1887

Chapter 29 : Cross-Regulation between Bacteria and Phages at a Posttranscriptional Level

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Cross-Regulation between Bacteria and Phages at a Posttranscriptional Level, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781683670247/9781683670230_Chap29-1.gif /docserver/preview/fulltext/10.1128/9781683670247/9781683670230_Chap29-2.gif

Abstract:

The impact that the study of phages, both in their lytic form and as prophages integrated into bacterial chromosomes, has had on molecular biology and microbiology is hard to overstate. The ease of phage manipulation helped establish several of the central dogmas in molecular biology. For example, characterization of various phage DNA polymerases contributed to the understanding of replication ( ), and models of transcription regulation were greatly influenced by studies of I, the phage λ repressor ( ). Phages also have continually provided important tools such as transduction, the phage-assisted movement of DNA from one bacterium to another, which has been an essential tool since the early years of molecular biology ( ). As another example, the development of chain termination DNA-sequencing approaches benefited from single-stranded DNA cloning vectors derived from phage M13 ( ).

Citation: Altuvia S, Storz G, Papenfort K. 2019. Cross-Regulation between Bacteria and Phages at a Posttranscriptional Level, p 501-514. In Storz G, Papenfort K (ed), Regulating with RNA in Bacteria and Archaea. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.RWR-0027-2018
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Repression of both prophage- and bacterial-encoded mRNAs by sRNAs encoded by horizontally acquired elements and the bacterial core genome. (A) Following host-cell invasion, the prophage-encoded sRNA PinT (purple) is activated by the core genome-encoded transcription factor PhoP (blue). PinT is an Hfq-binding sRNA that regulates multiple target genes through direct base-pairing. These include the mRNAs of the two horizontally acquired effector proteins, SopE and SopE2, as well as the core genome-encoded mRNA. The Crp protein acts as an activator of SPI-2 (intracellular) virulence genes of . (B) The core genome-encoded (blue) OxyS sRNA is activated by the OxyR transcription factor under conditions of oxidative stress. OxyS associates with Hfq to regulate at least two targets: the mRNA encoding the FhlA transcription regulator of formate metabolism and the transcript encoding NusG, an important transcription termination factor. OxyS repression of NusG, which normally blocks expression of the prophage-encoded (purple) KilR protein together with the Rho termination factor, results in increased production of KilR, which transiently inhibits cell division.

Citation: Altuvia S, Storz G, Papenfort K. 2019. Cross-Regulation between Bacteria and Phages at a Posttranscriptional Level, p 501-514. In Storz G, Papenfort K (ed), Regulating with RNA in Bacteria and Archaea. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.RWR-0027-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Prophage-encoded sRNAs that regulate the expression of host genes. (A) The prophage-encoded (purple) sRNA DicF is processed from a polycistronic transcript by RNase E, and, for the second DicF isoform, by RNase III. DicF associates with Hfq to repress synthesis of the core genome-encoded (blue) FtsZ protein, required for cell division, as well as XylR, PykA, and ManX, all involved in carbon metabolism. (B) Esr41 is a prophage-encoded (purple) sRNA that binds Hfq to inhibit translation of the core genome-encoded (blue) , , and mRNAs. The gene products of the mRNAs are involved in iron metabolism, and repression of results in colicin resistance. Esr41 also leads to increased motility by upregulation of FliC; however, the molecular mechanism underlying this process has not yet been determined.

Citation: Altuvia S, Storz G, Papenfort K. 2019. Cross-Regulation between Bacteria and Phages at a Posttranscriptional Level, p 501-514. In Storz G, Papenfort K (ed), Regulating with RNA in Bacteria and Archaea. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.RWR-0027-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Prophage-encoded and core genome-encoded sRNAs that act as sponges to block the activities of core-encoded sRNAs. The prophage-encoded (purple) AgvB sRNA, as well as the core genome-encoded sRNA (blue) SroC use Hfq to base-pair with the GcvB sRNA to inhibit the function of the GcvB global regulator of amino acid uptake and metabolism. SroC is generated from RNase E-mediated endonucleolytic processing of a polycistronic transcript, while AgvB is transcribed from a freestanding gene.

