1887

Chapter 19 : Global Regulation by CsrA and Its RNA Antagonists

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Global Regulation by CsrA and Its RNA Antagonists, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781683670247/9781683670230_Chap19-1.gif /docserver/preview/fulltext/10.1128/9781683670247/9781683670230_Chap19-2.gif

Abstract:

The Csr (carbon storage regulator) or Rsm (repressor of stationary-phase metabolites) system is among the most extensively studied bacterial RNA-based regulatory systems. Its central component, the RNA binding protein CsrA (RsmA), was uncovered by a transposon mutagenesis screen designed to identify regulators of gene expression in the stationary phase of growth, using glycogen biosynthesis and expression as reporters ( ). Understanding of RNA binding proteins and their roles in regulation was limited at that time, but included Hfq and ribosomal proteins that mediate negative feedback by binding to their mRNAs ( ). Soon after its discovery, the regulatory role of CsrA began to emerge, which included repression of other genes similar to , which are expressed in stationary phase or under stress conditions ( ), and evidence that CsrA activates gene expression that supports robust growth ( ). Discoveries that CsrA (RsmA) regulates virulence genes of pathogens associated with plant disease ( ) and mammalian cell invasion ( ) offered early glimpses of the widespread roles played by CsrA proteins in microbe-host interactions ( ). The role of CsrA in biofilm formation ( ), quorum sensing ( ), carbon metabolism ( ), motility ( ), and stress responses ( ) is now well documented in and other species. New functions of CsrA are being uncovered at a rapid pace through the use of transcriptomics, proteomics, metabolomics, and other systems approaches ( ).

Citation: Romeo T, Babitzke P. 2019. Global Regulation by CsrA and Its RNA Antagonists, p 341-354. In Storz G, Papenfort K (ed), Regulating with RNA in Bacteria and Archaea. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.RWR-0009-2017
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

(A) Example of a high-affinity CsrA binding site. The conserved GGA motif is in red. (B) Structure of the CsrA-RNA complex. The GGA motifs are indicated by blue boxes, and the critical L4 and R44 residues are indicated in red. Adapted from reference with permission.

Citation: Romeo T, Babitzke P. 2019. Global Regulation by CsrA and Its RNA Antagonists, p 341-354. In Storz G, Papenfort K (ed), Regulating with RNA in Bacteria and Archaea. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.RWR-0009-2017
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Mechanisms for CsrA-mediated translational repression (A), transcription termination (B), and protection of mRNA from nuclease cleavage. Adapted from reference with permission.

Citation: Romeo T, Babitzke P. 2019. Global Regulation by CsrA and Its RNA Antagonists, p 341-354. In Storz G, Papenfort K (ed), Regulating with RNA in Bacteria and Archaea. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.RWR-0009-2017
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Modes of CsrA antagonism. In various species, dedicated sRNAs, moonlighting sRNAs, mRNA, and/or proteins have been found to bind to CsrA and inhibit its activity.

Citation: Romeo T, Babitzke P. 2019. Global Regulation by CsrA and Its RNA Antagonists, p 341-354. In Storz G, Papenfort K (ed), Regulating with RNA in Bacteria and Archaea. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.RWR-0009-2017
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Central regulatory circuitry of the Csr system. Dedicated components of the Csr system are highlighted in red.

Citation: Romeo T, Babitzke P. 2019. Global Regulation by CsrA and Its RNA Antagonists, p 341-354. In Storz G, Papenfort K (ed), Regulating with RNA in Bacteria and Archaea. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.RWR-0009-2017
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Regulatory interactions of the Csr system with stringent response (A), extracytoplasmic stress (B), and carbon catabolite repression (C) global regulatory systems. Adapted from references , and with permission.

