Chapter 12 : The Remarkable Biomechanical Properties of the Type 1 Chaperone-Usher Pilus: A Structural and Molecular Perspective

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

The Remarkable Biomechanical Properties of the Type 1 Chaperone-Usher Pilus: A Structural and Molecular Perspective, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781683670285/9781683670278_Chap12-1.gif /docserver/preview/fulltext/10.1128/9781683670285/9781683670278_Chap12-2.gif


Chaperone-usher (CU) pili are virulence factors displayed on a wide variety of Gram-negative bacterial pathogens ( ), mediating bacterial attachment and biofilm formation ( ). The two best-studied examples of CU pili are the type 1 and P pili of uropathogenic (UPEC), which is the most important causative agent of urinary tract infections ( ). We here summarize the steps of CU pilus biogenesis and highlight the most recent structural advances relating to type 1 pili that allow UPEC to thrive in the urinary tract.

Citation: Hospenthal M, Waksman G. 2019. The Remarkable Biomechanical Properties of the Type 1 Chaperone-Usher Pilus: A Structural and Molecular Perspective, p 137-148. In Sandkvist M, Cascales E, Christie P (ed), Protein Secretion in Bacteria. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PSIB-0010-2018
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Architecture and assembly of chaperone-usher pili. Type 1 (left) and P pili (right) are the two archetypal CU pili of UPEC. Pilins are transported through the inner membrane (IM) via the SecYEG machinery. Once in the periplasm, a dedicated chaperone (FimC for type 1 pili; PapD for P pili) helps to fold, stabilize, and transport individual pilins to the outer membrane (OM), where they are assembled into pili by the usher (FimD for type 1 pili; PapC for P pili). The largest section of CU pili is the rod, which is composed of thousands of copies of a single subunit (FimA for type 1 pili; PapA for P pili) arranged into a right-handed superhelical quaternary structure. On top of the rod, located at the pilus’ distal end, is a thin and flexible tip fibrillum. The most important tip fibrillum subunit is the adhesin (FimH for type 1 pili; PapG for P pili), which is responsible for the interaction of CU pili with host cell receptors. The remainder of the tip fibrillum is formed by FimG and FimF for type 1 pili and PapF, PapE, and PapK for P pili. Pilins are unstable on their own because they consist of C-terminally truncated incomplete Ig-like folds lacking the 7th β-strand. This creates a large hydrophobic groove on the subunit’s surface. After their transport into the periplasm, the chaperone inserts its G1 β-strand into the hydrophobic groove, thereby completing and stabilizing its fold. This is known as donor strand complementation (DSC) (PDB code 4DWH [ ]) (left side). The pilin’s P1 to P4 pockets are occupied by the chaperone’s P1 to P4 residues, while the P5 pocket remains empty. Once assembled into a pilus, the 10- to 20-residue-long N-terminal extension (Nte) of each subunit complements the preceding pilin’s groove, stabilizing the structure and linking the subunits in the pilin polymer. This is referred to as donor strand exchange (DSE) (PDB code 5OH0 [ ]) (right side). The Nte of FimA in the surface model on the right has been removed for clarity. A zip-in–zip-out mechanism is responsible for the transition from DSC to DSE, whereby the previously empty P5 pocket first becomes occupied by the incoming subunit’s Nte, displacing the chaperone’s complementing strand and subsequently allowing the Nte to fully occupy the pilin’s P1 to P5 pockets. In step 1, the chaperone-adhesin complex binds to the usher’s NTD (PDB codes 3BWU [ ], 1QUN [ ], and 3OHN and 3RFZ [ ]). In step 2, the plug relocates next to the periplasmically located NTD, while the chaperone-adhesin complex is transferred to the usher’s CTDs, which interact with the adhesin’s pilin domain. The adhesin’s lectin domain begins to translocate through the usher pore (PDB code 3RFZ). In step 3, the next chaperone-pilin complex is recruited to the NTD and the Nte of this pilin is oriented towards the pilin domain of the adhesin (PDB codes 3RFZ and 3BWU). In step 4, the chaperone’s donor strand is replaced by the Nte of the newly recruited pilin by the zip-in–zip-out mechanism. The displaced chaperone is recycled (PDB codes 3RFZ, 3BWU, and 4XOE [ ]). In step 5, the chaperone-pilin complex is transferred to the CTDs and the adhesin continues to move up and out through the usher pore (PDB codes 3RFZ and 4J3O [ ]). In step 6, the cycle is repeated and new pilins are incorporated into the growing pilus (PDB code 4J3O). The mechanism of translocation through the usher depicted is illustrated using both crystal and modeled structures of the CU pilus systems. Two novel structures shed light on the chaperone-subunit handover mechanism from the NTD to the CTDs. Shown are the structures of PapCDG (PDB code 6CD2 [ ]) in a preactivated state and of FimDCFGH (PDB code 6E14 [ ]) in an activated state , trapping conformations that show novel interactions between the NTD and CTD2, during chaperone-subunit handover. Dashed boxes and zoomed-in views highlight the NTD to CTD2 interactions.