Citation: Altuvia S, Storz G, Papenfort K. 2019. Cross-Regulation between Bacteria and Phages at a Posttranscriptional Level, p 501-514. In Storz G, Papenfort K (ed), Regulating with RNA in Bacteria and Archaea. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.RWR-0027-2018
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781683670247.chap29
1. Rittie L,, Perbal B . 2008. Enzymes used in molecular biology: a useful guide. J Cell Commun Signal 2 : 25 45.[CrossRef][PubMed]
2. Benkovic SJ,, Spiering MM . 2017. Understanding DNA replication by the bacteriophage T4 replisome. J Biol Chem 292 : 18434 18442.[CrossRef][PubMed]
3. Dodd IB,, Shearwin KE,, Egan JB . 2005. Revisited gene regulation in bacteriophage λ. Curr Opin Genet Dev 15 : 145 152.[CrossRef][PubMed]
4. Herskowitz I . 1973. Control of gene expression in bacteriophage lambda. Annu Rev Genet 7 : 289 324.[CrossRef][PubMed]
5. Zinder ND,, Lederberg J . 1952. Genetic exchange in Salmonella. J Bacteriol 64 : 679 699.[PubMed]
6. Salmond GP,, Fineran PC . 2015. A century of the phage: past, present and future. Nat Rev Microbiol 13 : 777 786.[CrossRef][PubMed]
7. Yanisch-Perron C,, Vieira J,, Messing J . 1985. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33 : 103 119.[CrossRef][PubMed]
8. Brüssow H,, Canchaya C,, Hardt WD . 2004. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68 : 560 602.[CrossRef][PubMed]
9. Daubin V,, Ochman H . 2004. Start-up entities in the origin of new genes. Curr Opin Genet Dev 14 : 616 619.[CrossRef][PubMed]
10. Pedulla ML,, Ford ME,, Houtz JM,, Karthikeyan T,, Wadsworth C,, Lewis JA,, Jacobs-Sera D,, Falbo J,, Gross J,, Pannunzio NR,, Brucker W,, Kumar V,, Kandasamy J,, Keenan L,, Bardarov S,, Kriakov J,, Lawrence JG,, Jacobs WR Jr,, Hendrix RW,, Hatfull GF . 2003. Origins of highly mosaic mycobacteriophage genomes. Cell 113 : 171 182.[CrossRef]
11. Soucy SM,, Huang J,, Gogarten JP . 2015. Horizontal gene transfer: building the web of life. Nat Rev Genet 16 : 472 482.[CrossRef][PubMed]
12. García-Aljaro C,, Ballesté E,, Muniesa M . 2017. Beyond the canonical strategies of horizontal gene transfer in prokaryotes. Curr Opin Microbiol 38 : 95 105.[CrossRef][PubMed]
13. Novick RP,, Christie GE,, Penadés JR . 2010. The phage-related chromosomal islands of Gram-positive bacteria. Nat Rev Microbiol 8 : 541 551.[CrossRef][PubMed]
14. Dorman CJ . 2014. H-NS-like nucleoid-associated proteins, mobile genetic elements and horizontal gene transfer in bacteria. Plasmid 75 : 1 11.[CrossRef][PubMed]
15. Feiner R,, Argov T,, Rabinovich L,, Sigal N,, Borovok I,, Herskovits AA . 2015. A new perspective on lysogeny: prophages as active regulatory switches of bacteria. Nat Rev Microbiol 13 : 641 650.[CrossRef][PubMed]
16. Canchaya C,, Fournous G,, Brüssow H . 2004. The impact of prophages on bacterial chromosomes. Mol Microbiol 53 : 9 18.[CrossRef][PubMed]
17. Wright AV,, Nuñez JK,, Doudna JA . 2016. Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering. Cell 164 : 29 44.[CrossRef][PubMed]
18. Bardwell VJ,, Wickens M . 1990. Purification of RNA and RNA-protein complexes by an R17 coat protein affinity method. Nucleic Acids Res 18 : 6587 6594.[CrossRef][PubMed]
