Chapter 13 : Single-Cell Metabolism and Stress Responses in Complex Host Tissues

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Single-Cell Metabolism and Stress Responses in Complex Host Tissues, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781683670261/9781683670254_Chap12-1.gif /docserver/preview/fulltext/10.1128/9781683670261/9781683670254_Chap12-2.gif


Infectious diseases are the second most important cause of death worldwide ( ). Public health measures are partially successful in managing infectious disease burden, but major obstacles remain. Efficacious vaccines for major pathogens are still lacking ( ), and the dramatic decline in the development of novel antimicrobials over the last 20 years ( ) together with rapidly rising antimicrobial resistance is substantially reducing treatment options ( ). The emerging crisis in infectious diseases is a major threat to human health.

Citation: Bumann D. 2019. Single-Cell Metabolism and Stress Responses in Complex Host Tissues, p 179-196. In Cossart P, Roy C, Sansonetti P (ed), Bacteria and Intracellularity. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.BAI-0009-2019
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

A paradigm shift in pathogen analysis in host tissues. () Common methods relied on population-level readouts that revealed average properties. This revealed many exciting insights, including identification of important vaccine antigens and antimicrobial targets. () Single-cell technologies reveal an additional striking heterogeneity of pathogen properties and fates that range from vigorous growth to efficient killing. All these diverse host-pathogen encounters can occur in the same host tissue at the same time. Overall disease outcome is the net result of this underlying complexity. Identifying the molecular mechanisms that distinguish successful (for the host) from failing encounters could provide a basis for entirely novel strategies in infection control, by broadening successful host antimicrobial attacks and closing permissive niches in which pathogen subsets can thrive.

Citation: Bumann D. 2019. Single-Cell Metabolism and Stress Responses in Complex Host Tissues, p 179-196. In Cossart P, Roy C, Sansonetti P (ed), Bacteria and Intracellularity. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.BAI-0009-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Working model for -host interactions in an infected spleen. () interactions with various phagocyte types. proliferates in macrophages (MΦ) and spreads to other cells. When entering a macrophage, a cell is exposed to a short and sublethal oxidative burst. Infiltrating NK and T cells secrete IFN-γ, which activates some macrophages, enabling them to kill intracellular salmonellae in part through guanylate-binding protein 2 (GBP2). Infection foci also attract inflammatory monocytes (iMO) and polymorphonuclear neutrophils (PMN), which kill intracellular with hypochlorite (HOCl; bleach). Inflammatory monocytes generate and release large amounts of NO, which diffuses to regional salmonellae, which in turn upregulate detoxifying and damage repair enzymes. () Lesion formation and spreading in infected tissues. Growing infection foci attract inflammatory monocytes (blue) and neutrophils (magenta) that kill many . However, some salmonellae escape in infected macrophages (cyan) and start new infection foci elsewhere. Early infection foci are detected by NK and T cells (green), which secrete IFN-γ and activate some of the local macrophages. Other macrophages move to yet other tissue regions, thereby spreading the infection and driving disease progression.