Citation: Hospenthal M, Waksman G. 2019. The Remarkable Biomechanical Properties of the Type 1 Chaperone-Usher Pilus: A Structural and Molecular Perspective, p 137-148. In Sandkvist M, Cascales E, Christie P (ed), Protein Secretion in Bacteria. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PSIB-0010-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Structural rearrangements in FimH. Ribbon diagram of full-length FimH (yellow), which is complemented by a donor strand peptide from FimG (orange) (PDB code 4XOE [ ]). The lectin and pilin domains are labeled, and the dashed boxes highlight the ligand binding pocket (top) and the domain interface region (bottom) that are expanded in panels b and c. Superposition of apo (gray) (PDB code 4XOD [ ]) and ligand-bound (cyan) (PDB code 4XOE [ ]) FimH, focusing on the ligand binding pocket. The ligand is -heptyl α-d-mannoside (HM). An arrow indicates the structural rearrangement of the clamp loop. Superposition of ligand-bound FimH (cyan) (PDB code 4XOE) and a ligand-bound construct of the FimH lectin domain only (purple) (PDB code 4XOC [ ]), focusing on the lectin domain loops at the domain interface. The cyan structure is in a domain-associated (low-affinity) state, whereas the purple lectin domain-only structure represents the conformation of a domain-separated (high-affinity) state. Arrows indicate the rearrangements of the swing, linker, and insertion loops. The FimH pilin domain in all structures was stabilized by a FimG donor strand peptide.

Citation: Hospenthal M, Waksman G. 2019. The Remarkable Biomechanical Properties of the Type 1 Chaperone-Usher Pilus: A Structural and Molecular Perspective, p 137-148. In Sandkvist M, Cascales E, Christie P (ed), Protein Secretion in Bacteria. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PSIB-0010-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

The structure of the rod. Surface models showing the type 1 pilus rod structure (PDB code 5OH0 [ ]) in a side view and a top view, which are 90° rotated with respect to each other. The Nte of the uppermost FimA molecule is removed in the top view for illustrative purposes. Cartoon models showing three adjacent molecules or one “stack” of the type 1 pilus (blue) (PDB code 5OH0) and P pilus (green) (PDB code 5FLU [ ]) rods. The left and right parts of this panel show one stack as a side view and a top view, respectively, rotated by 90°. Pilin subunits are arbitrarily numbered starting with the pilin at the bottom, which would be most proximal to the OM and last to be assembled, to show the nature of the right-handed superhelical structure. The arrow in the side view shows the upward trajectory of the subunits in the structure. Surface representation of an individual FimA pilin subunit within the type 1 pilus rod (left, blue) (PDB code 5OH0) and a PapA pilin subunit within the P pilus rod (right, green) (PDB code 5FLU). The stick model shows the complementing donor strands, which originate from the Nte of the next subunit in assembly. The dashed box shows the staple region (residues 1 to 5) of the PapA Nte, a region not present in the type 1 pilus.