19. Chen Y,, Varani G . 2013. Engineering RNA-binding proteins for biology. FEBS J 280 : 3734 3754.[CrossRef][PubMed]
20. Krinke L,, Wulff DL . 1987. OOP RNA, produced from multicopy plasmids, inhibits λ cII gene expression through an RNase III-dependent mechanism. Genes Dev 1 : 1005 1013.[CrossRef][PubMed]
21. Hayes S,, Szybalski W . 1973. Control of short leftward transcripts from the immunity and ori regions in induced coliphage lambda. Mol Gen Genet 126 : 275 290.[CrossRef][PubMed]
22. Krinke L,, Wulff DL . 1990. RNase III-dependent hydrolysis of λ cII- O gene mRNA mediated by λ OOP antisense RNA. Genes Dev 4 : 2223 2233.[CrossRef][PubMed]
23. Franze de Fernandez MT,, Eoyang L,, August JT . 1968. Factor fraction required for the synthesis of bacteriophage Qβ-RNA. Nature 219 : 588 590.[CrossRef][PubMed]
24. Barrera I,, Schuppli D,, Sogo JM,, Weber H . 1993. Different mechanisms of recognition of bacteriophage Qβ plus and minus strand RNAs by Qβ replicase. J Mol Biol 232 : 512 521.[CrossRef][PubMed]
25. Waldor MK,, Mekalanos JJ . 1996. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272 : 1910 1914.[CrossRef][PubMed]
26. Ehrbar K,, Hardt WD . 2005. Bacteriophage-encoded type III effectors in Salmonella enterica subspecies 1 serovar Typhimurium. Infect Genet Evol 5 : 1 9.[PubMed]
27. LaRock DL,, Chaudhary A,, Miller SI . 2015. Salmonellae interactions with host processes. Nat Rev Microbiol 13 : 191 205.[CrossRef][PubMed]
28. Bobrovskyy M,, Vanderpool CK . 2013. Regulation of bacterial metabolism by small RNAs using diverse mechanisms. Annu Rev Genet 47 : 209 232.[CrossRef][PubMed]
29. Papenfort K,, Podkaminski D,, Hinton JC,, Vogel J . 2012. The ancestral SgrS RNA discriminates horizontally acquired Salmonella mRNAs through a single G-U wobble pair. Proc Natl Acad Sci U S A 109 : E757 E764.[CrossRef][PubMed]
30. Papenfort K,, Espinosa E,, Casadesús J,, Vogel J . 2015. Small RNA-based feedforward loop with AND-gate logic regulates extrachromosomal DNA transfer in Salmonella. Proc Natl Acad Sci U S A 112 : E4772 E4781.[CrossRef][PubMed]
31. Westermann AJ,, Förstner KU,, Amman F,, Barquist L,, Chao Y,, Schulte LN,, Müller L,, Reinhardt R,, Stadler PF,, Vogel J . 2016. Dual RNA-seq unveils noncoding RNA functions in host-pathogen interactions. Nature 529 : 496 501.[CrossRef][PubMed]
32. Gong H,, Vu GP,, Bai Y,, Chan E,, Wu R,, Yang E,, Liu F,, Lu S . 2011. A Salmonella small non-coding RNA facilitates bacterial invasion and intracellular replication by modulating the expression of virulence factors. PLoS Pathog 7 : e1002120.[CrossRef][PubMed]
33. Fröhlich KS,, Papenfort K . 2016. Interplay of regulatory RNAs and mobile genetic elements in enteric pathogens. Mol Microbiol 101 : 701 713.[CrossRef][PubMed]
34. Pichon C,, du Merle L,, Caliot ME,, Trieu-Cuot P,, Le Bouguénec C . 2012. An in silico model for identification of small RNAs in whole bacterial genomes: characterization of antisense RNAs in pathogenic Escherichia coli and Streptococcus agalactiae strains. Nucleic Acids Res 40 : 2846 2861.[CrossRef][PubMed]
