Chapter 19 : Architecture, Function, and Substrates of the Type II Secretion System

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Architecture, Function, and Substrates of the Type II Secretion System, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781683670285/9781683670278_Chap19-1.gif /docserver/preview/fulltext/10.1128/9781683670285/9781683670278_Chap19-2.gif


The type II secretion system (T2SS) is one of several extracellular secretion systems in Gram-negative bacteria. While highly prevalent in gamma- and betaproteobacteria, the T2SS is also recognized to a lesser extent in members of the delta and alpha classes ( ). It is known for its prolific protease secretion activity. In addition, the T2SS mediates extracellular delivery of a variety of toxins, lipases, and enzymes that break down complex carbohydrates, thus conferring a survival advantage to pathogenic as well as environmental species ( ). The T2SS is not restricted to extracellular pathogens, such as , , , , and ; it is also present and contributes to growth of intracellular pathogens, including , which replicates in aquatic amoebae, alveolar macrophages, and epithelial cells ( ). The obligate intracellular pathogen also depends on T2SS components for extracellular secretion; however, its T2SS is atypical, as some components are missing or are too different from homologs in other species to be identified using BLAST algorithms ( ).

Citation: Korotkov K, Sandkvist M. 2019. Architecture, Function, and Substrates of the Type II Secretion System, p 227-244. In Sandkvist M, Cascales E, Christie P (ed), Protein Secretion in Bacteria. ASM Press, Washington, DC. doi: 10.1128/ecosalplus.ESP-0034-2018
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

A schematic diagram of topology and location of the conserved core components of the T2SS. The accessory components GspN, GspA, and GspB are not shown. A selection of the T2SS substrates of variable functions. Protein toxins include AB cholera toxin ( ) and exotoxin A ( ). Hydrolytic enzymes include VesB ( ), lipase in complex with chaperone (shown in purple) ( ), pullulanase ( ), pectate lyase C ( ), EHEC metalloprotease StcE ( ), and aminopeptidase LapA ( ). biofilm matrix protein RbmA is a scaffolding protein ( ).

Citation: Korotkov K, Sandkvist M. 2019. Architecture, Function, and Substrates of the Type II Secretion System, p 227-244. In Sandkvist M, Cascales E, Christie P (ed), Protein Secretion in Bacteria. ASM Press, Washington, DC. doi: 10.1128/ecosalplus.ESP-0034-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

The ATPase is hexameric GspE with C6 and C2 symmetries ( ). A close-up view shows the Zn binding site, which is required for the function of GspE ( ). Inner membrane components include the cytoplasmic domain of GspF ( ), cytoplasmic domain of GspL in complex with N1 domain of GspE ( ), periplasmic domain of GspL ( ), periplasmic domain of GspM ( ), the homology region (HR) domain of ETEC GspC ( ), and the PDZ domain of GspC ( ). The structure of periplasmic domain of GspL (XcpY) has been recently published ( ). Regarding pseudopilus components, in the GspG pseudopilus model based on the cryo-EM reconstruction ( ), a close-up view shows the Ca binding site of GspG, minor pseudopilin GspH ( ), and the trimeric complex of ETEC GspK-GspI-GspJ ( ), and a close-up view shows a double-Ca binding site of GspK. The structure of a homologous XcpX-XcpV-XcpW complex from has been recently reported ( ).

Citation: Korotkov K, Sandkvist M. 2019. Architecture, Function, and Substrates of the Type II Secretion System, p 227-244. In Sandkvist M, Cascales E, Christie P (ed), Protein Secretion in Bacteria. ASM Press, Washington, DC. doi: 10.1128/ecosalplus.ESP-0034-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

The side and top views of ETEC GspD-AspS complex ( ), EPEC GspD ( ), K-12 GspD ( ), and GspD ( ). A single secretin protomer is highlighted, with N1, N2, and N3 domains in shades of blue, the secretin domain in green, and the S domain in magenta. Several AspS protomers (brown) were omitted to clearly show the location of the S domain. The cap subdomain in the -type secretins is highlighted in orange. The N0 domains (purple) were not resolved in the available cryo-EM reconstructions due to flexibility. Instead, its approximate location is indicated ( ). Note that the N1-N2 domains of EPEC GspD ( ) and the N1 domain of GspD ( ) have been placed as rigid fit models. Structures of pilotins in complex with the secretin S domains (magenta). Structures of -type ETEC AspS ( ) and -type GspS ( ) are shown.

Citation: Korotkov K, Sandkvist M. 2019. Architecture, Function, and Substrates of the Type II Secretion System, p 227-244. In Sandkvist M, Cascales E, Christie P (ed), Protein Secretion in Bacteria. ASM Press, Washington, DC. doi: 10.1128/ecosalplus.ESP-0034-2018
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Abby SS,, Cury J,, Guglielmini J,, Néron B,, Touchon M,, Rocha EP . 2016. Identification of protein secretion systems in bacterial genomes. Sci Rep 6 : 23080.[CrossRef]
2. Cianciotto NP,, White RC . 2017. Expanding role of type II secretion in bacterial pathogenesis and beyond. Infect Immun 85 : e00014-17.[CrossRef]
3. Korotkov KV,, Sandkvist M,, Hol WGJ . 2012. The type II secretion system: biogenesis, molecular architecture and mechanism. Nat Rev Microbiol 10 : 336 351.[CrossRef]
4. Sikora AE . 2013. Proteins secreted via the type II secretion system: smart strategies of Vibrio cholerae to maintain fitness in different ecological niches. PLoS Pathog 9 : e1003126.[CrossRef]
5. Liles MR,, Edelstein PH,, Cianciotto NP . 1999. The prepilin peptidase is required for protein secretion by and the virulence of the intracellular pathogen Legionella pneumophila. Mol Microbiol 31 : 959 970.[CrossRef]
6. Hales LM,, Shuman HA . 1999. Legionella pneumophila contains a type II general secretion pathway required for growth in amoebae as well as for secretion of the Msp protease. Infect Immun 67 : 3662 3666.