Citation: Hospenthal M, Waksman G. 2019. The Remarkable Biomechanical Properties of the Type 1 Chaperone-Usher Pilus: A Structural and Molecular Perspective, p 137-148. In Sandkvist M, Cascales E, Christie P (ed), Protein Secretion in Bacteria. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PSIB-0010-2018
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Thanassi DG,, Saulino ET,, Hultgren SJ . 1998. The chaperone/usher pathway: a major terminal branch of the general secretory pathway. Curr Opin Microbiol 1 : 223 231.[CrossRef][PubMed]
2. Hospenthal MK,, Costa TRD,, Waksman G . 2017. A comprehensive guide to pilus biogenesis in Gram-negative bacteria. Nat Rev Microbiol 15 : 365 379.[CrossRef]
3. Flores-Mireles AL,, Walker JN,, Caparon M,, Hultgren SJ . 2015. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol 13 : 269 284.[CrossRef][PubMed]
4. Schwan WR . 2011. Regulation of fim genes in uropathogenic Escherichia coli. World J Clin Infect Dis 1 : 17 25.[CrossRef][PubMed]
5. Dodson KW,, Pinkner JS,, Rose T,, Magnusson G,, Hultgren SJ,, Waksman G . 2001. Structural basis of the interaction of the pyelonephritic E. coli adhesin to its human kidney receptor. Cell 105 : 733 743.[CrossRef][PubMed]
6. Choudhury D,, Thompson A,, Stojanoff V,, Langermann S,, Pinkner J,, Hultgren SJ,, Knight SD . 1999. X-ray structure of the FimC-FimH chaperone-adhesin complex from uropathogenic Escherichia coli. Science 285 : 1061 1066.[CrossRef][PubMed]
7. Kuehn MJ,, Heuser J,, Normark S,, Hultgren SJ . 1992. P pili in uropathogenic E. coli are composite fibres with distinct fibrillar adhesive tips. Nature 356 : 252 255.[CrossRef][PubMed]
8. Werneburg GT,, Thanassi DG . 2018. Pili assembled by the chaperone/usher pathway in Escherichia coli and Salmonella. Ecosal Plus 8 : 1 37.[CrossRef][PubMed]
9. Hospenthal MK,, Redzej A,, Dodson K,, Ukleja M,, Frenz B,, Rodrigues C,, Hultgren SJ,, DiMaio F,, Egelman EH,, Waksman G . 2016. Structure of a chaperone-usher pilus reveals the molecular basis of rod uncoiling. Cell 164 : 269 278.[CrossRef][PubMed]
10. Hospenthal MK,, Zyla D,, Costa TRD,, Redzej A,, Giese C,, Lillington J,, Glockshuber R,, Waksman G . 2017. The cryoelectron microscopy structure of the type 1 chaperone-usher pilus rod. Structure 25 : 1829 1838.e4.[CrossRef][PubMed]
11. Sauer FG,, Fütterer K,, Pinkner JS,, Dodson KW,, Hultgren SJ,, Waksman G . 1999. Structural basis of chaperone function and pilus biogenesis. Science 285 : 1058 1061.[CrossRef][PubMed]
12. Barnhart MM,, Pinkner JS,, Soto GE,, Sauer FG,, Langermann S,, Waksman G,, Frieden C,, Hultgren SJ . 2000. PapD-like chaperones provide the missing information for folding of pilin proteins. Proc Natl Acad Sci U S A 97 : 7709 7714.[CrossRef][PubMed]
13. Vetsch M,, Puorger C,, Spirig T,, Grauschopf U,, Weber-Ban EU,, Glockshuber R . 2004. Pilus chaperones represent a new type of protein-folding catalyst. Nature 431 : 329 333.[CrossRef][PubMed]
14. Sauer FG,, Pinkner JS,, Waksman G,, Hultgren SJ . 2002. Chaperone priming of pilus subunits facilitates a topological transition that drives fiber formation. Cell 111 : 543 551.[CrossRef]
15. Zavialov AV,, Berglund J,, Pudney AF,, Fooks LJ,, Ibrahim TM,, MacIntyre S,, Knight SD . 2003. Structure and biogenesis of the capsular F1 antigen from Yersinia pestis: preserved folding energy drives fiber formation. Cell 113 : 587 596.[CrossRef]
16. Nishiyama M,, Ishikawa T,, Rechsteiner H,, Glockshuber R . 2008. Reconstitution of pilus assembly reveals a bacterial outer membrane catalyst. Science 320 : 376 379.[CrossRef][PubMed]