35. Pichon C,, du Merle L,, Lequeutre I,, Le Bouguénec C . 2013. The AfaR small RNA controls expression of the AfaD-VIII invasin in pathogenic Escherichia coli strains. Nucleic Acids Res 41 : 5469 5482.[CrossRef][PubMed]
36. Bradley ES,, Bodi K,, Ismail AM,, Camilli A . 2011. A genome-wide approach to discovery of small RNAs involved in regulation of virulence in Vibrio cholerae. PLoS Pathog 7 : e1002126.[CrossRef][PubMed]
37. Kirn TJ,, Bose N,, Taylor RK . 2003. Secretion of a soluble colonization factor by the TCP type 4 pilus biogenesis pathway in Vibrio cholerae. Mol Microbiol 49 : 81 92.[CrossRef][PubMed]
38. Altuvia S,, Weinstein-Fischer D,, Zhang A,, Postow L,, Storz G . 1997. A small, stable RNA induced by oxidative stress: role as a pleiotropic regulator and antimutator. Cell 90 : 43 53.[CrossRef]
39. Zhang A,, Wassarman KM,, Ortega J,, Steven AC,, Storz G . 2002. The Sm-like Hfq protein increases OxyS RNA interaction with target mRNAs. Mol Cell 9 : 11 22.[CrossRef][PubMed]
40. Altuvia S,, Zhang A,, Argaman L,, Tiwari A,, Storz G . 1998. The Escherichia coli OxyS regulatory RNA represses fhlA translation by blocking ribosome binding. EMBO J 17 : 6069 6075.[CrossRef][PubMed]
41. Barshishat S,, Elgrably-Weiss M,, Edelstein J,, Georg J,, Govindarajan S,, Haviv M,, Wright PR,, Hess WR,, Altuvia S . 2017. OxyS small RNA induces cell cycle arrest to allow DNA damage repair. EMBO J 37 : 413 426.[PubMed]
42. Cardinale CJ,, Washburn RS,, Tadigotla VR,, Brown LM,, Gottesman ME,, Nudler E . 2008. Termination factor Rho and its cofactors NusA and NusG silence foreign DNA in E. coli. Science 320 : 935 938.[CrossRef]
43. Conter A,, Bouché JP,, Dassain M . 1996. Identification of a new inhibitor of essential division gene ftsZ as the kil gene of defective prophage Rac. J Bacteriol 178 : 5100 5104.[CrossRef][PubMed]
44. Burke C,, Liu M,, Britton W,, Triccas JA,, Thomas T,, Smith AL,, Allen S,, Salomon R,, Harry E . 2013. Harnessing single cell sorting to identify cell division genes and regulators in bacteria. PLoS One 8 : e60964.[CrossRef][PubMed]
45. Hernández-Rocamora VM,, Alfonso C,, Margolin W,, Zorrilla S,, Rivas G . 2015. Evidence that bacteriophage λ Kil peptide inhibits bacterial cell division by disrupting FtsZ protofilaments and sequestering protein subunits. J Biol Chem 290 : 20325 20335.[CrossRef][PubMed]
46. Haeusser DP,, Hoashi M,, Weaver A,, Brown N,, Pan J,, Sawitzke JA,, Thomason LC,, Court DL,, Margolin W . 2014. The Kil peptide of bacteriophage λ blocks Escherichia coli cytokinesis via ZipA-dependent inhibition of FtsZ assembly. PLoS Genet 10 : e1004217.[CrossRef][PubMed]
47. Hershko-Shalev T,, Odenheimer-Bergman A,, Elgrably-Weiss M,, Ben-Zvi T,, Govindarajan S,, Seri H,, Papenfort K,, Vogel J,, Altuvia S . 2017. Gifsy-1 prophage IsrK with dual function as small and messenger RNA modulates vital bacterial machineries. PLoS Genet 12 : e1005975.[CrossRef][PubMed]
48. Fozo EM,, Makarova KS,, Shabalina SA,, Yutin N,, Koonin EV,, Storz G . 2010. Abundance of type I toxin-antitoxin systems in bacteria: searches for new candidates and discovery of novel families. Nucleic Acids Res 38 : 3743 3759.[CrossRef][PubMed]