7. Rossier O,, Cianciotto NP . 2001. Type II protein secretion is a subset of the PilD-dependent processes that facilitate intracellular infection by Legionella pneumophila. Infect Immun 69 : 2092 2098.[CrossRef]
8. Nguyen BD,, Valdivia RH . 2012. Virulence determinants in the obligate intracellular pathogen Chlamydia trachomatis revealed by forward genetic approaches. Proc Natl Acad Sci U S A 109 : 1263 1268.[CrossRef]
9. Snavely EA,, Kokes M,, Dunn JD,, Saka HA,, Nguyen BD,, Bastidas RJ,, McCafferty DG,, Valdivia RH . 2014. Reassessing the role of the secreted protease CPAF in Chlamydia trachomatis infection through genetic approaches. Pathog Dis 71 : 336 351.[CrossRef]
10. McCallum M,, Burrows LL,, Howell PL . 2018. The dynamic structures of the type IV pilus. Microbiol Spectr 7 : PSIB-0006-2018.
11. Sandkvist M,, Bagdasarian M,, Howard SP,, DiRita VJ . 1995. Interaction between the autokinase EpsE and EpsL in the cytoplasmic membrane is required for extracellular secretion in Vibrio cholerae. EMBO J 14 : 1664 1673.[CrossRef]
12. Sandkvist M,, Keith JM,, Bagdasarian M,, Howard SP . 2000. Two regions of EpsL involved in species-specific protein-protein interactions with EpsE and EpsM of the general secretion pathway in Vibrio cholerae. J Bacteriol 182 : 742 748.[CrossRef]
13. Py B,, Loiseau L,, Barras F . 2001. An inner membrane platform in the type II secretion machinery of Gram-negative bacteria. EMBO Rep 2 : 244 248.[CrossRef]
14. Robien MA,, Krumm BE,, Sandkvist M,, Hol WGJ . 2003. Crystal structure of the extracellular protein secretion NTPase EpsE of Vibrio cholerae. J Mol Biol 333 : 657 674.[CrossRef]
15. Camberg JL,, Sandkvist M . 2005. Molecular analysis of the Vibrio cholerae type II secretion ATPase EpsE. J Bacteriol 187 : 249 256.[CrossRef]
16. Abendroth J,, Murphy P,, Sandkvist M,, Bagdasarian M,, Hol WGJ . 2005. The X-ray structure of the type II secretion system complex formed by the N-terminal domain of EpsE and the cytoplasmic domain of EpsL of Vibrio cholerae. J Mol Biol 348 : 845 855.[CrossRef]
17. Camberg JL,, Johnson TL,, Patrick M,, Abendroth J,, Hol WGJ,, Sandkvist M . 2007. Synergistic stimulation of EpsE ATP hydrolysis by EpsL and acidic phospholipids. EMBO J 26 : 19 27.[CrossRef]
18. Arts J,, de Groot A,, Ball G,, Durand E,, El Khattabi M,, Filloux A,, Tommassen J,, Koster M . 2007. Interaction domains in the Pseudomonas aeruginosa type II secretory apparatus component XcpS (GspF). Microbiology 153 : 1582 1592.[CrossRef]
19. Abendroth J,, Mitchell DD,, Korotkov KV,, Johnson TL,, Kreger A,, Sandkvist M,, Hol WGJ . 2009. The three-dimensional structure of the cytoplasmic domains of EpsF from the type 2 secretion system of Vibrio cholerae. J Struct Biol 166 : 303 315.[CrossRef]
20. Lu C,, Turley S,, Marionni ST,, Park YJ,, Lee KK,, Patrick M,, Shah R,, Sandkvist M,, Bush MF,, Hol WGJ . 2013. Hexamers of the type II secretion ATPase GspE from Vibrio cholerae with increased ATPase activity. Structure 21 : 1707 1717.[CrossRef]
21. Lu C,, Korotkov KV,, Hol WGJ . 2014. Crystal structure of the full-length ATPase GspE from the Vibrio vulnificus type II secretion system in complex with the cytoplasmic domain of GspL. J Struct Biol 187 : 223 235.[CrossRef]
22. Michel G,, Bleves S,, Ball G,, Lazdunski A,, Filloux A . 1998. Mutual stabilization of the XcpZ and XcpY components of the secretory apparatus in Pseudomonas aeruginosa. Microbiology 144 : 3379 3386.[CrossRef]
23. Sandkvist M,, Hough LP,, Bagdasarian MM,, Bagdasarian M . 1999. Direct interaction of the EpsL and EpsM proteins of the general secretion apparatus in Vibrio cholerae. J Bacteriol 181 : 3129 3135.