17. Remaut H,, Tang C,, Henderson NS,, Pinkner JS,, Wang T,, Hultgren SJ,, Thanassi DG,, Waksman G,, Li H . 2008. Fiber formation across the bacterial outer membrane by the chaperone/usher pathway. Cell 133 : 640 652.[CrossRef][PubMed]
18. Huang Y,, Smith BS,, Chen LX,, Baxter RHG,, Deisenhofer J . 2009. Insights into pilus assembly and secretion from the structure and functional characterization of usher PapC. Proc Natl Acad Sci U S A 106 : 7403 7407.[CrossRef][PubMed]
19. So SS,, Thanassi DG . 2006. Analysis of the requirements for pilus biogenesis at the outer membrane usher and the function of the usher C-terminus. Mol Microbiol 60 : 364 375.[CrossRef][PubMed]
20. Saulino ET,, Thanassi DG,, Pinkner JS,, Hultgren SJ . 1998. Ramifications of kinetic partitioning on usher-mediated pilus biogenesis. EMBO J 17 : 2177 2185.[CrossRef][PubMed]
21. Ng TW,, Akman L,, Osisami M,, Thanassi DG . 2004. The usher N terminus is the initial targeting site for chaperone-subunit complexes and participates in subsequent pilus biogenesis events. J Bacteriol 186 : 5321 5331.[CrossRef][PubMed]
22. Nishiyama M,, Vetsch M,, Puorger C,, Jelesarov I,, Glockshuber R . 2003. Identification and characterization of the chaperone-subunit complex-binding domain from the type 1 pilus assembly platform FimD. J Mol Biol 330 : 513 525.[CrossRef][PubMed]
23. Henderson NS,, Ng TW,, Talukder I,, Thanassi DG . 2011. Function of the usher N-terminus in catalysing pilus assembly. Mol Microbiol 79 : 954 967.[CrossRef][PubMed]
24. Nishiyama M,, Horst R,, Eidam O,, Herrmann T,, Ignatov O,, Vetsch M,, Bettendorff P,, Jelesarov I,, Grütter MG,, Wüthrich K,, Glockshuber R,, Capitani G . 2005. Structural basis of chaperone-subunit complex recognition by the type 1 pilus assembly platform FimD. EMBO J 24 : 2075 2086.[CrossRef][PubMed]
25. Munera D,, Hultgren S,, Fernández . 2007. Recognition of the N-terminal lectin domain of FimH adhesin by the usher FimD is required for type 1 pilus biogenesis. Mol Microbiol 64 : 333 346.[CrossRef][PubMed]
26. Phan G,, Remaut H,, Wang T,, Allen WJ,, Pirker KF,, Lebedev A,, Henderson NS,, Geibel S,, Volkan E,, Yan J,, Kunze MBA,, Pinkner JS,, Ford B,, Kay CWM,, Li H,, Hultgren SJ,, Thanassi DG,, Waksman G . 2011. Crystal structure of the FimD usher bound to its cognate FimC-FimH substrate. Nature 474 : 49 53.[CrossRef][PubMed]
27. Werneburg GT,, Henderson NS,, Portnoy EB,, Sarowar S,, Hultgren SJ,, Li H,, Thanassi DG . 2015. The pilus usher controls protein interactions via domain masking and is functional as an oligomer. Nat Struct Mol Biol 22 : 540 546.[CrossRef][PubMed]
28. Remaut H,, Rose RJ,, Hannan TJ,, Hultgren SJ,, Radford SE,, Ashcroft AE,, Waksman G . 2006. Donor-strand exchange in chaperone-assisted pilus assembly proceeds through a concerted beta strand displacement mechanism. Mol Cell 22 : 831 842.[CrossRef][PubMed]
29. Rose RJ,, Welsh TS,, Waksman G,, Ashcroft AE,, Radford SE,, Paci E . 2008. Donor-strand exchange in chaperone-assisted pilus assembly revealed in atomic detail by molecular dynamics. J Mol Biol 375 : 908 919.[CrossRef][PubMed]
30. Verger D,, Miller E,, Remaut H,, Waksman G,, Hultgren S . 2006. Molecular mechanism of P pilus termination in uropathogenic Escherichia coli. EMBO Rep 7 : 1228 1232.[CrossRef][PubMed]
31. Bečárová Z . 2015. Mechanisms of FimI, the assembly termination subunit of the type 1 pili from uropathogenic Escherichia coli. PhD thesis. ETH Zürich, Zürich, Switzerland.