Citation: Bumann D. 2019. Single-Cell Metabolism and Stress Responses in Complex Host Tissues, p 179-196. In Cossart P, Roy C, Sansonetti P (ed), Bacteria and Intracellularity. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.BAI-0009-2019
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Lozano R, , et al . 2012. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380 : 2095 2128. ERRATUM Lancet 381:628.[CrossRef]
2. Zinkernagel RM,, Hengartner H . 2004. On immunity against infections and vaccines: credo 2004. Scand J Immunol 60 : 9 13.[CrossRef][PubMed]
3. Kaufmann SH . 2007. The contribution of immunology to the rational design of novel antibacterial vaccines. Nat Rev Microbiol 5 : 491 504.[CrossRef][PubMed]
4. Epstein JE,, Giersing B,, Mullen G,, Moorthy V,, Richie TL . 2007. Malaria vaccines: are we getting closer? Curr Opin Mol Ther 9 : 12 24.[PubMed]
5. Spellberg B,, Powers JH,, Brass EP,, Miller LG,, Edwards JE Jr . 2004. Trends in antimicrobial drug development: implications for the future. Clin Infect Dis 38 : 1279 1286.[CrossRef][PubMed]
6. Norrby SR,, Nord CE,, Finch R, European Society of Clinical Microbiology and Infectious Diseases . 2005. Lack of development of new antimicrobial drugs: a potential serious threat to public health. Lancet Infect Dis 5 : 115 119.[CrossRef]
7. Kaldalu N,, Hauryliuk V,, Tenson T . 2016. Persisters—as elusive as ever. Appl Microbiol Biotechnol 100 : 6545 6553.[CrossRef][PubMed]
8. Rowe SE,, Conlon BP,, Keren I,, Lewis K . 2016. Persisters: methods for isolation and identifying contributing factors—a review. Methods Mol Biol 1333 : 17 28.[CrossRef][PubMed]
9. Balaban NQ,, Gerdes K,, Lewis K,, McKinney JD . 2013. A problem of persistence: still more questions than answers? Nat Rev Microbiol 11 : 587 591.[CrossRef][PubMed]
10. Maisonneuve E,, Gerdes K . 2014. Molecular mechanisms underlying bacterial persisters. Cell 157 : 539 548.[CrossRef][PubMed]
11. Davis KM,, Isberg RR . 2016. Defining heterogeneity within bacterial populations via single cell approaches. BioEssays 38 : 782 790.[CrossRef][PubMed]
12. Bumann D . 2015. Heterogeneous host-pathogen encounters: act locally, think globally. Cell Host Microbe 17 : 13 19.[CrossRef][PubMed]
13. Kreibich S,, Hardt WD . 2015. Experimental approaches to phenotypic diversity in infection. Curr Opin Microbiol 27 : 25 36.[CrossRef][PubMed]
14. Prideaux B,, Via LE,, Zimmerman MD,, Eum S,, Sarathy J,, O’Brien P,, Chen C,, Kaya F,, Weiner DM,, Chen PY,, Song T,, Lee M,, Shim TS,, Cho JS,, Kim W,, Cho SN,, Olivier KN,, Barry CE III,, Dartois V . 2015. The association between sterilizing activity and drug distribution into tuberculosis lesions. Nat Med 21 : 1223 1227.[CrossRef][PubMed]
15. Lehar SM,, Pillow T,, Xu M,, Staben L,, Kajihara KK,, Vandlen R,, DePalatis L,, Raab H,, Hazenbos WL,, Morisaki JH,, Kim J,, Park S,, Darwish M,, Lee BC,, Hernandez H,, Loyet KM,, Lupardus P,, Fong R,, Yan D,, Chalouni C,, Luis E,, Khalfin Y,, Plise E,, Cheong J,, Lyssikatos JP,, Strandh M,, Koefoed K,, Andersen PS,, Flygare JA,, Wah Tan M,, Brown EJ,, Mariathasan S . 2015. Novel antibody-antibiotic conjugate eliminates intracellular S. aureus. Nature 527 : 323 328.[CrossRef][PubMed]
16. Brauner A,, Fridman O,, Gefen O,, Balaban NQ . 2016. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat Rev Microbiol 14 : 320 330.[CrossRef][PubMed]
