar D . 2000. Functions of the membrane-associated and cytoplasmic malate dehydrogenases in the citric acid cycle of Escherichia coli. J Bacteriol 182 : 6892 6899.[PubMed]
140. Mandin P,, Gottesman S . 2010. Integrating anaerobic/aerobic sensing and the general stress response through the ArcZ small RNA. EMBO J 29 : 3094 3107.[PubMed]
141. Papenfort K,, Said N,, Welsink T,, Lucchini S,, Hinton JC,, Vogel J . 2009. Specific and pleiotropic patterns of mRNA regulation by ArcZ, a conserved, Hfq-dependent small RNA. Mol Microbiol 74 : 139 158.[PubMed]
142. Parker A,, Cureoglu S,, De Lay N,, Majdalani N,, Gottesman S . 2017. Alternative pathways for Escherichia coli biofilm formation revealed by sRNA overproduction. Mol Microbiol 105 : 309 325.[PubMed]
143. Chen J,, Gottesman S . 2017. Hfq links translation repression to stress-induced mutagenesis in E. coli. Genes Dev 31 : 1382 1395.[PubMed]
144. Xia H,, Yang X,, Tang Q,, Ye J,, Wu H,, Zhang H . 2017. EsrE—a yigP locus-encoded transcript—is a 3′ UTR sRNA involved in the respiratory chain of E. coli. Front Microbiol 8 : 1658.[CrossRef]
145. Isabella VM,, Clark VL . 2011. Deep sequencing-based analysis of the anaerobic stimulon in Neisseria gonorrhoeae. BMC Genomics 12 : 51.[CrossRef]
146. Fantappiè L,, Oriente F,, Muzzi A,, Serruto D,, Scarlato V,, Delany I . 2011. A novel Hfq-dependent sRNA that is under FNR control and is synthesized in oxygen limitation in Neisseria meningitidis. Mol Microbiol 80 : 507 523.[PubMed]
147. Knapp JS,, Clark VL . 1984. Anaerobic growth of Neisseria gonorrhoeae coupled to nitrite reduction. Infect Immun 46 : 176 181.[PubMed]
148. Barth KR,, Isabella VM,, Clark VL . 2009. Biochemical and genomic analysis of the denitrification pathway within the genus Neisseria. Microbiology 155 : 4093 4103.[PubMed]
149. Phillips NJ,, Steichen CT,, Schilling B,, Post DM,, Niles RK,, Bair TB,, Falsetta ML,, Apicella MA,, Gibson BW . 2012. Proteomic analysis of Neisseria gonorrhoeae biofilms shows shift to anaerobic respiration and changes in nutrient transport and outermembrane proteins. PLoS One 7 : e38303.[CrossRef]
150. Tanwer P,, Bauer S,, Heinrichs E,, Panda G,, Saluja D,, Rudel T,, Beier D . 2017. Post-transcriptional regulation of target genes by the sRNA FnrS in Neisseria gonorrhoeae. Microbiology 163 : 1081 1092.[PubMed]
151. Durand S,, Braun F,, Lioliou E,, Romilly C,, Helfer AC,, Kuhn L,, Quittot N,, Nicolas P,, Romby P,, Condon C . 2015. A nitric oxide regulated small RNA controls expression of genes involved in redox homeostasis in Bacillus subtilis. PLoS Genet 11 : e1004957.[CrossRef]
152. Geissmann T,, Chevalier C,, Cros MJ,, Boisset S,, Fechter P,, Noirot C,, Schrenzel J,, François P,, Vandenesch F,, Gaspin C,, Romby P . 2009. A search for small noncoding RNAs in Staphylococcus aureus reveals a conserved sequence motif for regulation. Nucleic Acids Res 37 : 7239 7257.[PubMed]
153. Bohn C,, Rigoulay C,, Chabelskaya S,, Sharma CM,, Marchais A,, Skorski P,, Borezée-Durant E,, Barbet R,, Jacquet E,, Jacq A,, Gautheret D,, Felden B,, Vogel J,, Bouloc P . 2010. Experimental discovery of small RNAs in Staphylococcus aureus reveals a riboregulator of central metabolism. Nucleic Acids Res 38 : 6620 6636.[PubMed]