32. Waksman G . 2017. Structural and molecular biology of a protein-polymerizing nanomachine for pilus biogenesis. J Mol Biol 429 : 2654 2666.[CrossRef][PubMed]
33. Omattage NS,, Deng Z,, Pinkner JS,, Dodson KW,, Almqvist F,, Yuan P,, Hultgren SJ . 2018. Structural basis for usher activation and intramolecular subunit transfer in P pilus biogenesis in Escherichia coli. Nat Microbiol 3 : 1362 1368.[CrossRef][PubMed]
34. Du M,, Yuan Z,, Yu H,, Henderson N,, Sarowar S,, Zhao G,, Werneburg GT,, Thanassi DG,, Li H . 2018. Handover mechanism of the growing pilus by the bacterial outer-membrane usher FimD. Nature 562 : 444 447.[CrossRef][PubMed]
35. Spaulding CN,, Klein RD,, Schreiber HL IV,, Janetka JW,, Hultgren SJ . 2018. Precision antimicrobial therapeutics: the path of least resistance? NPJ Biofilms Microbiomes 4 : 4.[CrossRef][PubMed]
36. Andersson M,, Uhlin BE,, Fällman E . 2007. The biomechanical properties of E. coli pili for urinary tract attachment reflect the host environment. Biophys J 93 : 3008 3014.[CrossRef][PubMed]
37. Roberts JA,, Marklund BI,, Ilver D,, Haslam D,, Kaack MB,, Baskin G,, Louis M,, Möllby R,, Winberg J,, Normark S . 1994. The Gal(alpha 1-4)Gal-specific tip adhesin of Escherichia coli P-fimbriae is needed for pyelonephritis to occur in the normal urinary tract. Proc Natl Acad Sci U S A 91 : 11889 11893.[CrossRef][PubMed]
38. Larsson A,, Ohlsson J,, Dodson KW,, Hultgren SJ,, Nilsson U,, Kihlberg J . 2003. Quantitative studies of the binding of the class II PapG adhesin from uropathogenic Escherichia coli to oligosaccharides. Bioorg Med Chem 11 : 2255 2261.[CrossRef]
39. Hannan TJ,, Totsika M,, Mansfield KJ,, Moore KH,, Schembri MA,, Hultgren SJ . 2012. Host-pathogen checkpoints and population bottlenecks in persistent and intracellular uropathogenic Escherichia coli bladder infection. FEMS Microbiol Rev 36 : 616 648.[CrossRef][PubMed]
40. Schaeffer AJ,, Schwan WR,, Hultgren SJ,, Duncan JL . 1987. Relationship of type 1 pilus expression in Escherichia coli to ascending urinary tract infections in mice. Infect Immun 55 : 373 380.[PubMed]
41. Hung CS,, Bouckaert J,, Hung D,, Pinkner J,, Widberg C,, DeFusco A,, Auguste CG,, Strouse R,, Langermann S,, Waksman G,, Hultgren SJ . 2002. Structural basis of tropism of Escherichia coli to the bladder during urinary tract infection. Mol Microbiol 44 : 903 915.[CrossRef][PubMed]
42. Le Trong I,, Aprikian P,, Kidd BA,, Forero-Shelton M,, Tchesnokova V,, Rajagopal P,, Rodriguez V,, Interlandi G,, Klevit R,, Vogel V,, Stenkamp RE,, Sokurenko EV,, Thomas WE . 2010. Structural basis for mechanical force regulation of the adhesin FimH via finger trap-like beta sheet twisting. Cell 141 : 645 655.[CrossRef][PubMed]
43. Sauer MM,, Jakob RP,, Eras J,, Baday S,, Eriş D,, Navarra G,, Bernèche S,, Ernst B,, Maier T,, Glockshuber R . 2016. Catch-bond mechanism of the bacterial adhesin FimH. Nat Commun 7 : 10738.[CrossRef][PubMed]