24. Robert V,, Hayes F,, Lazdunski A,, Michel GP . 2002. Identification of XcpZ domains required for assembly of the secreton of Pseudomonas aeruginosa. J Bacteriol 184 : 1779 1782.[CrossRef]
25. Abendroth J,, Rice AE,, McLuskey K,, Bagdasarian M,, Hol WGJ . 2004. The crystal structure of the periplasmic domain of the type II secretion system protein EpsM from Vibrio cholerae: the simplest version of the ferredoxin fold. J Mol Biol 338 : 585 596.[CrossRef]
26. Abendroth J,, Kreger AC,, Hol WGJ . 2009. The dimer formed by the periplasmic domain of EpsL from the type 2 secretion system of Vibrio parahaemolyticus. J Struct Biol 168 : 313 322.[CrossRef]
27. Lallemand M,, Login FH,, Guschinskaya N,, Pineau C,, Effantin G,, Robert X,, Shevchik VE . 2013. Dynamic interplay between the periplasmic and transmembrane domains of GspL and GspM in the type II secretion system. PLoS One 8 : e79562.[CrossRef]
28. Lybarger SR,, Johnson TL,, Gray MD,, Sikora AE,, Sandkvist M . 2009. Docking and assembly of the type II secretion complex of Vibrio cholerae. J Bacteriol 191 : 3149 3161.[CrossRef]
29. Korotkov KV,, Krumm B,, Bagdasarian M,, Hol WGJ . 2006. Structural and functional studies of EpsC, a crucial component of the type 2 secretion system from Vibrio cholerae. J Mol Biol 363 : 311 321.[CrossRef]
30. Korotkov KV,, Pardon E,, Steyaert J,, Hol WGJ . 2009. Crystal structure of the N-terminal domain of the secretin GspD from ETEC determined with the assistance of a nanobody. Structure 17 : 255 265.[CrossRef]
31. Reichow SL,, Korotkov KV,, Hol WGJ,, Gonen T . 2010. Structure of the cholera toxin secretion channel in its closed state. Nat Struct Mol Biol 17 : 1226 1232.[CrossRef]
32. Korotkov KV,, Johnson TL,, Jobling MG,, Pruneda J,, Pardon E,, Héroux A,, Turley S,, Steyaert J,, Holmes RK,, Sandkvist M,, Hol WGJ . 2011. Structural and functional studies on the interaction of GspC and GspD in the type II secretion system. PLoS Pathog 7 : e1002228.[CrossRef]
33. Wang X,, Pineau C,, Gu S,, Guschinskaya N,, Pickersgill RW,, Shevchik VE . 2012. Cysteine scanning mutagenesis and disulfide mapping analysis of arrangement of GspC and GspD protomers within the type 2 secretion system. J Biol Chem 287 : 19082 19093.[CrossRef]
34. Yan Z,, Yin M,, Xu D,, Zhu Y,, Li X . 2017. Structural insights into the secretin translocation channel in the type II secretion system. Nat Struct Mol Biol 24 : 177 183.[CrossRef]
35. Hay ID,, Belousoff MJ,, Lithgow T . 2017. Structural basis of type 2 secretion system engagement between the inner and outer bacterial membranes. mBio 8 : e01344-17.[CrossRef]
36. Hay ID,, Belousoff MJ,, Dunstan RA,, Bamert RS,, Lithgow T . 2018. Structure and membrane topography of the Vibrio-type secretin complex from the type 2 secretion system of enteropathogenic Escherichia coli. J Bacteriol 200 : e00521-17.
37. Yin M,, Yan Z,, Li X . 2018. Structural insight into the assembly of the type II secretion system pilotin-secretin complex from enterotoxigenic Escherichia coli. Nat Microbiol 3 : 581 587.[CrossRef]
38. Majewski DD,, Worrall LJ,, Strynadka NC . 2018. Secretins revealed: structural insights into the giant gated outer membrane portals of bacteria. Curr Opin Struct Biol 51 : 61 72.[CrossRef]
39. Possot OM,, Vignon G,, Bomchil N,, Ebel F,, Pugsley AP . 2000. Multiple interactions between pullulanase secreton components involved in stabilization and cytoplasmic membrane association of PulE. J Bacteriol 182 : 2142 2152.[CrossRef]
40. Johnson TL,, Waack U,, Smith S,, Mobley H,, Sandkvist M . 2016. Acinetobacter baumannii is dependent on the type II secretion system and its substrate LipA for lipid utilization and in vivo fitness. J Bacteriol 198 : 711 719.[CrossRef]
41. Lee HM,, Wang KC,, Liu YL,, Yew HY,, Chen LY,, Leu WM,, Chen DC,, Hu NT . 2000. Association of the cytoplasmic membrane protein XpsN with the outer membrane protein XpsD in the type II protein secretion apparatus of Xanthomonas campestris pv. campestris. J Bacteriol 182 : 1549 1557.[CrossRef]
42. Li G,, Miller A,, Bull H,, Howard SP . 2011. Assembly of the type II secretion system: identification of ExeA residues critical for peptidoglycan binding and secretin multimerization. J Bacteriol 193 : 197 204.[CrossRef]