17. Malherbe ST,, Shenai S,, Ronacher K,, Loxton AG,, Dolganov G,, Kriel M,, Van T,, Chen RY,, Warwick J,, Via LE,, Song T,, Lee M,, Schoolnik G,, Tromp G,, Alland D,, Barry CE III,, Winter J,, Walzl G,, Lucas L,, van der Spuy G,, Stanley K,, Thiart L,, Smith B,, Du Plessis N,, Beltran CG,, Maasdorp E,, Ellmann A,, Choi H,, Joh J,, Dodd LE,, Allwood B,, Koegelenberg C,, Vorster M,, Griffith-Richards S, Catalysis TB–Biomarker Consortium . 2016. Persisting positron emission tomography lesion activity and Mycobacterium tuberculosis mRNA after tuberculosis cure. Nat Med 22 : 1094 1100. CORRIGENDUM Nat Med 23:526. CORRIGENDUM Nat Med 23:1499.[CrossRef]
18. Lenaerts A,, Barry CE III,, Dartois V . 2015. Heterogeneity in tuberculosis pathology, microenvironments and therapeutic responses. Immunol Rev 264 : 288 307.[CrossRef][PubMed]
19. Marakalala MJ,, Raju RM,, Sharma K,, Zhang YJ,, Eugenin EA,, Prideaux B,, Daudelin IB,, Chen PY,, Booty MG,, Kim JH,, Eum SY,, Via LE,, Behar SM,, Barry CE III,, Mann M,, Dartois V,, Rubin EJ . 2016. Inflammatory signaling in human tuberculosis granulomas is spatially organized. Nat Med 22 : 531 538.[CrossRef][PubMed]
20. Diard M,, Garcia V,, Maier L,, Remus-Emsermann MN,, Regoes RR,, Ackermann M,, Hardt WD . 2013. Stabilization of cooperative virulence by the expression of an avirulent phenotype. Nature 494 : 353 356.[CrossRef][PubMed]
21. Ackermann M,, Stecher B,, Freed NE,, Songhet P,, Hardt WD,, Doebeli M . 2008. Self-destructive cooperation mediated by phenotypic noise. Nature 454 : 987 990.[CrossRef][PubMed]
22. Burton NA,, Schürmann N,, Casse O,, Steeb AK,, Claudi B,, Zankl J,, Schmidt A,, Bumann D . 2014. Disparate impact of oxidative host defenses determines the fate of Salmonella during systemic infection in mice. Cell Host Microbe 15 : 72 83.[CrossRef][PubMed]
23. Davis KM,, Mohammadi S,, Isberg RR . 2015. Community behavior and spatial regulation within a bacterial microcolony in deep tissue sites serves to protect against host attack. Cell Host Microbe 17 : 21 31.[CrossRef][PubMed]
24. Alemany A,, Florescu M,, Baron CS,, Peterson-Maduro J,, van Oudenaarden A . 2018. Whole-organism clone tracing using single-cell sequencing. Nature 556 : 108 112.[CrossRef][PubMed]
25. Saliba AE,, Santos SC,, Vogel J . 2017. New RNA-seq approaches for the study of bacterial pathogens. Curr Opin Microbiol 35 : 78 87.[CrossRef][PubMed]
26. Kang Y,, McMillan I,, Norris MH,, Hoang TT . 2015. Single prokaryotic cell isolation and total transcript amplification protocol for transcriptomic analysis. Nat Protoc 10 : 974 984.[CrossRef][PubMed]
27. Avital G,, Avraham R,, Fan A,, Hashimshony T,, Hung DT,, Yanai I . 2017. scDual-Seq: mapping the gene regulatory program of Salmonella infection by host and pathogen single-cell RNA-sequencing. Genome Biol 18 : 200.[CrossRef][PubMed]
28. Chong S,, Chen C,, Ge H,, Xie XS . 2014. Mechanism of transcriptional bursting in bacteria. Cell 158 : 314 326.[CrossRef][PubMed]
29. Taniguchi Y,, Choi PJ,, Li GW,, Chen H,, Babu M,, Hearn J,, Emili A,, Xie XS . 2010. Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329 : 533 538.[CrossRef][PubMed]
30. Zhang L,, Vertes A . 2017. Single-cell mass spectrometry approaches to explore cellular heterogeneity. Angew Chem Int Ed Engl 57 : 4466 4477.[PubMed]