44. Thomas WE,, Trintchina E,, Forero M,, Vogel V,, Sokurenko EV . 2002. Bacterial adhesion to target cells enhanced by shear force. Cell 109 : 913 923.[CrossRef][PubMed]
45. Thomas WE,, Nilsson LM,, Forero M,, Sokurenko EV,, Vogel V . 2004. Shear-dependent ‘stick-and-roll’ adhesion of type 1 fimbriated Escherichia coli. Mol Microbiol 53 : 1545 1557.[CrossRef][PubMed]
46. Yakovenko O,, Sharma S,, Forero M,, Tchesnokova V,, Aprikian P,, Kidd B,, Mach A,, Vogel V,, Sokurenko E,, Thomas WE . 2008. FimH forms catch bonds that are enhanced by mechanical force due to allosteric regulation. J Biol Chem 283 : 11596 11605.[CrossRef][PubMed]
47. Sokurenko EV,, Vogel V,, Thomas WE . 2008. Catch-bond mechanism of force-enhanced adhesion: counterintuitive, elusive, but ... widespread? Cell Host Microbe 4 : 314 323.[CrossRef][PubMed]
48. Bouckaert J,, Berglund J,, Schembri M,, De Genst E,, Cools L,, Wuhrer M,, Hung C-S,, Pinkner J,, Slättegård R,, Zavialov A,, Choudhury D,, Langermann S,, Hultgren SJ,, Wyns L,, Klemm P,, Oscarson S,, Knight SD,, De Greve H . 2005. Receptor binding studies disclose a novel class of high-affinity inhibitors of the Escherichia coli FimH adhesin. Mol Microbiol 55 : 441 455.[CrossRef][PubMed]
49. Wellens A,, Garofalo C,, Nguyen H,, Van Gerven N,, Slättegård R,, Hernalsteens J-P,, Wyns L,, Oscarson S,, De Greve H,, Hultgren S,, Bouckaert J . 2008. Intervening with urinary tract infections using anti-adhesives based on the crystal structure of the FimH-oligomannose-3 complex. PLoS One 3 : e2040.[CrossRef][PubMed]
50. Han Z,, Pinkner JS,, Ford B,, Obermann R,, Nolan W,, Wildman SA,, Hobbs D,, Ellenberger T,, Cusumano CK,, Hultgren SJ,, Janetka JW . 2010. Structure-based drug design and optimization of mannoside bacterial FimH antagonists. J Med Chem 53 : 4779 4792.[CrossRef][PubMed]
51. Wellens A,, Lahmann M,, Touaibia M,, Vaucher J,, Oscarson S,, Roy R,, Remaut H,, Bouckaert J . 2012. The tyrosine gate as a potential entropic lever in the receptor-binding site of the bacterial adhesin FimH. Biochemistry 51 : 4790 4799.[CrossRef][PubMed]
52. Brument S,, Sivignon A,, Dumych TI,, Moreau N,, Roos G,, Guérardel Y,, Chalopin T,, Deniaud D,, Bilyy RO,, Darfeuille-Michaud A,, Bouckaert J,, Gouin SG . 2013. Thiazolylaminomannosides as potent antiadhesives of type 1 piliated Escherichia coli isolated from Crohn’s disease patients. J Med Chem 56 : 5395 5406.[CrossRef][PubMed]
53. Vanwetswinkel S,, Volkov AN,, Sterckx YGJ,, Garcia-Pino A,, Buts L,, Vranken WF,, Bouckaert J,, Roy R,, Wyns L,, van Nuland NAJ . 2014. Study of the structural and dynamic effects in the FimH adhesin upon α-d-heptyl mannose binding. J Med Chem 57 : 1416 1427.[CrossRef][PubMed]
54. Kalas V,, Pinkner JS,, Hannan TJ,, Hibbing ME,, Dodson KW,, Holehouse AS,, Zhang H,, Tolia NH,, Gross ML,, Pappu RV,, Janetka J,, Hultgren SJ . 2017. Evolutionary fine-tuning of conformational ensembles in FimH during host-pathogen interactions. Sci Adv 3 : e1601944.[CrossRef][PubMed]