Citation: Romeo T, Babitzke P. 2019. Global Regulation by CsrA and Its RNA Antagonists, p 341-354. In Storz G, Papenfort K (ed), Regulating with RNA in Bacteria and Archaea. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.RWR-0009-2017
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781683670247.chap19
1. Romeo T,, Gong M,, Liu MY,, Brun-Zinkernagel AM . 1993. Identification and molecular characterization of csrA, a pleiotropic gene from Escherichia coli that affects glycogen biosynthesis, gluconeogenesis, cell size, and surface properties. J Bacteriol 175 : 4744 4755.[PubMed]
2. Babitzke P,, Baker CS,, Romeo T . 2009. Regulation of translation initiation by RNA binding proteins. Annu Rev Microbiol 63 : 27 44.[PubMed]
3. Vogel J,, Luisi BF . 2011. Hfq and its constellation of RNA. Nat Rev Microbiol 9 : 578 589.[PubMed]
4. Updegrove TB,, Zhang A,, Storz G . 2016. Hfq: the flexible RNA matchmaker. Curr Opin Microbiol 30 : 133 138.[PubMed]
5. Dubey AK,, Baker CS,, Suzuki K,, Jones AD,, Pandit P,, Romeo T,, Babitzke P . 2003. CsrA regulates translation of the Escherichia coli carbon starvation gene, cstA, by blocking ribosome access to the cstA transcript. J Bacteriol 185 : 4450 4460.[PubMed]
6. Sabnis NA,, Yang H,, Romeo T . 1995. Pleiotropic regulation of central carbohydrate metabolism in Escherichia coli via the gene csrA. J Biol Chem 270 : 29096 29104.[PubMed]
7. Chatterjee A,, Cui Y,, Liu Y,, Dumenyo CK,, Chatterjee AK . 1995. Inactivation of rsmA leads to overproduction of extracellular pectinases, cellulases, and proteases in Erwinia carotovora subsp. Carotovora in the absence of the starvation/cell density-sensing signal, N-(3-oxohexanoyl)- l-homoserine lactone. Appl Environ Microbiol 61 : 1959 1967.[PubMed]
8. Altier C,, Suyemoto M,, Lawhon SD . 2000. Regulation of Salmonella enterica serovar Typhimurium invasion genes by csrA. Infect Immun 68 : 6790 6797.[PubMed]
9. Vakulskas CA,, Potts AH,, Babitzke P,, Ahmer BMM,, Romeo T . 2015. Regulation of bacterial virulence by Csr (Rsm) systems. Microbiol Mol Biol Rev 79 : 193 224.[PubMed]
10. Jackson DW,, Suzuki K,, Oakford L,, Simecka JW,, Hart ME,, Romeo T . 2002. Biofilm formation and dispersal under the influence of the global regulator CsrA of Escherichia coli. J Bacteriol 184 : 290 301.[PubMed]
11. Wang X,, Dubey AK,, Suzuki K,, Baker CS,, Babitzke P,, Romeo T . 2005. CsrA post-transcriptionally represses pgaABCD, responsible for synthesis of a biofilm polysaccharide adhesin of Escherichia coli. Mol Microbiol 56 : 1648 1663.[PubMed]
12. Jonas K,, Edwards AN,, Simm R,, Romeo T,, Römling U,, Melefors O . 2008. The RNA binding protein CsrA controls cyclic di-GMP metabolism by directly regulating the expression of GGDEF proteins. Mol Microbiol 70 : 236 257.[PubMed]
13. Jonas K,, Edwards AN,, Ahmad I,, Romeo T,, Römling U,, Melefors O . 2010. Complex regulatory network encompassing the Csr, c-di-GMP and motility systems of Salmonella Typhimurium. Environ Microbiol 12 : 524 540.[PubMed]
14. Pannuri A,, Yakhnin H,, Vakulskas CA,, Edwards AN,, Babitzke P,, Romeo T . 2012. Translational repression of NhaR, a novel pathway for multi-tier regulation of biofilm circuitry by CsrA. J Bacteriol 194 : 79 89.[PubMed]
15. Yakhnin H,, Baker CS,, Berezin I,, Evangelista MA,, Rassin A,, Romeo T,, Babitzke P . 2011. CsrA represses translation of sdiA, which encodes the N-acylhomoserine- l-lactone receptor of Escherichia coli, by binding exclusively within the coding region of sdiA mRNA. J Bacteriol 193 : 6162 6170.[PubMed]
16. Yang H,, Liu MY,, Romeo T . 1996. Coordinate genetic regulation of glycogen catabolism and biosynthesis in Escherichia coli via the CsrA gene product. J Bacteriol 178 : 1012 1017.[PubMed]