31. Khan SM,, Franke-Fayard B,, Mair GR,, Lasonder E,, Janse CJ,, Mann M,, Waters AP . 2005. Proteome analysis of separated male and female gametocytes reveals novel sex-specific Plasmodium biology. Cell 121 : 675 687.[CrossRef][PubMed]
32. Ackermann M . 2015. A functional perspective on phenotypic heterogeneity in microorganisms. Nat Rev Microbiol 13 : 497 508.[CrossRef][PubMed]
33. Rodriguez EA,, Campbell RE,, Lin JY,, Lin MZ,, Miyawaki A,, Palmer AE,, Shu X,, Zhang J,, Tsien RY . 2017. The growing and glowing toolbox of fluorescent and photoactive proteins. Trends Biochem Sci 42 : 111 129.[CrossRef][PubMed]
34. Bumann D . 2002. Examination of Salmonella gene expression in an infected mammalian host using the green fluorescent protein and two-colour flow cytometry. Mol Microbiol 43 : 1269 1283.[CrossRef][PubMed]
35. Müller AJ,, Aeschlimann S,, Olekhnovitch R,, Dacher M,, Späth GF,, Bousso P . 2013. Photoconvertible pathogen labeling reveals nitric oxide control of Leishmania major infection in vivo via dampening of parasite metabolism. Cell Host Microbe 14 : 460 467.[CrossRef][PubMed]
36. Rollenhagen C,, Sörensen M,, Rizos K,, Hurvitz R,, Bumann D . 2004. Antigen selection based on expression levels during infection facilitates vaccine development for an intracellular pathogen. Proc Natl Acad Sci USA 101 : 8739 8744.[CrossRef][PubMed]
37. Bonde MT,, Pedersen M,, Klausen MS,, Jensen SI,, Wulff T,, Harrison S,, Nielsen AT,, Herrgård MJ,, Sommer MO . 2016. Predictable tuning of protein expression in bacteria. Nat Methods 13 : 233.[PubMed]
38. Wendland M,, Bumann D . 2002. Optimization of GFP levels for analyzing Salmonella gene expression during an infection. FEBS Lett 521 : 105 108.[CrossRef]
39. Rang C,, Galen JE,, Kaper JB,, Chao L . 2003. Fitness cost of the green fluorescent protein in gastrointestinal bacteria. Can J Microbiol 49 : 531 537.[CrossRef][PubMed]
40. Bienick MS,, Young KW,, Klesmith JR,, Detwiler EE,, Tomek KJ,, Whitehead TA . 2014. The interrelationship between promoter strength, gene expression, and growth rate. PLoS One 9 : e109105.[CrossRef][PubMed]
41. Knodler LA,, Bestor A,, Ma C,, Hansen-Wester I,, Hensel M,, Vallance BA,, Steele-Mortimer O . 2005. Cloning vectors and fluorescent proteins can significantly inhibit Salmonella enterica virulence in both epithelial cells and macrophages: implications for bacterial pathogenesis studies. Infect Immun 73 : 7027 7031.[CrossRef][PubMed]
42. Ceroni F,, Algar R,, Stan G-B,, Ellis T . 2015. Quantifying cellular capacity identifies gene expression designs with reduced burden. Nat Methods 12 : 415 418.[CrossRef][PubMed]
43. Lee EJ,, Pontes MH,, Groisman EA . 2013. A bacterial virulence protein promotes pathogenicity by inhibiting the bacterium’s own F 1F o ATP synthase. Cell 154 : 146 156.[CrossRef][PubMed]
44. Maglica Ž,, Özdemir E,, McKinney JD . 2015. Single-cell tracking reveals antibiotic-induced changes in mycobacterial energy metabolism. mBio 6 : e02236-14.[CrossRef][PubMed]
45. van der Heijden J,, Bosman ES,, Reynolds LA,, Finlay BB . 2015. Direct measurement of oxidative and nitrosative stress dynamics in Salmonella inside macrophages. Proc Natl Acad Sci USA 112 : 560 565.[CrossRef][PubMed]
46. Barat S,, Willer Y,, Rizos K,, Claudi B,, Mazé A,, Schemmer AK,, Kirchhoff D,, Schmidt A,, Burton N,, Bumann D . 2012. Immunity to intracellular Salmonella depends on surface-associated antigens. PLoS Pathog 8 : e1002966.[CrossRef][PubMed]