49. Thomason MK,, Bischler T,, Eisenbart SK,, Förstner KU,, Zhang A,, Herbig A,, Nieselt K,, Sharma CM,, Storz G . 2015. Global transcriptional start site mapping using differential RNA sequencing reveals novel antisense RNAs in Escherichia coli. J Bacteriol 197 : 18 28.[CrossRef][PubMed]
50. Guo Y,, Quiroga C,, Chen Q,, McAnulty MJ,, Benedik MJ,, Wood TK,, Wang X . 2014. RalR (a DNase) and RalA (a small RNA) form a type I toxin-antitoxin system in Escherichia coli. Nucleic Acids Res 42 : 6448 6462.[CrossRef][PubMed]
51. Shinhara A,, Matsui M,, Hiraoka K,, Nomura W,, Hirano R,, Nakahigashi K,, Tomita M,, Mori H,, Kanai A . 2011. Deep sequencing reveals as-yet-undiscovered small RNAs in Escherichia coli. BMC Genomics 12 : 428.[CrossRef][PubMed]
52. Bouché F,, Bouché JP . 1989. Genetic evidence that DicF, a second division inhibitor encoded by the Escherichia coli dicB operon, is probably RNA. Mol Microbiol 3 : 991 994.[CrossRef][PubMed]
53. Bejar S,, Bouché F,, Bouché JP . 1988. Cell division inhibition gene dicB is regulated by a locus similar to lambdoid bacteriophage immunity loci. Mol Gen Genet 212 : 11 19.[CrossRef][PubMed]
54. Faubladier M,, Cam K,, Bouché JP . 1990. Escherichia coli cell division inhibitor DicF-RNA of the dicB operon. Evidence for its generation in vivo by transcription termination and by RNase III and RNase E-dependent processing. J Mol Biol 212 : 461 471.[CrossRef]
55. Johnson JE,, Lackner LL,, Hale CA,, de Boer PA . 2004. ZipA is required for targeting of DMinC/DicB, but not DMinC/MinD, complexes to septal ring assemblies in Escherichia coli. J Bacteriol 186 : 2418 2429.[CrossRef][PubMed]
56. Zhou H,, Lutkenhaus J . 2005. MinC mutants deficient in MinD- and DicB-mediated cell division inhibition due to loss of interaction with MinD, DicB, or a septal component. J Bacteriol 187 : 2846 2857.[CrossRef][PubMed]
57. Balasubramanian D,, Ragunathan PT,, Fei J,, Vanderpool CK . 2016. A prophage-encoded small RNA controls metabolism and cell division in Escherichia coli. mSystems 1 : e00021-15.[CrossRef]
58. Tétart F,, Bouché JP . 1992. Regulation of the expression of the cell-cycle gene ftsZ by DicF antisense RNA. Division does not require a fixed number of FtsZ molecules. Mol Microbiol 6 : 615 620.[CrossRef][PubMed]
59. Zhang A,, Wassarman KM,, Rosenow C,, Tjaden BC,, Storz G,, Gottesman S . 2003. Global analysis of small RNA and mRNA targets of Hfq. Mol Microbiol 50 : 1111 1124.[CrossRef][PubMed]
60. Olejniczak M . 2011. Despite similar binding to the Hfq protein regulatory RNAs widely differ in their competition performance. Biochemistry 50 : 4427 4440.[CrossRef][PubMed]
61. Azam MS,, Vanderpool CK . 2017. Translational regulation by bacterial small RNAs via an unusual Hfq-dependent mechanism. Nucleic Acids Res 46 : 2585 2599.[PubMed]
62. Vogel J,, Luisi BF . 2011. Hfq and its constellation of RNA. Nat Rev Microbiol 9 : 578 589.[CrossRef][PubMed]
63. Murashko ON,, Lin-Chao S . 2017. Escherichia coli responds to environmental changes using enolasic degradosomes and stabilized DicF sRNA to alter cellular morphology. Proc Natl Acad Sci U S A 114 : E8025 E8034.[CrossRef][PubMed]