43. Strozen TG,, Stanley H,, Gu Y,, Boyd J,, Bagdasarian M,, Sandkvist M,, Howard SP . 2011. Involvement of the GspAB complex in assembly of the type II secretion system secretin of Aeromonas and Vibrio species. J Bacteriol 193 : 2322 2331.[CrossRef]
44. Vanderlinde EM,, Strozen TG,, Hernández SB,, Cava F,, Howard SP . 2017. Alterations in peptidoglycan cross-linking suppress the secretin assembly defect caused by mutation of GspA in the type II secretion system. J Bacteriol 199 : e00617-17.[CrossRef]
45. Sauvonnet N,, Vignon G,, Pugsley AP,, Gounon P . 2000. Pilus formation and protein secretion by the same machinery in Escherichia coli. EMBO J 19 : 2221 2228.[CrossRef]
46. Durand E,, Bernadac A,, Ball G,, Lazdunski A,, Sturgis JN,, Filloux A . 2003. Type II protein secretion in Pseudomonas aeruginosa: the pseudopilus is a multifibrillar and adhesive structure. J Bacteriol 185 : 2749 2758.[CrossRef]
47. Yanez ME,, Korotkov KV,, Abendroth J,, Hol WGJ . 2008. Structure of the minor pseudopilin EpsH from the type 2 secretion system of Vibrio cholerae. J Mol Biol 377 : 91 103.[CrossRef]
48. Korotkov KV,, Hol WGJ . 2008. Structure of the GspK-GspI-GspJ complex from the enterotoxigenic Escherichia coli type 2 secretion system. Nat Struct Mol Biol 15 : 462 468.[CrossRef]
49. Douzi B,, Durand E,, Bernard C,, Alphonse S,, Cambillau C,, Filloux A,, Tegoni M,, Voulhoux R . 2009. The XcpV/GspI pseudopilin has a central role in the assembly of a quaternary complex within the T2SS pseudopilus. J Biol Chem 284 : 34580 34589.[CrossRef]
50. López-Castilla A,, Thomassin JL,, Bardiaux B,, Zheng W,, Nivaskumar M,, Yu X,, Nilges M,, Egelman EH,, Izadi-Pruneyre N,, Francetic O . 2017. Structure of the calcium-dependent type 2 secretion pseudopilus. Nat Microbiol 2 : 1686 1695.[CrossRef]
51. Pugsley AP,, Dupuy B . 1992. An enzyme with type IV prepilin peptidase activity is required to process components of the general extracellular protein secretion pathway of Klebsiella oxytoca. Mol Microbiol 6 : 751 760.[CrossRef][PubMed]
52. Pugsley AP . 1993. Processing and methylation of PuIG, a pilin-like component of the general secretory pathway of Klebsiella oxytoca. Mol Microbiol 9 : 295 308.[CrossRef][PubMed]
53. Nunn DN,, Lory S . 1993. Cleavage, methylation, and localization of the Pseudomonas aeruginosa export proteins XcpT, -U, -V, and -W. J Bacteriol 175 : 4375 4382.[CrossRef]
54. Pugsley AP,, Kornacker MG,, Poquet I . 1991. The general protein-export pathway is directly required for extracellular pullulanase secretion in Escherichia coli K12. Mol Microbiol 5 : 343 352.[CrossRef][PubMed]
55. He SY,, Schoedel C,, Chatterjee AK,, Collmer A . 1991. Extracellular secretion of pectate lyase by the Erwinia chrysanthemi out pathway is dependent upon Sec-mediated export across the inner membrane. J Bacteriol 173 : 4310 4317.[CrossRef]
56. Voulhoux R,, Ball G,, Ize B,, Vasil ML,, Lazdunski A,, Wu LF,, Filloux A . 2001. Involvement of the twin-arginine translocation system in protein secretion via the type II pathway. EMBO J 20 : 6735 6741.[CrossRef][PubMed]
57. Ball G,, Antelmann H,, Imbert PR,, Gimenez MR,, Voulhoux R,, Ize B . 2016. Contribution of the twin arginine translocation system to the exoproteome of Pseudomonas aeruginosa. Sci Rep 6 : 27675.[CrossRef][PubMed]
58. Hirst TR,, Holmgren J . 1987. Transient entry of enterotoxin subunits into the periplasm occurs during their secretion from Vibrio cholerae. J Bacteriol 169 : 1037 1045.[CrossRef]
59. Hirst TR,, Holmgren J . 1987. Conformation of protein secreted across bacterial outer membranes: a study of enterotoxin translocation from Vibrio cholerae. Proc Natl Acad Sci U S A 84 : 7418 7422.[CrossRef]
60. Hardy SJ,, Holmgren J,, Johansson S,, Sanchez J,, Hirst TR . 1988. Coordinated assembly of multisubunit proteins: oligomerization of bacterial enterotoxins in vivo and in vitro. Proc Natl Acad Sci U S A 85 : 7109 7113.[CrossRef][PubMed]
61. Pugsley AP . 1992. Translocation of a folded protein across the outer membrane in Escherichia coli. Proc Natl Acad Sci U S A 89 : 12058 12062.[CrossRef][PubMed]
62. Poquet I,, Faucher D,, Pugsley AP . 1993. Stable periplasmic secretion intermediate in the general secretory pathway of Escherichia coli. EMBO J 12 : 271 278.[CrossRef][PubMed]
63. Hardie KR,, Schulze A,, Parker MW,, Buckley JT . 1995. Vibrio spp. secrete proaerolysin as a folded dimer without the need for disulphide bond formation. Mol Microbiol 17 : 1035 1044.[CrossRef][PubMed]