47. Roostalu J,, Jõers A,, Luidalepp H,, Kaldalu N,, Tenson T . 2008. Cell division in Escherichia coli cultures monitored at single cell resolution. BMC Microbiol 8 : 68.[CrossRef][PubMed]
48. Helaine S,, Thompson JA,, Watson KG,, Liu M,, Boyle C,, Holden DW . 2010. Dynamics of intracellular bacterial replication at the single cell level. Proc Natl Acad Sci USA 107 : 3746 3751.[CrossRef][PubMed]
49. Saliba AE,, Li L,, Westermann AJ,, Appenzeller S,, Stapels DA,, Schulte LN,, Helaine S,, Vogel J . 2016. Single-cell RNA-seq ties macrophage polarization to growth rate of intracellular Salmonella. Nat Microbiol 2 : 16206.[CrossRef][PubMed]
50. Helaine S,, Cheverton AM,, Watson KG,, Faure LM,, Matthews SA,, Holden DW . 2014. Internalization of Salmonella by macrophages induces formation of nonreplicating persisters. Science 343 : 204 208.[CrossRef][PubMed]
51. Terskikh A,, Fradkov A,, Ermakova G,, Zaraisky A,, Tan P,, Kajava AV,, Zhao X,, Lukyanov S,, Matz M,, Kim S,, Weissman I,, Siebert P . 2000. “Fluorescent timer”: protein that changes color with time. Science 290 : 1585 1588.[CrossRef][PubMed]
52. Claudi B,, Spröte P,, Chirkova A,, Personnic N,, Zankl J,, Schürmann N,, Schmidt A,, Bumann D . 2014. Phenotypic variation of Salmonella in host tissues delays eradication by antimicrobial chemotherapy. Cell 158 : 722 733.[CrossRef][PubMed]
53. Strack RL,, Strongin DE,, Mets L,, Glick BS,, Keenan RJ . 2010. Chromophore formation in DsRed occurs by a branched pathway. J Am Chem Soc 132 : 8496 8505.[CrossRef][PubMed]
54. Manina G,, Dhar N,, McKinney JD . 2015. Stress and host immunity amplify Mycobacterium tuberculosis phenotypic heterogeneity and induce nongrowing metabolically active forms. Cell Host Microbe 17 : 32 46.[CrossRef][PubMed]
55. Etzel M,, Mörl M . 2017. Synthetic riboswitches: from plug and pray toward plug and play. Biochemistry 56 : 1181 1198.[CrossRef][PubMed]
56. Curkić I,, Schütz M,, Oberhettinger P,, Diard M,, Claassen M,, Linke D,, Hardt WD . 2016. Epitope-tagged autotransporters as single-cell reporters for gene expression by a Salmonella Typhimurium wbaP mutant. PLoS One 11 : e0154828.[CrossRef][PubMed]
57. Kaiser P,, Regoes RR,, Dolowschiak T,, Wotzka SY,, Lengefeld J,, Slack E,, Grant AJ,, Ackermann M,, Hardt WD . 2014. Cecum lymph node dendritic cells harbor slow-growing bacteria phenotypically tolerant to antibiotic treatment. PLoS Biol 12 : e1001793.[CrossRef][PubMed]
58. Ao TT,, Feasey NA,, Gordon MA,, Keddy KH,, Angulo FJ,, Crump JA . 2015. Global burden of invasive nontyphoidal Salmonella disease, 2010. Emerg Infect Dis 21 : 941 949.[CrossRef][PubMed]
59. Crump JA,, Luby SP,, Mintz ED . 2004. The global burden of typhoid fever. Bull World Health Organ 82 : 346 353.[PubMed]
60. Marks F, , et al . 2017. Incidence of invasive salmonella disease in sub-Saharan Africa: a multicentre population-based surveillance study. Lancet Glob Health 5 : e310 e323.[CrossRef]
61. Mogasale V,, Maskery B,, Ochiai RL,, Lee JS,, Mogasale VV,, Ramani E,, Kim YE,, Park JK,, Wierzba TF . 2014. Burden of typhoid fever in low-income and middle-income countries: a systematic, literature-based update with risk-factor adjustment. Lancet Glob Health 2 : e570 e580.[CrossRef]
62. Wain J,, Hendriksen RS,, Mikoleit ML,, Keddy KH,, Ochiai RL . 2015. Typhoid fever. Lancet 385 : 1136 1145.[CrossRef]