17. Wei B,, Shin S,, LaPorte D,, Wolfe AJ,, Romeo T . 2000. Global regulatory mutations in csrA and rpoS cause severe central carbon stress in Escherichia coli in the presence of acetate. J Bacteriol 182 : 1632 1640.[PubMed]
18. Wei BL,, Brun-Zinkernagel AM,, Simecka JW,, Prüss BM,, Babitzke P,, Romeo T . 2001. Positive regulation of motility and flhDC expression by the RNA-binding protein CsrA of Escherichia coli. Mol Microbiol 40 : 245 256.[PubMed]
19. Yakhnin AV,, Baker CS,, Vakulskas CA,, Yakhnin H,, Berezin I,, Romeo T,, Babitzke P . 2013. CsrA activates flhDC expression by protecting flhDC mRNA from Rnase E-mediated cleavage. Mol Microbiol 87 : 851 866.[PubMed]
20. Edwards AN,, Patterson-Fortin LM,, Vakulskas CA,, Mercante JW,, Potrykus K,, Vinella D,, Camacho MI,, Fields JA,, Thompson SA,, Georgellis D,, Cashel M,, Babitzke P,, Romeo T . 2011. Circuitry linking the Csr and stringent response global regulatory systems. Mol Microbiol 80 : 1561 1580.[PubMed]
21. Pannuri A,, Vakulskas CA,, Zere T,, McGibbon LC,, Edwards AN,, Georgellis D,, Babitzke P,, Romeo T . 2016. Circuitry linking the catabolite repression and Csr global regulatory systems of Escherichia coli. J Bacteriol 198 : 3000 3015.[PubMed]
22. Park H,, McGibbon LC,, Potts AH,, Yakhnin H,, Romeo T,, Babitzke P . 2017. Translational repression of the RpoS antiadapter IraD by CsrA is mediated via translational coupling to a short upstream open reading frame. MBio 4 : e01355-17.[CrossRef]
23. Yakhnin H,, Aichele R,, Ades SE,, Romeo T,, Babitzke P . 2017. Circuitry linking the global Csr and σ E-dependent cell envelope stress response systems. J Bacteriol 199 : e00484-17.[CrossRef]
24. Lawhon SD,, Frye JG,, Suyemoto M,, Porwollik S,, McClelland M,, Altier C . 2003. Global regulation by CsrA in Salmonella typhimurium. Mol Microbiol 48 : 1633 1645.[PubMed]
25. Burrowes E,, Baysse C,, Adams C,, O’Gara F . 2006. Influence of the regulatory protein RsmA on cellular functions in Pseudomonas aeruginosa PAO1, as revealed by transcriptome analysis. Microbiology 152 : 405 418.[PubMed]
26. Brencic A,, McFarland KA,, McManus HR,, Castang S,, Mogno I,, Dove SL,, Lory S . 2009. The GacS/GacA signal transduction system of Pseudomonas aeruginosa acts exclusively through its control over the transcription of the RsmY and RsmZ regulatory small RNAs. Mol Microbiol 73 : 434 445.[PubMed]
27. McKee AE,, Rutherford BJ,, Chivian DC,, Baidoo EK,, Juminaga D,, Kuo D,, Benke PI,, Dietrich JA,, Ma SM,, Arkin AP,, Petzold CJ,, Adams PD,, Keasling JD,, Chhabra SR . 2012. Manipulation of the carbon storage regulator system for metabolite remodeling and biofuel production in Escherichia coli. Microb Cell Fact 11 : 79.[CrossRef]
28. Tan Y,, Liu ZY,, Liu Z,, Zheng HJ,, Li FL . 2015. Comparative transcriptome analysis between csrA-disruption Clostridium acetobutylicum and its parent strain. Mol Biosyst 11 : 1434 1442.[PubMed]
29. Holmqvist E,, Wright PR,, Li L,, Bischler T,, Barquist L,, Reinhardt R,, Backofen R,, Vogel J . 2016. Global RNA recognition patterns of post-transcriptional regulators Hfq and CsrA revealed by UV crosslinking in vivo. EMBO J 35 : 991 1011.[PubMed]
30. Fields JA,, Li J,, Gulbronson CJ,, Hendrixson DR,, Thompson SA . 2016. Campylobacter jejuni CsrA regulates metabolic and virulence associated proteins and is necessary for mouse colonization. PloS One 11 : e0156932.[CrossRef]
31. Dugar G,, Svensson SL,, Bischler T,, Wäldchen S,, Reinhardt R,, Sauer M,, Sharma CM . 2016. The CsrA-FliW network controls polar localization of the dual-function flagellin mRNA in Campylobacter jejuni. Nat Commun 7 : 11667.[CrossRef]