154. Durand S,, Braun F,, Helfer AC,, Romby P,, Condon C . 2017. sRNA-mediated activation of gene expression by inhibition of 5′-3′ exonucleolytic mRNA degradation. eLife 6 : e23602.[CrossRef]
155. Kinkel TL,, Roux CM,, Dunman PM,, Fang FC . 2013. The Staphylococcus aureus SrrAB two-component system promotes resistance to nitrosative stress and hypoxia. mBio 4 : e00696-e13.[CrossRef]
156. Fechter P,, Caldelari I,, Lioliou E,, Romby P . 2014. Novel aspects of RNA regulation in Staphylococcus aureus. FEBS Lett 588 : 2523 2529.[PubMed]
157. Durand P,, Golinelli-Pimpaneau B,, Mouilleron S,, Badet B,, Badet-Denisot MA . 2008. Highlights of glucosamine-6P synthase catalysis. Arch Biochem Biophys 474 : 302 317.[PubMed]
158. Winkler WC,, Nahvi A,, Roth A,, Collins JA,, Breaker RR . 2004. Control of gene expression by a natural metabolite-responsive ribozyme. Nature 428 : 281 286.[PubMed]
159. Bingaman JL,, Zhang S,, Stevens DR,, Yennawar NH,, Hammes-Schiffer S,, Bevilacqua PC . 2017. The GlcN6P cofactor plays multiple catalytic roles in the glmS ribozyme. Nat Chem Biol 13 : 439 445.[PubMed]
160. Collins JA,, Irnov I,, Baker S,, Winkler WC . 2007. Mechanism of mRNA destabilization by the glmS ribozyme. Genes Dev 21 : 3356 3368.[PubMed]
161. Göpel Y,, Lüttmann D,, Heroven AK,, Reichenbach B,, Dersch P,, Görke B . 2011. Common and divergent features in transcriptional control of the homologous small RNAs GlmY and GlmZ in Enterobacteriaceae. Nucleic Acids Res 39 : 1294 1309.[PubMed]
162. Khan MA,, Göpel Y,, Milewski S,, Görke B . 2016. Two small RNAs conserved in Enterobacteriaceae provide intrinsic resistance to antibiotics targeting the cell wall biosynthesis enzyme glucosamine-6-phosphate synthase. Front Microbiol 7 : 908.[CrossRef]
163. Kalamorz F,, Reichenbach B,, März W,, Rak B,, Görke B . 2007. Feedback control of glucosamine-6-phosphate synthase GlmS expression depends on the small RNA GlmZ and involves the novel protein YhbJ in Escherichia coli. Mol Microbiol 65 : 1518 1533.[PubMed]
164. Reichenbach B,, Maes A,, Kalamorz F,, Hajnsdorf E,, Görke B . 2008. The small RNA GlmY acts upstream of the sRNA GlmZ in the activation of glmS expression and is subject to regulation by polyadenylation in Escherichia coli. Nucleic Acids Res 36 : 2570 2580.[PubMed]
165. Urban JH,, Vogel J . 2008. Two seemingly homologous noncoding RNAs act hierarchically to activate glmS mRNA translation. PLoS Biol 6 : e64.[CrossRef]
166. Göpel Y,, Papenfort K,, Reichenbach B,, Vogel J,, Görke B . 2013. Targeted decay of a regulatory small RNA by an adaptor protein for RNase E and counteraction by an anti-adaptor RNA. Genes Dev 27 : 552 564.[PubMed]
167. Göpel Y,, Khan MA,, Görke B . 2016. Domain swapping between homologous bacterial small RNAs dissects processing and Hfq binding determinants and uncovers an aptamer for conditional RNase E cleavage. Nucleic Acids Res 44 : 824 837.[PubMed]
168. Gonzalez GM,, Durica-Mitic S,, Hardwick SW,, Moncrieffe MC,, Resch M,, Neumann P,, Ficner R,, Görke B,, Luisi BF . 2017. Structural insights into RapZ-mediated regulation of bacterial amino-sugar metabolism. Nucleic Acids Res 45 : 10845 10860.[PubMed]