64. Raghavan R,, Kacharia FR,, Millar JA,, Sislak CD,, Ochman H . 2015. Genome rearrangements can make and break small RNA genes. Genome Biol Evol 7 : 557 566.[CrossRef][PubMed]
65. Kacharia FR,, Millar JA,, Raghavan R . 2017. Emergence of new sRNAs in enteric bacteria is associated with low expression and rapid evolution. J Mol Evol 84 : 204 213.[CrossRef][PubMed]
66. Tree JJ,, Granneman S,, McAteer SP,, Tollervey D,, Gally DL . 2014. Identification of bacteriophage-encoded anti-sRNAs in pathogenic Escherichia coli. Mol Cell 55 : 199 213.[CrossRef][PubMed]
67. Sudo N,, Soma A,, Muto A,, Iyoda S,, Suh M,, Kurihara N,, Abe H,, Tobe T,, Ogura Y,, Hayashi T,, Kurokawa K,, Ohnishi M,, Sekine Y . 2014. A novel small regulatory RNA enhances cell motility in enterohemorrhagic Escherichia coli. J Gen Appl Microbiol 60 : 44 50.[CrossRef][PubMed]
68. Waters SA,, McAteer SP,, Kudla G,, Pang I,, Deshpande NP,, Amos TG,, Leong KW,, Wilkins MR,, Strugnell R,, Gally DL,, Tollervey D,, Tree JJ . 2017. Small RNA interactome of pathogenic E. coli revealed through crosslinking of RNase E. EMBO J 36 : 374 387.[CrossRef][PubMed]
69. Padalon-Brauch G,, Hershberg R,, Elgrably-Weiss M,, Baruch K,, Rosenshine I,, Margalit H,, Altuvia S . 2008. Small RNAs encoded within genetic islands of Salmonella typhimurium show host-induced expression and role in virulence. Nucleic Acids Res 36 : 1913 1927.[CrossRef][PubMed]
70. Durand S,, Storz G . 2010. Reprogramming of anaerobic metabolism by the FnrS small RNA. Mol Microbiol 75 : 1215 1231.[CrossRef][PubMed]
71. Sharma CM,, Papenfort K,, Pernitzsch SR,, Mollenkopf HJ,, Hinton JC,, Vogel J . 2011. Pervasive post-transcriptional control of genes involved inamino acid metabolism by the Hfq-dependent GcvB small RNA. Mol Microbiol 81 : 1144 1165.[CrossRef][PubMed]
72. Miyakoshi M,, Chao Y,, Vogel J . 2015. Cross talk between ABC transporter mRNAs via a target mRNA-derived sponge of the GcvB small RNA. EMBO J 34 : 1478 1492.[CrossRef][PubMed]
73. Schnaitman C,, Smith D,, de Salsas MF . 1975. Temperate bacteriophage which causes the production of a new major outer membrane protein by Escherichia coli. J Virol 15 : 1121 1130.[PubMed]
74. Castillo-Keller M,, Vuong P,, Misra R . 2006. Novel mechanism of Escherichia coli porin regulation. J Bacteriol 188 : 576 586.[CrossRef][PubMed]
75. Chao Y,, Papenfort K,, Reinhardt R,, Sharma CM,, Vogel J . 2012. An atlas of Hfq-bound transcripts reveals 3′ UTRs as a genomic reservoir of regulatory small RNAs. EMBO J 31 : 4005 4019.[CrossRef][PubMed]
76. Chao Y,, Vogel J . 2016. A 3′ UTR-derived small RNA provides the regulatory noncoding arm of the inner membrane stress response. Mol Cell 61 : 352 363.[CrossRef][PubMed]
77. Papenfort K,, Förstner KU,, Cong JP,, Sharma CM,, Bassler BL . 2015. Differential RNA-seq of Vibrio cholerae identifies the VqmR small RNA as a regulator of biofilm formation. Proc Natl Acad Sci U S A 112 : E766 E775.[CrossRef][PubMed]
78. Davis BM,, Waldor MK . 2007. RNase E-dependent processing stabilizes MicX, a Vibrio cholerae sRNA. Mol Microbiol 65 : 373 385.[CrossRef][PubMed]