64. Braun P,, Tommassen J,, Filloux A . 1996. Role of the propeptide in folding and secretion of elastase of Pseudomonas aeruginosa. Mol Microbiol 19 : 297 306.[CrossRef][PubMed]
65. Voulhoux R,, Taupiac MP,, Czjzek M,, Beaumelle B,, Filloux A . 2000. Influence of deletions within domain II of exotoxin A on its extracellular secretion from Pseudomonas aeruginosa. J Bacteriol 182 : 4051 4058.[CrossRef][PubMed]
66. Häse CC,, Finkelstein RA . 1991. Cloning and nucleotide sequence of the Vibrio cholerae hemagglutinin/protease (HA/protease) gene and construction of an HA/protease-negative strain. J Bacteriol 173 : 3311 3317.[CrossRef][PubMed]
67. McIver KS,, Kessler E,, Olson JC,, Ohman DE . 1995. The elastase propeptide functions as an intramolecular chaperone required for elastase activity and secretion in Pseudomonas aeruginosa. Mol Microbiol 18 : 877 889.[CrossRef][PubMed]
68. Gadwal S,, Korotkov KV,, Delarosa JR,, Hol WGJ,, Sandkvist M . 2014. Functional and structural characterization of Vibrio cholerae extracellular serine protease B, VesB. J Biol Chem 289 : 8288 8298.[CrossRef][PubMed]
69. Hobson AH,, Buckley CM,, Aamand JL,, Jørgensen ST,, Diderichsen B,, McConnell DJ . 1993. Activation of a bacterial lipase by its chaperone. Proc Natl Acad Sci U S A 90 : 5682 5686.[CrossRef][PubMed]
70. Martínez A,, Ostrovsky P,, Nunn DN . 1999. LipC, a second lipase of Pseudomonas aeruginosa, is LipB and Xcp dependent and is transcriptionally regulated by pilus biogenesis components. Mol Microbiol 34 : 317 326.[CrossRef][PubMed]
71. Pauwels K,, Lustig A,, Wyns L,, Tommassen J,, Savvides SN,, Van Gelder P . 2006. Structure of a membrane-based steric chaperone in complex with its lipase substrate. Nat Struct Mol Biol 13 : 374 375.[CrossRef][PubMed]
72. Coulthurst SJ,, Lilley KS,, Hedley PE,, Liu H,, Toth IK,, Salmond GP . 2008. DsbA plays a critical and multifaceted role in the production of secreted virulence factors by the phytopathogen Erwinia carotovora subsp. atroseptica. J Biol Chem 283 : 23739 23753.[CrossRef][PubMed]
73. Harding CM,, Kinsella RL,, Palmer LD,, Skaar EP,, Feldman MF . 2016. Medically relevant Acinetobacter species require a type II secretion system and specific membrane-associated chaperones for the export of multiple substrates and full virulence. PLoS Pathog 12 : e1005391.[CrossRef][PubMed]
74. Kinsella RL,, Lopez J,, Palmer LD,, Salinas ND,, Skaar EP,, Tolia NH,, Feldman MF . 2017. Defining the interaction of the protease CpaA with its type II secretion chaperone CpaB and its contribution to virulence in Acinetobacter species. J Biol Chem 292 : 19628 19638.[CrossRef][PubMed]
75. Pugsley AP,, Chapon C,, Schwartz M . 1986. Extracellular pullulanase of Klebsiella pneumoniae is a lipoprotein. J Bacteriol 166 : 1083 1088.[CrossRef][PubMed]
76. Baldi DL,, Higginson EE,, Hocking DM,, Praszkier J,, Cavaliere R,, James CE,, Bennett-Wood V,, Azzopardi KI,, Turnbull L,, Lithgow T,, Robins-Browne RM,, Whitchurch CB,, Tauschek M . 2012. The type II secretion system and its ubiquitous lipoprotein substrate, SslE, are required for biofilm formation and virulence of enteropathogenic Escherichia coli. Infect Immun 80 : 2042 2052.[CrossRef][PubMed]
77. East A,, Mechaly AE,, Huysmans GHM,, Bernarde C,, Tello-Manigne D,, Nadeau N,, Pugsley AP,, Buschiazzo A,, Alzari PM,, Bond PJ,, Francetic O . 2016. Structural basis of pullulanase membrane binding and secretion revealed by X-ray crystallography, molecular dynamics and biochemical analysis. Structure 24 : 92 104.[CrossRef][PubMed]
78. Zückert WR . 2014. Secretion of bacterial lipoproteins: through the cytoplasmic membrane, the periplasm and beyond. Biochim Biophys Acta 1843 : 1509 1516.[CrossRef][PubMed]
79. d’Enfert C,, Chapon C,, Pugsley AP . 1987. Export and secretion of the lipoprotein pullulanase by Klebsiella pneumoniae. Mol Microbiol 1 : 107 116.[CrossRef][PubMed]
80. Horstman AL,, Kuehn MJ . 2002. Bacterial surface association of heat-labile enterotoxin through lipopolysaccharide after secretion via the general secretory pathway. J Biol Chem 277 : 32538 32545.[CrossRef][PubMed]
81. Horstman AL,, Bauman SJ,, Kuehn MJ . 2004. Lipopolysaccharide 3-deoxy- d-manno-octulosonic acid (Kdo) core determines bacterial association of secreted toxins. J Biol Chem 279 : 8070 8075.[CrossRef][PubMed]