32. Morin M,, Ropers D,, Letisse F,, Laguerre S,, Portais JC,, Cocaign-Bousquet M,, Enjalbert B . 2016. The post-transcriptional regulatory system CSR controls the balance of metabolic pools in upper glycolysis of Escherichia coli. Mol Microbiol 100 : 686 700.[PubMed]
33. Sowa SW,, Gelderman G,, Leistra AN,, Buvanendiran A,, Lipp S,, Pitaktong A,, Vakulskas CA,, Romeo T,, Baldea M,, Contreras LM . 2017. Integrative FourD omics approach profiles the target network of the carbon storage regulatory system. Nucleic Acids Res 45 : 1673 1686.[PubMed]
34. Sahr T,, Rusniok C,, Impens F,, Oliva G,, Sismeiro O,, Coppée JY,, Buchrieser C . 2017. The Legionella pneumophila genome evolved to accommodate multiple regulatory mechanisms controlled by the CsrA-system. PloS Genet 13 : e1006629.[CrossRef]
35. Potts AH,, Vakulskas CA,, Pannuri A,, Yakhnin H,, Babitzke P,, Romeo T . 2017. Global role of the bacterial post-transcriptional regulator CsrA revealed by integrated transcriptomics. Nat Commun 8 : 1596.[CrossRef]
36. Liu MY,, Yang H,, Romeo T . 1995. The product of the pleiotropic Escherichia coli gene csrA modulates glycogen biosynthesis via effects on mRNA stability. J Bacteriol 177 : 2663 2672.[PubMed]
37. Liu MY,, Romeo T . 1997. The global regulator CsrA of Escherichia coli is a specific mRNA-binding protein. J Bacteriol 179 : 4639 4642.[PubMed]
38. Baker CS,, Morozov I,, Suzuki K,, Romeo T,, Babitzke P . 2002. CsrA regulates glycogen biosynthesis by preventing translation of glgC in Escherichia coli. Mol Microbiol 44 : 1599 1610.[PubMed]
39. Liu MY,, Gui G,, Wei B,, Preston JF III,, Oakford L,, Yüksel U,, Giedroc DP,, Romeo T . 1997. The RNA molecule CsrB binds to the global regulatory protein CsrA and antagonizes its activity in Escherichia coli. J Biol Chem 272 : 17502 17510.[PubMed]
40. Weilbacher T,, Suzuki K,, Dubey AK,, Wang X,, Gudapaty S,, Morozov I,, Baker CS,, Georgellis D,, Babitzke P,, Romeo T . 2003. A novel sRNA component of the carbon storage regulatory system of Escherichia coli. Mol Microbiol 48 : 657 670.[PubMed]
41. Romeo T,, Moore J,, Smith J . 1991. A simple method for cloning genes involved in glucan biosynthesis: isolation of structural and regulatory genes for glycogen synthesis in Escherichia coli. Gene 108 : 23 29.
42. Dubey AK,, Baker CS,, Romeo T,, Babitzke P . 2005. RNA sequence and secondary structure participate in high-affinity CsrA-RNA interaction. RNA 11 : 1579 1587.[PubMed]
43. Schulmeyer KH,, Diaz MR,, Bair TB,, Sanders W,, Gode CJ,, Laederach A,, Wolfgang MC,, Yahr TL . 2016. Primary and secondary sequence structure requirements for recognition and discrimination of target RNAs by Pseudomonas aeruginosa RsmA and RsmF. J Bacteriol 198 : 2458 2469.[PubMed]
44. Gutiérrez P,, Li Y,, Osborne MJ,, Pomerantseva E,, Liu Q,, Gehring K . 2005. Solution structure of the carbon storage regulator protein CsrA from Escherichia coli. J Bacteriol 187 : 3496 3501.[PubMed]
45. Heeb S,, Kuehne SA,, Bycroft M,, Crivii S,, Allen MD,, Haas D,, Cámara M,, Williams P . 2006. Functional analysis of the post-transcriptional regulator RsmA reveals a novel RNA-binding site. J Mol Biol 355 : 1026 1036.[PubMed]
46. Schubert M,, Lapouge K,, Duss O,, Oberstrass FC,, Jelesarov I,, Haas D,, Allain FH-T . 2007. Molecular basis of messenger RNA recognition by the specific bacterial repressing clamp RsmA/CsrA. Nat Struct Mol Biol 14 : 807 813.[PubMed]
47. Altegoer F,, Rensing SA,, Bange G . 2016. Structural basis for the CsrA-dependent modulation of translation initiation by an ancient regulatory protein. Proc Natl Acad Sci U S A 113 : 10168 10173.[PubMed]
48. Mercante J,, Suzuki K,, Cheng X,, Babitzke P,, Romeo T . 2006. Comprehensive alanine-scanning mutagenesis of Escherichia coli CsrA defines two subdomains of critical functional importance. J Biol Chem 281 : 31832 31842.[PubMed]