79. Nejman-Faleńczyk B,, Bloch S,, Licznerska K,, Dydecka A,, Felczykowska A,, Topka G,, Węgrzyn A,, Węgrzyn G . 2015. A small, microRNA-size, ribonucleic acid regulating gene expression and development of Shiga toxin-converting bacteriophage Φ24 B. Sci Rep 5 : 10080.[CrossRef][PubMed]
80. Bartel DP . 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116 : 281 297.[CrossRef][PubMed]
81. Bloch S,, Węgrzyn A,, Węgrzyn G,, Nejman-Faleńczyk B . 2017. Small and smaller—sRNAs and microRNAs in the regulation of toxin gene expression in prokaryotic cells: a mini-review. Toxins (Basel) 9 : E181.[CrossRef][PubMed]
82. Chevallereau A,, Blasdel BG,, De Smet J,, Monot M,, Zimmermann M,, Kogadeeva M,, Sauer U,, Jorth P,, Whiteley M,, Debarbieux L,, Lavigne R . 2016. Next-generation “-omics” approaches reveal a massive alteration of host RNA metabolism during bacteriophage infection of Pseudomonas aeruginosa. PLoS Genet 12 : e1006134.[CrossRef][PubMed]
83. Mraheil MA,, Billion A,, Mohamed W,, Mukherjee K,, Kuenne C,, Pischimarov J,, Krawitz C,, Retey J,, Hartsch T,, Chakraborty T,, Hain T . 2011. The intracellular sRNA transcriptome of Listeria monocytogenes during growth in macrophages. Nucleic Acids Res 39 : 4235 4248.[CrossRef][PubMed]
84. Dedrick RM,, Marinelli LJ,, Newton GL,, Pogliano K,, Pogliano J,, Hatfull GF . 2013. Functional requirements for bacteriophage growth: gene essentiality and expression in mycobacteriophage Giles. Mol Microbiol 88 : 577 589.[CrossRef][PubMed]
85. Qi D,, Alawneh AM,, Yonesaki T,, Otsuka Y . 2015. Rapid degradation of host mRNAs by stimulation of RNase E activity by Srd of bacteriophage T4. Genetics 201 : 977 987.[CrossRef][PubMed]
86. Marchand I,, Nicholson AW,, Dreyfus M . 2001. Bacteriophage T7 protein kinase phosphorylates RNase E and stabilizes mRNAs synthesized by T7 RNA polymerase. Mol Microbiol 42 : 767 776.[CrossRef][PubMed]
87. Mayer JE,, Schweiger M . 1983. RNase III is positively regulated by T7 protein kinase. J Biol Chem 258 : 5340 5343.[PubMed]
88. Van den Bossche A,, Hardwick SW,, Ceyssens PJ,, Hendrix H,, Voet M,, Dendooven T,, Bandyra KJ,, De Maeyer M,, Aertsen A,, Noben JP,, Luisi BF,, Lavigne R . 2016. Structural elucidation of a novel mechanism for the bacteriophage-based inhibition of the RNA degradosome. eLife 5 : e16413.[CrossRef][PubMed]
89. Hatfull GF . 2015. Dark matter of the biosphere: the amazing world of bacteriophage diversity. J Virol 89 : 8107 8110.[CrossRef][PubMed]
90. Decker CJ,, Parker R . 2014. Analysis of double-stranded RNA from microbial communities identifies double-stranded RNA virus-like elements. Cell Rep 7 : 898 906.[CrossRef][PubMed]
91. Kauffman KM,, Hussain FA,, Yang J,, Arevalo P,, Brown JM,, Chang WK,, VanInsberghe D,, Elsherbini J,, Sharma RS,, Cutler MB,, Kelly L,, Polz MF . 2018. A major lineage of non-tailed dsDNA viruses as unrecognized killers of marine bacteria. Nature 554 : 118 122.[CrossRef][PubMed]
92. Krishnamurthy SR,, Janowski AB,, Zhao G,, Barouch D,, Wang D . 2016. Hyperexpansion of RNA bacteriophage diversity. PLoS Biol 14 : e1002409.[CrossRef][PubMed]
93. Weisberg RA,, Gottesman ME . 1999. Processive antitermination. J Bacteriol 181 : 359 367.[PubMed]