82. Ferrandez Y,, Condemine G . 2008. Novel mechanism of outer membrane targeting of proteins in Gram-negative bacteria. Mol Microbiol 69 : 1349 1357.[CrossRef][PubMed]
83. Haft DH,, Varghese N . 2011. GlyGly-CTERM and rhombosortase: a C-terminal protein processing signal in a many-to-one pairing with a rhomboid family intramembrane serine protease. PLoS One 6 : e28886.[CrossRef][PubMed]
84. Gadwal S,, Johnson TL,, Remmer H,, Sandkvist M . 2018. C-terminal processing of GlyGly-CTERM containing proteins by rhombosortase in Vibrio cholerae. PLoS Pathog 14 : e1007341.[CrossRef][PubMed]
85. Sandkvist M,, Michel LO,, Hough LP,, Morales VM,, Bagdasarian M,, Koomey M,, DiRita VJ,, Bagdasarian M . 1997. General secretion pathway ( eps) genes required for toxin secretion and outer membrane biogenesis in Vibrio cholerae. J Bacteriol 179 : 6994 7003.[CrossRef][PubMed]
86. Tauschek M,, Gorrell RJ,, Strugnell RA,, Robins-Browne RM . 2002. Identification of a protein secretory pathway for the secretion of heat-labile enterotoxin by an enterotoxigenic strain of Escherichia coli. Proc Natl Acad Sci U S A 99 : 7066 7071.[CrossRef][PubMed]
87. Lindeberg M,, Collmer A . 1992. Analysis of eight out genes in a cluster required for pectic enzyme secretion by Erwinia chrysanthemi: sequence comparison with secretion genes from other gram-negative bacteria. J Bacteriol 174 : 7385 7397.[CrossRef][PubMed]
88. Kagami Y,, Ratliff M,, Surber M,, Martinez A,, Nunn DN . 1998. Type II protein secretion by Pseudomonas aeruginosa: genetic suppression of a conditional mutation in the pilin-like component XcpT by the cytoplasmic component XcpR. Mol Microbiol 27 : 221 233.[CrossRef][PubMed]
89. Sikora AE,, Lybarger SR,, Sandkvist M . 2007. Compromised outer membrane integrity in Vibrio cholerae type II secretion mutants. J Bacteriol 189 : 8484 8495.[CrossRef][PubMed]
90. Park BR,, Zielke RA,, Wierzbicki IH,, Mitchell KC,, Withey JH,, Sikora AE . 2015. A metalloprotease secreted by the type II secretion system links Vibrio cholerae with collagen. J Bacteriol 197 : 1051 1064.[CrossRef][PubMed]
91. White RC,, Gunderson FF,, Tyson JY,, Richardson KH,, Portlock TJ,, Garnett JA,, Cianciotto NP . 2018. Type II secretion-dependent aminopeptidase LapA and acyltransferase PlaC are redundant for nutrient acquisition during Legionella pneumophila intracellular infection of amoebas. mBio 9 : e00528-18.[CrossRef][PubMed]
92. Wilton M,, Halverson TWR,, Charron-Mazenod L,, Parkins MD,, Lewenza S . 2018. Secreted phosphatase and deoxyribonuclease are required by Pseudomonas aeruginosa to defend against neutrophil extracellular traps. Infect Immun 86 : e00403-18.[CrossRef][PubMed]
93. Chapon V,, Czjzek M,, El Hassouni M,, Py B,, Juy M,, Barras F . 2001. Type II protein secretion in gram-negative pathogenic bacteria: the study of the structure/secretion relationships of the cellulase Cel5 (formerly EGZ) from Erwinia chrysanthemi. J Mol Biol 310 : 1055 1066.[CrossRef][PubMed]
94. Silva AJ,, Pham K,, Benitez JA . 2003. Haemagglutinin/protease expression and mucin gel penetration in El Tor biotype Vibrio cholerae. Microbiology 149 : 1883 1891.[CrossRef][PubMed]
95. Luo Q,, Kumar P,, Vickers TJ,, Sheikh A,, Lewis WG,, Rasko DA,, Sistrunk J,, Fleckenstein JM . 2014. Enterotoxigenic Escherichia coli secretes a highly conserved mucin-degrading metalloprotease to effectively engage intestinal epithelial cells. Infect Immun 82 : 509 521.[CrossRef][PubMed]
96. Hews CL,, Tran SL,, Wegmann U,, Brett B,, Walsham ADS,, Kavanaugh D,, Ward NJ,, Juge N,, Schüller S . 2017. The StcE metalloprotease of enterohaemorrhagic Escherichia coli reduces the inner mucus layer and promotes adherence to human colonic epithelium ex vivo. Cell Microbiol 19 : e12717.[CrossRef][PubMed]
97. Kooi C,, Sokol PA . 2009. Burkholderia cenocepacia zinc metalloproteases influence resistance to antimicrobial peptides. Microbiology 155 : 2818 2825.[CrossRef][PubMed]
98. McCoy-Simandle K,, Stewart CR,, Dao J,, DebRoy S,, Rossier O,, Bryce PJ,, Cianciotto NP . 2011. Legionella pneumophila type II secretion dampens the cytokine response of infected macrophages and epithelia. Infect Immun 79 : 1984 1997.[CrossRef][PubMed]
99. Mallama CA,, McCoy-Simandle K,, Cianciotto NP . 2017. The type II secretion system of Legionella pneumophila dampens the MyD88 and Toll-like receptor 2 signaling pathway in infected human macrophages. Infect Immun 85 : e00897-16.[CrossRef][PubMed]