49. Duss O,, Michel E,, Diarra dit Konté N,, Schubert M,, Allain FH . 2014. Molecular basis for the wide range of affinity found in Csr/Rsm protein-RNA recognition. Nucleic Acids Res 42 : 5332 5346.[PubMed]
50. Duss O,, Michel E,, Yulikov M,, Schubert M,, Jeschke G,, Allain FH . 2014. Structural basis of the non-coding RNA RsmZ acting as a protein sponge. Nature 509 : 588 592.[PubMed]
51. Mercante J,, Edwards AN,, Dubey AK,, Babitzke P,, Romeo T . 2009. Molecular geometry of CsrA (RsmA) binding to RNA and its implications for regulated expression. J Mol Biol 392 : 511 528.[PubMed]
52. Yakhnin H,, Yakhnin AV,, Baker CS,, Sineva E,, Berezin I,, Romeo T,, Babitzke P . 2011. Complex regulation of the global regulatory gene csrA: CsrA-mediated translational repression, transcription from five promoters by Eσ 70 and Eσ S, and indirect transcriptional activation by CsrA. Mol Microbiol 81 : 689 704.[PubMed]
53. Romeo T,, Vakulskas CA,, Babitzke P . 2013. Post-transcriptional regulation on a global scale: form and function of Csr/Rsm systems. Environ Microbiol 15 : 313 324.[PubMed]
54. Park H,, Yakhnin H,, Connolly M,, Romeo T,, Babitzke P . 2015. CsrA participates in a PNPase autoregulatory mechanism by selectively repressing translation of pnp transcripts that have been previously processed by Rnase III and PNPase. J Bacteriol 197 : 3751 3759.[PubMed]
55. Katsowich N,, Elbaz N,, Pal RR,, Mills E,, Kobi S,, Kahan T,, Rosenshine I . 2017. Host cell attachment elicits posttranscriptional regulation in infecting enteropathogenic bacteria. Science 355 : 735 739.[PubMed]
56. Yakhnin H,, Pandit P,, Petty TJ,, Baker CS,, Romeo T,, Babitzke P . 2007. CsrA of Bacillus subtilis regulates translation initiation of the gene encoding the flagellin protein ( hag) by blocking ribosome binding. Mol Microbiol 64 : 1605 1620.[PubMed]
57. Lapouge K,, Sineva E,, Lindell M,, Starke K,, Baker CS,, Babitzke P,, Haas D . 2007. Mechanism of hcnA mRNA recognition in the Gac/Rsm signal transduction pathway of Pseudomonas fluorescens. Mol Microbiol 66 : 341 356.[PubMed]
58. Martínez LC,, Yakhnin H,, Camacho MI,, Georgellis D,, Babitzke P,, Puente JL,, Bustamante VH . 2011. Integration of a complex regulatory cascade involving the SirA/BarA and Csr global regulatory systems that controls expression of the Salmonella SPI-1 and SPI-2 virulence regulons through HilD. Mol Microbiol 80 : 1637 1656.[PubMed]
59. Abbott ZD,, Yakhnin H,, Babitzke P,, Swanson MS . 2015. csrR, a paralog and direct target of CsrA, promotes Legionella pneumophila resilience in water. mBio 6 : e00595.[CrossRef]
60. Irie Y,, Starkey M,, Edwards AN,, Wozniak DJ,, Romeo T,, Parsek MR . 2010. Pseudomonas aeruginosa biofilm matrix polysaccharide Psl is regulated transcriptionally by RpoS and post-transcriptionally by RsmA. Mol Microbiol 78 : 158 172.
61. Baker CS,, Eöry LA,, Yakhnin H,, Mercante J,, Romeo T,, Babitzke P . 2007. CsrA inhibits translation initiation of Escherichia coli hfq by binding to a single site overlapping the Shine-Dalgarno sequence. J Bacteriol 189 : 5472 5481.[PubMed]
62. Figueroa-Bossi N,, Schwartz A,, Guillemardet B,, D’Heygère F,, Bossi L,, Boudvillain M . 2014. RNA remodeling by bacterial global regulator CsrA promotes Rho-dependent transcription termination. Genes Dev 28 : 1239 1251.[PubMed]
63. Goller C,, Wang X,, Itoh Y,, Romeo T . 2006. The cation-responsive protein NhaR of Escherichia coli activates pgaABCD transcription, required for production of the biofilm adhesin poly-β-1,6- N-acetyl- d-glucosamine. J Bacteriol 188 : 8022 8032.[PubMed]