63. Levine MM,, Simon R . 2018. The gathering storm: is untreatable typhoid fever on the way? mBio 9 : e00482-18.[CrossRef][PubMed]
64. Kariuki S,, Gordon MA,, Feasey N,, Parry CM . 2015. Antimicrobial resistance and management of invasive Salmonella disease. Vaccine 33( Suppl 3) : C21 C29.[CrossRef][PubMed]
65. Tsolis RM,, Xavier MN,, Santos RL,, Bäumler AJ . 2011. How to become a top model: impact of animal experimentation on human Salmonella disease research. Infect Immun 79 : 1806 1814.[CrossRef][PubMed]
66. Helaine S,, Kugelberg E . 2014. Bacterial persisters: formation, eradication, and experimental systems. Trends Microbiol 22 : 417 424.[CrossRef][PubMed]
67. Bumann D,, Cunrath O . 2017. Heterogeneity of Salmonella-host interactions in infected host tissues. Curr Opin Microbiol 39 : 57 63.[CrossRef][PubMed]
68. Seok J,, Warren HS,, Cuenca AG,, Mindrinos MN,, Baker HV,, Xu W,, Richards DR,, McDonald-Smith GP,, Gao H,, Hennessy L,, Finnerty CC,, López CM,, Honari S,, Moore EE,, Minei JP,, Cuschieri J,, Bankey PE,, Johnson JL,, Sperry J,, Nathens AB,, Billiar TR,, West MA,, Jeschke MG,, Klein MB,, Gamelli RL,, Gibran NS,, Brownstein BH,, Miller-Graziano C,, Calvano SE,, Mason PH,, Cobb JP,, Rahme LG,, Lowry SF,, Maier RV,, Moldawer LL,, Herndon DN,, Davis RW,, Xiao W,, Tompkins RG, Inflammation and Host Response to Injury, Large Scale Collaborative Research Program . 2013. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci USA 110 : 3507 3512.[CrossRef][PubMed]
69. Takao K,, Miyakawa T . 2015. Genomic responses in mouse models greatly mimic human inflammatory diseases. Proc Natl Acad Sci USA 112 : 1167 1172 CORRECTION Proc Natl Acad Sci USA 112:E1163–E1167.[CrossRef]
70. Kola I,, Landis J . 2004. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 3 : 711 716.[CrossRef][PubMed]
71. Bumann D,, Hueck C,, Aebischer T,, Meyer TF . 2000. Recombinant live Salmonella spp. for human vaccination against heterologous pathogens. FEMS Immunol Med Microbiol 27 : 357 364.[CrossRef][PubMed]
72. Dougan G,, John V,, Palmer S,, Mastroeni P . 2011. Immunity to salmonellosis. Immunol Rev 240 : 196 210.[CrossRef][PubMed]
73. Meunier E,, Dick MS,, Dreier RF,, Schürmann N,, Kenzelmann Broz D,, Warming S,, Roose-Girma M,, Bumann D,, Kayagaki N,, Takeda K,, Yamamoto M,, Broz P . 2014. Caspase-11 activation requires lysis of pathogen-containing vacuoles by IFN-induced GTPases. Nature 509 : 366 370.[CrossRef][PubMed]
74. Schürmann N,, Forrer P,, Casse O,, Li J,, Felmy B,, Burgener AV,, Ehrenfeuchter N,, Hardt WD,, Recher M,, Hess C,, Tschan-Plessl A,, Khanna N,, Bumann D . 2017. Myeloperoxidase targets oxidative host attacks to Salmonella and prevents collateral tissue damage. Nat Microbiol 2 : 16268.[CrossRef][PubMed]
75. Sheppard M,, Webb C,, Heath F,, Mallows V,, Emilianus R,, Maskell D,, Mastroeni P . 2003. Dynamics of bacterial growth and distribution within the liver during Salmonella infection. Cell Microbiol 5 : 593 600.[CrossRef][PubMed]
76. Kupz A,, Scott TA,, Belz GT,, Andrews DM,, Greyer M,, Lew AM,, Brooks AG,, Smyth MJ,, Curtiss R III,, Bedoui S,, Strugnell RA . 2013. Contribution of Thy1+ NK cells to protective IFN-γ production during Salmonella typhimurium infections. Proc Natl Acad Sci USA 110 : 2252 2257.[CrossRef][PubMed]