55. Chen SL,, Hung CS,, Pinkner JS,, Walker JN,, Cusumano CK,, Li Z,, Bouckaert J,, Gordon JI,, Hultgren SJ . 2009. Positive selection identifies an in vivo role for FimH during urinary tract infection in addition to mannose binding. Proc Natl Acad Sci U S A 106 : 22439 22444.[CrossRef][PubMed]
56. Geibel S,, Procko E,, Hultgren SJ,, Baker D,, Waksman G . 2013. Structural and energetic basis of folded-protein transport by the FimD usher. Nature 496 : 243 246.[CrossRef][PubMed]
57. Fiege B,, Rabbani S,, Preston RC,, Jakob RP,, Zihlmann P,, Schwardt O,, Jiang X,, Maier T,, Ernst B . 2015. The tyrosine gate of the bacterial lectin FimH: a conformational analysis by NMR spectroscopy and X-ray crystallography. Chembiochem 16 : 1235 1246.[CrossRef][PubMed]
58. Wright KJ,, Seed PC,, Hultgren SJ . 2005. Uropathogenic Escherichia coli flagella aid in efficient urinary tract colonization. Infect Immun 73 : 7657 7668.[CrossRef][PubMed]
59. Lane MC,, Lockatell V,, Monterosso G,, Lamphier D,, Weinert J,, Hebel JR,, Johnson DE,, Mobley HLT . 2005. Role of motility in the colonization of uropathogenic Escherichia coli in the urinary tract. Infect Immun 73 : 7644 7656.[CrossRef][PubMed]
60. Pak J,, Pu Y,, Zhang ZT,, Hasty DL,, Wu XR . 2001. Tamm-Horsfall protein binds to type 1 fimbriated Escherichia coli and prevents E. coli from binding to uroplakin Ia and Ib receptors. J Biol Chem 276 : 9924 9930.[CrossRef][PubMed]
61. Bullitt E,, Makowski L . 1995. Structural polymorphism of bacterial adhesion pili. Nature 373 : 164 167.[CrossRef][PubMed]
62. Hahn E,, Wild P,, Hermanns U,, Sebbel P,, Glockshuber R,, Häner M,, Taschner N,, Burkhard P,, Aebi U,, Müller SA . 2002. Exploring the 3D molecular architecture of Escherichia coli type 1 pili. J Mol Biol 323 : 845 857.[CrossRef][PubMed]
63. Mu X-Q,, Bullitt E . 2006. Structure and assembly of P-pili: a protruding hinge region used for assembly of a bacterial adhesion filament. Proc Natl Acad Sci U S A 103 : 9861 9866.[CrossRef][PubMed]
64. Miller E,, Garcia T,, Hultgren S,, Oberhauser AF . 2006. The mechanical properties of E. coli type 1 pili measured by atomic force microscopy techniques. Biophys J 91 : 3848 3856.[CrossRef][PubMed]
65. Zakrisson J,, Wiklund K,, Axner O,, Andersson M . 2012. Helix-like biopolymers can act as dampers of force for bacteria in flows. Eur Biophys J 41 : 551 560.[CrossRef][PubMed]
66. Forero M,, Yakovenko O,, Sokurenko EV,, Thomas WE,, Vogel V . 2006. Uncoiling mechanics of Escherichia coli type I fimbriae are optimized for catch bonds. PLoS Biol 4 : e298 e299.[CrossRef][PubMed]
67. Zakrisson J,, Wiklund K,, Axner O,, Andersson M . 2013. The shaft of the type 1 fimbriae regulates an external force to match the FimH catch bond. Biophys J 104 : 2137 2148.[CrossRef][PubMed]