64. Steiner S,, Lori C,, Boehm A,, Jenal U . 2013. Allosteric activation of exopolysaccharide synthesis through cyclic di-GMP-stimulated protein-protein interaction. EMBO J 32 : 354 368.[PubMed]
65. Patterson-Fortin LM,, Vakulskas CA,, Yakhnin H,, Babitzke P,, Romeo T . 2013. Dual posttranscriptional regulation via a cofactor-responsive mRNA leader. J Mol Biol 425 : 3662 3677.[PubMed]
66. Ren B,, Shen H,, Lu ZJ,, Liu H,, Xu Y . 2014. The phzA2-G2 transcript exhibits direct RsmA-mediated activation in Pseudomonas aeruginosa M18. PloS One 9 : e89653.[CrossRef]
67. Liu Y,, Cui Y,, Mukherjee A,, Chatterjee AK . 1998. Characterization of a novel RNA regulator of Erwinia carotovora ssp. Carotovora that controls production of extracellular enzymes and secondary metabolites. Mol Microbiol 29 : 219 234.[PubMed]
68. Zere TR,, Vakulskas CA,, Leng Y,, Pannuri A,, Potts AH,, Dias R,, Tang D,, Kolaczkowski B,, Georgellis D,, Ahmer BM,, Romeo T . 2015. Genomic targets and features of BarA-UvrY (-SirA) signal transduction systems. PloS One 10 : e0145035.[CrossRef]
69. Kay E,, Dubuis C,, Haas D . 2005. Three small RNAs jointly ensure secondary metabolism and biocontrol in Pseudomonas fluorescens CHA0. Proc Natl Acad Sci U S A 102 : 17136 17141.[PubMed]
70. Lenz DH,, Miller MB,, Zhu J,, Kulkarni RV,, Bassler BL . 2005. CsrA and three redundant small RNAs regulate quorum sensing in Vibrio cholerae. Mol Microbiol 58 : 1186 1202.[PubMed]
71. Kay E,, Humair B,, Dénervaud V,, Riedel K,, Spahr S,, Eberl L,, Valverde C,, Haas D . 2006. Two GacA-dependent small RNAs modulate the quorum-sensing response in Pseudomonas aeruginosa. J Bacteriol 188 : 6026 6033.[PubMed]
72. Teplitski M,, Al-Agely A,, Ahmer BM . 2006. Contribution of the SirA regulon to biofilm formation in Salmonella enterica serovar Typhimurium. Microbiology 152 : 3411 3424.[PubMed]
73. Fortune DR,, Suyemoto M,, Altier C . 2006. Identification of CsrC and characterization of its role in epithelial cell invasion in Salmonella enterica serovar Typhimurium. Infect Immun 74 : 331 339.[PubMed]
74. Sterzenbach T,, Nguyen KT,, Nuccio SP,, Winter MG,, Vakulskas CA,, Clegg S,, Romeo T,, Bäumler AJ . 2013. A novel CsrA titration mechanism regulates fimbrial gene expression in Salmonella typhimurium. EMBO J 32 : 2872 2883.[PubMed]
75. Jørgensen MG,, Thomason MK,, Havelund J,, Valentin-Hansen P,, Storz G . 2013. Dual function of the McaS small RNA in controlling biofilm formation. Genes Dev 27 : 1132 1145.[PubMed]
76. Parker A,, Cureoglu S,, De Lay N,, Majdalani N,, Gottesman S . 2017. Alternative pathways for Escherichia coli biofilm formation revealed by sRNA overproduction. Mol Microbiol 105 : 309 325.[PubMed]
77. Itoh Y,, Rice JD,, Goller C,, Pannuri A,, Taylor J,, Meisner J,, Beveridge TJ,, Preston JF III,, Romeo T . 2008. Roles of pgaABCD genes in synthesis, modification, and export of the Escherichia coli biofilm adhesin poly-β-1,6- N-acetyl- d-glucosamine. J Bacteriol 190 : 3670 3680.[PubMed]
78. Mukherjee S,, Yakhnin H,, Kysela D,, Sokoloski J,, Babitzke P,, Kearns DB . 2011. CsrA-FliW interaction governs flagellin homeostasis and a checkpoint on flagellar morphogenesis in Bacillus subtilis. Mol Microbiol 82 : 447 461.[PubMed]
79. Mukherjee S,, Oshiro RT,, Yakhnin H,, Babitzke P,, Kearns DB . 2016. FliW antagonizes CsrA RNA binding by a noncompetitive allosteric mechanism. Proc Natl Acad Sci U S A 113 : 9870 9875.[PubMed]
80. Bhatt S,, Edwards AN,, Nguyen HT,, Merlin D,, Romeo T,, Kalman D . 2009. The RNA binding protein CsrA is a pleiotropic regulator of the locus of enterocyte effacement pathogenicity island of enteropathogenic Escherichia coli. Infect Immun 77 : 3552 3568.[PubMed]