77. Pilonieta MC,, Moreland SM,, English CN,, Detweiler CS . 2014. Salmonella enterica infection stimulates macrophages to hemophagocytose. mBio 5 : e02211-14.[CrossRef][PubMed]
78. Steeb B,, Claudi B,, Burton NA,, Tienz P,, Schmidt A,, Farhan H,, Mazé A,, Bumann D . 2013. Parallel exploitation of diverse host nutrients enhances Salmonella virulence. PLoS Pathog 9 : e1003301.[CrossRef][PubMed]
79. Mastroeni P,, Vazquez-Torres A,, Fang FC,, Xu Y,, Khan S,, Hormaeche CE,, Dougan G . 2000. Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. II. Effects on microbial proliferation and host survival in vivo. J Exp Med 192 : 237 248.[CrossRef][PubMed]
80. Aussel L,, Zhao W,, Hébrard M,, Guilhon AA,, Viala JP,, Henri S,, Chasson L,, Gorvel JP,, Barras F,, Méresse S . 2011. Salmonella detoxifying enzymes are sufficient to cope with the host oxidative burst. Mol Microbiol 80 : 628 640.[CrossRef][PubMed]
81. McCormack RM,, de Armas LR,, Shiratsuchi M,, Fiorentino DG,, Olsson ML,, Lichtenheld MG,, Morales A,, Lyapichev K,, Gonzalez LE,, Strbo N,, Sukumar N,, Stojadinovic O,, Plano GV,, Munson GP,, Tomic-Canic M,, Kirsner RS,, Russell DG,, Podack ER . 2015. Perforin-2 is essential for intracellular defense of parenchymal cells and phagocytes against pathogenic bacteria. eLife 4 : e06508.[CrossRef][PubMed]
82. Thöne F,, Schwanhäusser B,, Becker D,, Ballmaier M,, Bumann D . 2007. FACS-isolation of Salmonella-infected cells with defined bacterial load from mouse spleen. J Microbiol Methods 71 : 220 224.[CrossRef][PubMed]
83. Brown SP,, Cornell SJ,, Sheppard M,, Grant AJ,, Maskell DJ,, Grenfell BT,, Mastroeni P . 2006. Intracellular demography and the dynamics of Salmonella enterica infections. PLoS Biol 4 : e349.[CrossRef][PubMed]
84. McLaughlin LM,, Xu H,, Carden SE,, Fisher S,, Reyes M,, Heilshorn SC,, Monack DM . 2014. A microfluidic-based genetic screen to identify microbial virulence factors that inhibit dendritic cell migration. Integr Biol 6 : 438 449.[CrossRef][PubMed]
85. Worley MJ,, Nieman GS,, Geddes K,, Heffron F . 2006. Salmonella typhimurium disseminates within its host by manipulating the motility of infected cells. Proc Natl Acad Sci USA 103 : 17915 17920.[CrossRef][PubMed]
86. Hughes D,, Andersson DI . 2017. Environmental and genetic modulation of the phenotypic expression of antibiotic resistance. FEMS Microbiol Rev 41 : 374 391.[CrossRef][PubMed]
87. Onufrak NJ,, Forrest A,, Gonzalez D . 2016. Pharmacokinetic and pharmacodynamic principles of anti-infective dosing. Clin Ther 38 : 1930 1947.[CrossRef][PubMed]
88. Piasecka B,, Duffy D,, Urrutia A,, Quach H,, Patin E,, Posseme C,, Bergstedt J,, Charbit B,, Rouilly V,, MacPherson CR,, Hasan M,, Albaud B,, Gentien D,, Fellay J,, Albert ML,, Quintana-Murci L, Milieu Intérieur Consortium . 2018. Distinctive roles of age, sex, and genetics in shaping transcriptional variation of human immune responses to microbial challenges. Proc Natl Acad Sci USA 115 : E488 E497.[CrossRef][PubMed]
89. Brodin P,, Davis MM . 2017. Human immune system variation. Nat Rev Immunol 17 : 21 29.[CrossRef][PubMed]
90. Conlon BP . 2014. Staphylococcus aureus chronic and relapsing infections: evidence of a role for persister cells. BioEssays 36 : 991 996.[CrossRef][PubMed]
91. World Health Organization . 2006. Brucellosis in Humans and Animals. World Health Organization, Geneva, Switzerland. www.who.int/csr/resources/publications/Brucellosis.pdf.