68. Puorger C,, Eidam O,, Capitani G,, Erilov D,, Grütter MG,, Glockshuber R . 2008. Infinite kinetic stability against dissociation of supramolecular protein complexes through donor strand complementation. Structure 16 : 631 642.[CrossRef][PubMed]
69. Alonso-Caballero A,, Schönfelder J,, Poly S,, Corsetti F,, De Sancho D,, Artacho E,, Perez-Jimenez R . 2018. Mechanical architecture and folding of E. coli type 1 pilus domains. Nat Commun 9 : 2758.[CrossRef][PubMed]
70. Jass J,, Schedin S,, Fällman E,, Ohlsson J,, Nilsson UJ,, Uhlin BE,, Axner O . 2004. Physical properties of Escherichia coli P pili measured by optical tweezers. Biophys J 87 : 4271 4283.[CrossRef][PubMed]
71. Fällman E,, Schedin S,, Jass J,, Uhlin BE,, Axner O . 2005. The unfolding of the P pili quaternary structure by stretching is reversible, not plastic. EMBO Rep 6 : 52 56.[CrossRef][PubMed]
72. Andersson M,, Fällman E,, Uhlin BE,, Axner O . 2006. A sticky chain model of the elongation and unfolding of Escherichia coli P pili under stress. Biophys J 90 : 1521 1534.[CrossRef][PubMed]
73. Andersson M,, Fällman E,, Uhlin BE,, Axner O . 2006. Dynamic force spectroscopy of E. coli P pili. Biophys J 91 : 2717 2725.[CrossRef][PubMed]
74. Andersson M,, Fällman E,, Uhlin BE,, Axner O . 2006. Force measuring optical tweezers system for long time measurements of P pili stability. Proceedings SPIE 6088, Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues IV, 608810 ( 21 February 2006).[CrossRef]
75. Lugmaier RA,, Schedin S,, Kühner F,, Benoit M . 2008. Dynamic restacking of Escherichia coli P-pili. Eur Biophys J 37 : 111 120.[CrossRef][PubMed]
76. Andersson M,, Axner O,, Almqvist F,, Uhlin BE,, Fällman E . 2008. Physical properties of biopolymers assessed by optical tweezers: analysis of folding and refolding of bacterial pili. Chemphyschem 9 : 221 235.[CrossRef][PubMed]
77. Spaulding CN,, Schreiber HL IV,, Zheng W,, Dodson KW,, Hazen JE,, Conover MS,, Wang F,, Svenmarker P,, Luna-Rico A,, Francetic O,, Andersson M,, Hultgren S,, Egelman EH . 2018. Functional role of the type 1 pilus rod structure in mediating host-pathogen interactions. eLife 7 : 5145.[CrossRef][PubMed]
78. Habenstein B,, Loquet A,, Hwang S,, Giller K,, Vasa SK,, Becker S,, Habeck M,, Lange A . 2015. Hybrid structure of the type 1 pilus of uropathogenic Escherichia coli. Angew Chem Int Ed Engl 54 : 11691 11695.[CrossRef][PubMed]
79. Crespo MD,, Puorger C,, Schärer MA,, Eidam O,, Grütter MG,, Capitani G,, Glockshuber R . 2012. Quality control of disulfide bond formation in pilus subunits by the chaperone FimC. Nat Chem Biol 8 : 707 713.[CrossRef][PubMed]
80. Eidam O,, Dworkowski FSN,, Glockshuber R,, Grütter MG,, Capitani G . 2008. Crystal structure of the ternary FimC-FimF(t)-FimD(N) complex indicates conserved pilus chaperone-subunit complex recognition by the usher FimD. FEBS Lett 582 : 651 655.[CrossRef][PubMed]

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error