81. Pernestig AK,, Melefors O,, Georgellis D . 2001. Identification of UvrY as the cognate response regulator for the BarA sensor kinase in Escherichia coli. J Biol Chem 276 : 225 231.[PubMed]
82. Suzuki K,, Wang X,, Weilbacher T,, Pernestig AK,, Melefors O,, Georgellis D,, Babitzke P,, Romeo T . 2002. Regulatory circuitry of the CsrA/CsrB and BarA/UvrY systems of Escherichia coli. J Bacteriol 184 : 5130 5140.[PubMed]
83. Heroven AK,, Sest M,, Pisano F,, Scheb-Wetzel M,, Steinmann R,, Böhme K,, Klein J,, Münch R,, Schomburg D,, Dersch P . 2012. Crp induces switching of the CsrB and CsrC RNAs in Yersinia pseudotuberculosis and links nutritional status to virulence. Front Cell Infect Microbiol 2 : 158.[CrossRef]
84. Tomenius H,, Pernestig AK,, Méndez-Catalá CF,, Georgellis D,, Normark S,, Melefors O . 2005. Genetic and functional characterization of the Escherichia coli BarA-UvrY two-component system: point mutations in the HAMP linker of the BarA sensor give a dominant-negative phenotype. J Bacteriol 187 : 7317 7324.[PubMed]
85. Chavez RG,, Alvarez AF,, Romeo T,, Georgellis D . 2010. The physiological stimulus for the BarA sensor kinase. J Bacteriol 192 : 2009 2012.[PubMed]
86. Lawhon SD,, Maurer R,, Suyemoto M,, Altier C . 2002. Intestinal short-chain fatty acids alter Salmonella typhimurium invasion gene expression and virulence through BarA/SirA. Mol Microbiol 46 : 1451 1464.[PubMed]
87. Takeuchi K,, Kiefer P,, Reimmann C,, Keel C,, Dubuis C,, Rolli J,, Vorholt JA,, Haas D . 2009. Small RNA-dependent expression of secondary metabolism is controlled by Krebs cycle function in Pseudomonas fluorescens. J Biol Chem 284 : 34976 34985.[PubMed]
88. Septer AN,, Bose JL,, Lipzen A,, Martin J,, Whistler C,, Stabb EV . 2015. Bright luminescence of Vibrio fischeri aconitase mutants reveals a connection between citrate and the Gac/Csr regulatory system. Mol Microbiol 95 : 283 296.[PubMed]
89. Vakulskas CA,, Pannuri A,, Cortés-Selva D,, Zere TR,, Ahmer BM,, Babitzke P,, Romeo T . 2014. Global effects of the DEAD-box RNA helicase DeaD (CsdA) on gene expression over a broad range of temperatures. Mol Microbiol 92 : 945 958.[PubMed]
90. Camacho MI,, Alvarez AF,, Chavez RG,, Romeo T,, Merino E,, Georgellis D . 2015. Effects of the global regulator CsrA on the BarA/UvrY two-component signaling system. J Bacteriol 197 : 983 991.[PubMed]
91. Potrykus K,, Cashel M . 2008. (p)ppGpp: still magical? Annu Rev Microbiol 62 : 35 51.[PubMed]
92. Ross W,, Sanchez-Vazquez P,, Chen AY,, Lee JH,, Burgos HL,, Gourse RL . 2016. ppGpp binding to a site at the RNAP-DksA interface accounts for its dramatic effects on transcription initiation during the stringent response. Mol Cell 62 : 811 823.[PubMed]
93. Chambonnier G,, Roux L,, Redelberger D,, Fadel F,, Filloux A,, Sivaneson M,, de Bentzmann S,, Bordi C . 2016. The hybrid histidine kinase LadS forms a multicomponent signal transduction system with the GacS/GacA two-component system in Pseudomonas aeruginosa. PloS Genet 12 : e1006032.[CrossRef]
94. Suzuki K,, Babitzke P,, Kushner SR,, Romeo T . 2006. Identification of a novel regulatory protein (CsrD) that targets the global regulatory RNAs CsrB and CsrC for degradation by Rnase E. Genes Dev 20 : 2605 2617.[PubMed]
95. Gudapaty S,, Suzuki K,, Wang X,, Babitzke P,, Romeo T . 2001. Regulatory interactions of Csr components: the RNA binding protein CsrA activates csrB transcription in Escherichia coli. J Bacteriol 183 : 6017 6027.[PubMed]
96. Vakulskas CA,, Leng Y,, Abe H,, Amaki T,, Okayama A,, Babitzke P,, Suzuki K,, Romeo T . 2016. Antagonistic control of the turnover pathway for the global regulatory sRNA CsrB by the CsrA and CsrD proteins. Nucleic Acids Res 44 : 7896 7910.[PubMed]