92. Guglietta A . 2017. Recurrent urinary tract infections in women: risk factors, etiology, pathogenesis and prophylaxis. Future Microbiol 12 : 239 246.[CrossRef][PubMed]
93. Onwuezobe IA,, Oshun PO,, Odigwe CC . 2012. Antimicrobials for treating symptomatic non-typhoidal Salmonella infection. Cochrane Database Syst Rev 11 : CD001167.
94. DePas WH,, Starwalt-Lee R,, Van Sambeek L,, Ravindra Kumar S,, Gradinaru V,, Newman DK . 2016. Exposing the three-dimensional biogeography and metabolic states of pathogens in cystic fibrosis sputum via hydrogel embedding, clearing, and rRNA labeling. mBio 7 : e00796-16.[CrossRef]
95. Cronan MR,, Rosenberg AF,, Oehlers SH,, Saelens JW,, Sisk DM,, Jurcic Smith KL,, Lee S,, Tobin DM . 2015. CLARITY and PACT-based imaging of adult zebrafish and mouse for whole-animal analysis of infections. Dis Model Mech 8 : 1643 1650.[CrossRef][PubMed]
96. Arena ET,, Campbell-Valois F-X,, Tinevez J-Y,, Nigro G,, Sachse M,, Moya-Nilges M,, Nothelfer K,, Marteyn B,, Shorte SL,, Sansonetti PJ . 2015. Bioimage analysis of Shigella infection reveals targeting of colonic crypts. Proc Natl Acad Sci USA 112 : E3282 E3290.[CrossRef][PubMed]
97. Lee JH,, Daugharthy ER,, Scheiman J,, Kalhor R,, Yang JL,, Ferrante TC,, Terry R,, Jeanty SS,, Li C,, Amamoto R,, Peters DT,, Turczyk BM,, Marblestone AH,, Inverso SA,, Bernard A,, Mali P,, Rios X,, Aach J,, Church GM . 2014. Highly multiplexed subcellular RNA sequencing in situ. Science 343 : 1360 1363.[CrossRef][PubMed]
98. Halpern KB,, Shenhav R,, Matcovitch-Natan O,, Tóth B,, Lemze D,, Golan M,, Massasa EE,, Baydatch S,, Landen S,, Moor AE,, Brandis A,, Giladi A,, Stokar-Avihail AS,, David E,, Amit I,, Itzkovitz S . 2017. Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature 542 : 352 356 ERRATUM Nature 543:742.[CrossRef]
99. Müller AJ,, Kaiser P,, Dittmar KE,, Weber TC,, Haueter S,, Endt K,, Songhet P,, Zellweger C,, Kremer M,, Fehling HJ,, Hardt WD . 2012. Salmonella gut invasion involves TTSS-2-dependent epithelial traversal, basolateral exit, and uptake by epithelium-sampling lamina propria phagocytes. Cell Host Microbe 11 : 19 32.[CrossRef][PubMed]
100. Egen JG,, Rothfuchs AG,, Feng CG,, Horwitz MA,, Sher A,, Germain RN . 2011. Intravital imaging reveals limited antigen presentation and T cell effector function in mycobacterial granulomas. Immunity 34 : 807 819.[CrossRef][PubMed]
101. Choong FX,, Richter-Dahlfors A . 2014. Intravital two-photon imaging to understand bacterial infections of the mammalian host. Methods Mol Biol 1197 : 87 100.[CrossRef][PubMed]
102. Ramakrishnan L . 2013. The zebrafish guide to tuberculosis immunity and treatment. Cold Spring Harb Symp Quant Biol 78 : 179 192.[CrossRef][PubMed]
103. Benard EL,, van AM,, Ellett F,, Lieschke GJ,, Spaink HP,, Meijer AH . 2012. Infection of zebrafish embryos with intracellular bacterial pathogens. J Vis Exp 2012( 61) : 3781.[CrossRef]
104. Spanjaard B,, Junker JP . 2017. Methods for lineage tracing on the organism-wide level. Curr Opin Cell Biol 49 : 16 21.[CrossRef][PubMed]
105. Gunster RA,, Matthews SA,, Holden DW,, Thurston TL . 2017. SseK1 and SseK3 type III secretion system effectors inhibit NF-κB signaling and necroptotic cell death in Salmonella-infected macrophages. Infect Immun 85 : e00010-17.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error