169. Görke B,, Vogel J . 2008. Noncoding RNA control of the making and breaking of sugars. Genes Dev 22 : 2914 2925.[PubMed]
170. Zeng L,, Choi SC,, Danko CG,, Siepel A,, Stanhope MJ,, Burne RA . 2013. Gene regulation by CcpA and catabolite repression explored by RNA-seq in Streptococcus mutans. PLoS One 8 : e60465.[CrossRef]
171. Erickson DW,, Schink SJ,, Patsalo V,, Williamson JR,, Gerland U,, Hwa T . 2017. A global resource allocation strategy governs growth transition kinetics of Escherichia coli. Nature 551 : 119 123.[PubMed]
172. Westermayer SA,, Fritz G,, Gutiérrez J,, Megerle JA,, Weißl MP,, Schnetz K,, Gerland U,, Rädler JO . 2016. Single-cell characterization of metabolic switching in the sugar phosphotransferase system of Escherichia coli. Mol Microbiol 100 : 472 485.[PubMed]
173. Holmqvist E,, Wright PR,, Li L,, Bischler T,, Barquist L,, Reinhardt R,, Backofen R,, Vogel J . 2016. Global RNA recognition patterns of post-transcriptional regulators Hfq and CsrA revealed by UV crosslinking in vivo. EMBO J 35 : 991 1011.[PubMed]
174. Waters SA,, McAteer SP,, Kudla G,, Pang I,, Deshpande NP,, Amos TG,, Leong KW,, Wilkins MR,, Strugnell R,, Gally DL,, Tollervey D,, Tree JJ . 2017. Small RNA interactome of pathogenic E. coli revealed through crosslinking of RNase E. EMBO J 36 : 374 387.[PubMed]
175. Heroven AK,, Dersch P . 2014. Coregulation of host-adapted metabolism and virulence by pathogenic yersiniae. Front Cell Infect Microbiol 4 : 146.[CrossRef]
176. Papenfort K,, Vogel J . 2014. Small RNA functions in carbon metabolism and virulence of enteric pathogens. Front Cell Infect Microbiol 4 : 91.[CrossRef]
177. Nuss AM,, Beckstette M,, Pimenova M,, Schmühl C,, Opitz W,, Pisano F,, Heroven AK,, Dersch P . 2017. Tissue dual RNA-seq allows fast discovery of infection-specific functions and riboregulators shaping host-pathogen transcriptomes. Proc Natl Acad Sci U S A 114 : E791 E800.[PubMed]
178. Heroven AK,, Nuss AM,, Dersch P . 2016. RNA-based mechanisms of virulence control in Enterobacteriaceae. RNA Biol 14 : 471 487.[PubMed]
179. Papenfort K,, Podkaminski D,, Hinton JC,, Vogel J . 2012. The ancestral SgrS RNA discriminates horizontally acquired Salmonella mRNAs through a single G-U wobble pair. Proc Natl Acad Sci U S A 109 : E757 E764.[PubMed]
180. Gruber CC,, Sperandio V . 2015. Global analysis of posttranscriptional regulation by GlmY and GlmZ in enterohemorrhagic Escherichia coli O157:H7. Infect Immun 83 : 1286 1295.[PubMed]
181. Chen J,, Gottesman S . 2016. Spot 42 sRNA regulates arabinose-inducible araBAD promoter activity by repressing synthesis of the high-affinity low-capacity arabinose transporter. J Bacteriol 199 : e00691-16.[CrossRef]
182. Romeo T,, Babitzke P . 2018. Global regulation by CsrA and its RNA antagonists. Microbiol Spectrum 6( 2) : RWR-0009-2017.
183. Bandyra KJ,, Luisi BF . 2018. RNase E and the high fidelity orchestration of RNA metabolism. Microbiol Spectrum 6( 2) : RWR-0008-2017.
184. Westermann A . 2018. Regulatory RNAs in virulence and host-microbe interactions. Microbiol Spectrum 6( 2) : RWR-0002-2017.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error