97. Leng Y,, Vakulskas CA,, Zere TR,, Pickering BS,, Watnick PI,, Babitzke P,, Romeo T . 2016. Regulation of CsrB/C sRNA decay by EIIA( Glc) of the phosphoenolpyruvate: carbohydrate phosphotransferase system. Mol Microbiol 99 : 627 639.[PubMed]
98. Valverde C,, Lindell M,, Wagner EG,, Haas D . 2004. A repeated GGA motif is critical for the activity and stability of the riboregulator RsmY of Pseudomonas fluorescens. J Biol Chem 279 : 25066 25074.[PubMed]
99. Alon U . 2007. Network motifs: theory and experimental approaches. Nat Rev Genet 8 : 450 461.[PubMed]
100. Beisel CL,, Storz G . 2010. Base pairing small RNAs and their roles in global regulatory networks. FEMS Microbiol Rev 34 : 866 882.[PubMed]
101. Adamson DN,, Lim HN . 2013. Rapid and robust signaling in the CsrA cascade via RNA-protein interactions and feedback regulation. Proc Natl Acad Sci U S A 110 : 13120 13125.[PubMed]
102. Heroven AK,, Böhme K,, Dersch P . 2012. The Csr/Rsm system of Yersinia and related pathogens: a post-transcriptional strategy for managing virulence. RNA Biol 9 : 379 391.[PubMed]
103. Svenningsen SL,, Tu KC,, Bassler BL . 2009. Gene dosage compensation calibrates four regulatory RNAs to control Vibrio cholerae quorum sensing. EMBO J 28 : 429 439.[PubMed]
104. Cui Y,, Madi L,, Mukherjee A,, Dumenyo CK,, Chatterjee AK . 1996. The RsmA mutants of Erwinia carotovora subsp. Carotovora strain Ecc71 overexpress hrpN Ecc and elicit a hypersensitive reaction-like response in tobacco leaves. Mol Plant Microbe Interact 9 : 565 573.[PubMed]
105. Chandrangsu P,, Lemke JJ,, Gourse RL . 2011. The dksA promoter is negatively feedback regulated by DksA and ppGpp. Mol Microbiol 80 : 1337 1348.[PubMed]
106. Hayden JD,, Ades SE . 2008. The extracytoplasmic stress factor, σ E, is required to maintain cell envelope integrity in Escherichia coli. PloS One 3 : e1573.[CrossRef]
107. Rhodius VA,, Suh WC,, Nonaka G,, West J,, Gross CA . 2006. Conserved and variable functions of the σ E stress response in related genomes. PloS Biol 4 : e2.[CrossRef]
108. Shimada T,, Tanaka K,, Ishihama A . 2017. The whole set of the constitutive promoters recognized by four minor sigma subunits of Escherichia coli RNA polymerase. PloS One 12 : e0179181.[CrossRef]
109. Gopalkrishnan S,, Nicoloff H,, Ades SE . 2014. Co-ordinated regulation of the extracytoplasmic stress factor, sigmaE, with other Escherichia coli sigma factors by (p)ppGpp and DksA may be achieved by specific regulation of individual holoenzymes. Mol Microbiol 93 : 479 493.[PubMed]
110. Deutscher J,, Aké FM,, Derkaoui M,, Zébré AC,, Cao TN,, Bouraoui H,, Kentache T,, Mokhtari A,, Milohanic E,, Joyet P . 2014. The bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system: regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions. Microbiol Mol Biol Rev 78 : 231 256.[PubMed]
111. Shimada T,, Fujita N,, Yamamoto K,, Ishihama A . 2011. Novel roles of cAMP receptor protein (CRP) in regulation of transport and metabolism of carbon sources. PloS One 6 : e20081.[CrossRef]
112. Lee DJ,, Busby SJ . 2012. Repression by cyclic AMP receptor protein at a distance. mBio 3 : e00289-12.[CrossRef]
113. You C,, Okano H,, Hui S,, Zhang Z,, Kim M,, Gunderson CW,, Wang YP,, Lenz P,, Yan D,, Hwa T . 2013. Coordination of bacterial proteome with metabolism by cyclic AMP signaling. Nature 500 : 301 306.[PubMed]

Tables

Generic image for table
Table 1

CsrA and its antagonists

Citation: Romeo T, Babitzke P. 2019. Global Regulation by CsrA and Its RNA Antagonists, p 341-354. In Storz G, Papenfort K (ed), Regulating with RNA in Bacteria and Archaea. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.RWR-0009-2017

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error