100. Lathem WW,, Grys TE,, Witowski SE,, Torres AG,, Kaper JB,, Tarr PI,, Welch RA . 2002. StcE, a metalloprotease secreted by Escherichia coli O157:H7, specifically cleaves C1 esterase inhibitor. Mol Microbiol 45 : 277 288.[CrossRef]
101. Szabady RL,, Lokuta MA,, Walters KB,, Huttenlocher A,, Welch RA . 2009. Modulation of neutrophil function by a secreted mucinase of Escherichia coli O157:H7. PLoS Pathog 5 : e1000320.[CrossRef][PubMed]
102. Tilley D,, Law R,, Warren S,, Samis JA,, Kumar A . 2014. CpaA a novel protease from Acinetobacter baumannii clinical isolates deregulates blood coagulation. FEMS Microbiol Lett 356 : 53 61.[CrossRef][PubMed]
103. Waack U,, Warnock M,, Yee A,, Huttinger Z,, Smith S,, Kumar A,, Deroux A,, Ginsburg D,, Mobley HLT,, Lawrence DA,, Sandkvist M . 2018. CpaA is a glycan-specific adamalysin-like protease secreted by Acinetobacter baumannii that inactivates coagulation factor XII. mBio 9 : e01606-18.[CrossRef][PubMed]
104. Overhage J,, Lewenza S,, Marr AK,, Hancock RE . 2007. Identification of genes involved in swarming motility using a Pseudomonas aeruginosa PAO1 mini-Tn5- lux mutant library. J Bacteriol 189 : 2164 2169.[CrossRef][PubMed]
105. Duncan C,, Prashar A,, So J,, Tang P,, Low DE,, Terebiznik M,, Guyard C . 2011. Lcl of Legionella pneumophila is an immunogenic GAG binding adhesin that promotes interactions with lung epithelial cells and plays a crucial role in biofilm formation. Infect Immun 79 : 2168 2181.[CrossRef][PubMed]
106. Johnson TL,, Fong JC,, Rule C,, Rogers A,, Yildiz FH,, Sandkvist M . 2014. The type II secretion system delivers matrix proteins for biofilm formation by Vibrio cholerae. J Bacteriol 196 : 4245 4252.[CrossRef][PubMed]
107. Fong JNC,, Yildiz FH . 2015. Biofilm matrix proteins. Microbiol Spectr 3 : MB-0004-2014.[CrossRef][PubMed]
108. Fong JC,, Rogers A,, Michael AK,, Parsley NC,, Cornell WC,, Lin YC,, Singh PK,, Hartmann R,, Drescher K,, Vinogradov E,, Dietrich LE,, Partch CL,, Yildiz FH . 2017. Structural dynamics of RbmA governs plasticity of Vibrio cholerae biofilms. eLife 6 : e26163.[CrossRef][PubMed]
109. Ennouri H,, d’Abzac P,, Hakil F,, Branchu P,, Naïtali M,, Lomenech AM,, Oueslati R,, Desbrières J,, Sivadon P,, Grimaud R . 2017. The extracellular matrix of the oleolytic biofilms of Marinobacter hydrocarbonoclasticus comprises cytoplasmic proteins and T2SS effectors that promote growth on hydrocarbons and lipids. Environ Microbiol 19 : 159 173.[CrossRef][PubMed]
110. Nouwen N,, Ranson N,, Saibil H,, Wolpensinger B,, Engel A,, Ghazi A,, Pugsley AP . 1999. Secretin PulD: association with pilot PulS, structure, and ion-conducting channel formation. Proc Natl Acad Sci U S A 96 : 8173 8177.[CrossRef][PubMed]
111. Nouwen N,, Stahlberg H,, Pugsley AP,, Engel A . 2000. Domain structure of secretin PulD revealed by limited proteolysis and electron microscopy. EMBO J 19 : 2229 2236.[CrossRef][PubMed]
112. Chami M,, Guilvout I,, Gregorini M,, Rémigy HW,, Müller SA,, Valerio M,, Engel A,, Pugsley AP,, Bayan N . 2005. Structural insights into the secretin PulD and its trypsin-resistant core. J Biol Chem 280 : 37732 37741.[CrossRef][PubMed]
113. Tosi T,, Estrozi LF,, Job V,, Guilvout I,, Pugsley AP,, Schoehn G,, Dessen A . 2014. Structural similarity of secretins from type II and type III secretion systems. Structure 22 : 1348 1355.[CrossRef][PubMed]
114. Dunstan RA,, Heinz E,, Wijeyewickrema LC,, Pike RN,, Purcell AW,, Evans TJ,, Praszkier J,, Robins-Browne RM,, Strugnell RA,, Korotkov KV,, Lithgow T . 2013. Assembly of the type II secretion system such as found in Vibrio cholerae depends on the novel pilotin AspS. PLoS Pathog 9 : e1003117.[CrossRef][PubMed]
115. Hu J,, Worrall LJ,, Hong C,, Vuckovic M,, Atkinson CE,, Caveney N,, Yu Z,, Strynadka NCJ . 2018. Cryo-EM analysis of the T3S injectisome reveals the structure of the needle and open secretin. Nat Commun 9 : 3840.[CrossRef][PubMed]
116. Gu S,, Rehman S,, Wang X,, Shevchik VE,, Pickersgill RW . 2012. Structural and functional insights into the pilotin-secretin complex of the type II secretion system. PLoS Pathog 8 : e1002531.[CrossRef][PubMed]
117. Strozen TG,, Li G,, Howard SP . 2012. YghG (GspSβ) is a novel pilot protein required for localization of the GspSβ type II secretion system secretin of enterotoxigenic Escherichia coli. Infect Immun 80 : 2608 2622.[CrossRef][PubMed]