94. Martinez-Salas E,, Francisco-Velilla R,, Fernandez-Chamorro J,, Embarek AM . 2017. Insights into structural and mechanistic features of viral IRES elements. Front Microbiol 8 : 2629.[CrossRef][PubMed]
95. Weinberg Z,, Lünse CE,, Corbino KA,, Ames TD,, Nelson JW,, Roth A,, Perkins KR,, Sherlock ME,, Breaker RR . 2017. Detection of 224 candidate structured RNAs by comparative analysis of specific subsets of intergenic regions. Nucleic Acids Res 45 : 10811 10823.[CrossRef][PubMed]
96. Weinberg Z,, Perreault J,, Meyer MM,, Breaker RR . 2009. Exceptional structured noncoding RNAs revealed by bacterial metagenome analysis. Nature 462 : 656 659.[CrossRef][PubMed]
97. Updegrove TB,, Shabalina SA,, Storz G . 2015. How do base-pairing small RNAs evolve? FEMS Microbiol Rev 39 : 379 391.[CrossRef][PubMed]
98. Wassarman KM,, Repoila F,, Rosenow C,, Storz G,, Gottesman S . 2001. Identification of novel small RNAs using comparative genomics and microarrays. Genes Dev 15 : 1637 1651.[CrossRef][PubMed]
99. Balbontín R,, Figueroa-Bossi N,, Casadesús J,, Bossi L . 2008. Insertion hot spot for horizontally acquired DNA within a bidirectional small-RNA locus in Salmonella enterica. J Bacteriol 190 : 4075 4058.[CrossRef][PubMed]
100. Reiter WD,, Palm P,, Yeats S . 1989. Transfer RNA genes frequently serve as integration sites for prokaryotic genetic elements. Nucleic Acids Res 17 : 1907 1914.[CrossRef][PubMed]
101. Olejniczak M,, Storz G . 2017. ProQ/FinO-domain proteins: another ubiquitous family of RNA matchmakers? Mol Microbiol 104 : 905 915.[CrossRef][PubMed]
102. Smirnov A,, Förstner KU,, Holmqvist E,, Otto A,, Günster R,, Becher D,, Reinhardt R,, Vogel J . 2016. Grad-seq guides the discovery of ProQ as a major small RNA-binding protein. Proc Natl Acad Sci U S A 113 : 11591 11596.[CrossRef][PubMed]
103. Chen X,, Sim S,, Wurtmann EJ,, Feke A,, Wolin SL . 2014. Bacterial noncoding Y RNAs are widespread and mimic tRNAs. RNA 20 : 1715 1724.[CrossRef][PubMed]
104. Esvelt KM,, Carlson JC,, Liu DR . 2011. A system for the continuous directed evolution of biomolecules. Nature 472 : 499 503.[CrossRef][PubMed]
105. Rodrigo G,, Landrain TE,, Jaramillo A . 2012. De novo automated design of small RNA circuits for engineering synthetic riboregulation in living cells. Proc Natl Acad Sci U S A 109 : 15271 15276.[CrossRef][PubMed]
106. Brödel AK,, Isalan M,, Jaramillo A . 2017. Engineering of biomolecules by bacteriophage directed evolution. Curr Opin Biotechnol 51 : 32 38.[CrossRef][PubMed]
107. Lu TK,, Koeris MS . 2011. The next generation of bacteriophage therapy. Curr Opin Microbiol 14 : 524 531.[CrossRef][PubMed]
108. Citorik RJ,, Mimee M,, Lu TK . 2014. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat Biotechnol 32 : 1141 1145.[CrossRef][PubMed]

Tables

Generic image for table
Table 1

Examples of posttranscriptional cross-regulation between bacteria and phages

Citation: Altuvia S, Storz G, Papenfort K. 2019. Cross-Regulation between Bacteria and Phages at a Posttranscriptional Level, p 501-514. In Storz G, Papenfort K (ed), Regulating with RNA in Bacteria and Archaea. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.RWR-0027-2018

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error