118. Collin S,, Guilvout I,, Nickerson NN,, Pugsley AP . 2011. Sorting of an integral outer membrane protein via the lipoprotein-specific Lol pathway and a dedicated lipoprotein pilotin. Mol Microbiol 80 : 655 665.[CrossRef][PubMed]
119. Collin S,, Guilvout I,, Chami M,, Pugsley AP . 2007. YaeT-independent multimerization and outer membrane association of secretin PulD. Mol Microbiol 64 : 1350 1357.[CrossRef][PubMed]
120. Dunstan RA,, Hay ID,, Wilksch JJ,, Schittenhelm RB,, Purcell AW,, Clark J,, Costin A,, Ramm G,, Strugnell RA,, Lithgow T . 2015. Assembly of the secretion pores GspD, Wza and CsgG into bacterial outer membranes does not require the Omp85 proteins BamA or TamA. Mol Microbiol 97 : 616 629.[CrossRef][PubMed]
121. Guilvout I,, Brier S,, Chami M,, Hourdel V,, Francetic O,, Pugsley AP,, Chamot-Rooke J,, Huysmans GH . 2017. Prepore stability controls productive folding of the BAM-independent multimeric outer membrane secretin PulD. J Biol Chem 292 : 328 338.[CrossRef][PubMed]
122. Korotkov KV,, Gray MD,, Kreger A,, Turley S,, Sandkvist M,, Hol WGJ . 2009. Calcium is essential for the major pseudopilin in the type 2 secretion system. J Biol Chem 284 : 25466 25470.[CrossRef][PubMed]
123. Cisneros DA,, Bond PJ,, Pugsley AP,, Campos M,, Francetic O . 2012. Minor pseudopilin self-assembly primes type II secretion pseudopilus elongation. EMBO J 31 : 1041 1053.[CrossRef][PubMed]
124. Reindl S,, Ghosh A,, Williams GJ,, Lassak K,, Neiner T,, Henche AL,, Albers SV,, Tainer JA . 2013. Insights into FlaI functions in archaeal motor assembly and motility from structures, conformations, and genetics. Mol Cell 49 : 1069 1082.[CrossRef][PubMed]
125. Mancl JM,, Black WP,, Robinson H,, Yang Z,, Schubot FD . 2016. Crystal structure of a type IV pilus assembly ATPase: insights into the molecular mechanism of PilB from Thermus thermophilus. Structure 24 : 1886 1897.[CrossRef][PubMed]
126. McCallum M,, Tammam S,, Khan A,, Burrows LL,, Howell PL . 2017. The molecular mechanism of the type IVa pilus motors. Nat Commun 8 : 15091.[CrossRef][PubMed]
127. Gray MD,, Bagdasarian M,, Hol WGJ,, Sandkvist M . 2011. In vivo cross-linking of EpsG to EpsL suggests a role for EpsL as an ATPase-pseudopilin coupling protein in the type II secretion system of Vibrio cholerae. Mol Microbiol 79 : 786 798.[CrossRef][PubMed]
128. Nivaskumar M,, Santos-Moreno J,, Malosse C,, Nadeau N,, Chamot-Rooke J,, Tran Van Nhieu G,, Francetic O . 2016. Pseudopilin residue E5 is essential for recruitment by the type 2 secretion system assembly platform. Mol Microbiol 101 : 924 941.[CrossRef][PubMed]
129. Shevchik VE,, Robert-Baudouy J,, Condemine G . 1997. Specific interaction between OutD, an Erwinia chrysanthemi outer membrane protein of the general secretory pathway, and secreted proteins. EMBO J 16 : 3007 3016.[CrossRef][PubMed]
130. Bouley J,, Condemine G,, Shevchik VE . 2001. The PDZ domain of OutC and the N-terminal region of OutD determine the secretion specificity of the type II out pathway of Erwinia chrysanthemi. J Mol Biol 308 : 205 219.[CrossRef][PubMed]
131. Douzi B,, Ball G,, Cambillau C,, Tegoni M,, Voulhoux R . 2011. Deciphering the Xcp Pseudomonas aeruginosa type II secretion machinery through multiple interactions with substrates. J Biol Chem 286 : 40792 40801.[CrossRef][PubMed]
132. Reichow SL,, Korotkov KV,, Gonen M,, Sun J,, Delarosa JR,, Hol WGJ,, Gonen T . 2011. The binding of cholera toxin to the periplasmic vestibule of the type II secretion channel. Channels (Austin) 5 : 215 218.[CrossRef]
133. Pineau C,, Guschinskaya N,, Robert X,, Gouet P,, Ballut L,, Shevchik VE . 2014. Substrate recognition by the bacterial type II secretion system: more than a simple interaction. Mol Microbiol 94 : 126 140.[CrossRef][PubMed]
134. Michel-Souzy S,, Douzi B,, Cadoret F,, Raynaud C,, Quinton L,, Ball G,, Voulhoux R . 2018. Direct interactions between the secreted effector and the T2SS components GspL and GspM reveal a new effector-sensing step during type 2 secretion. J Biol Chem 293 : 19441 19450.[CrossRef][PubMed]
135. Nunn D . 1999. Bacterial type II protein export and pilus biogenesis: more than just homologies? Trends Cell Biol 9 : 402 408.[CrossRef]
136. Forest KT . 2008. The type II secretion arrowhead: the structure of GspI-GspJ-GspK. Nat Struct Mol Biol 15 : 428 430.[CrossRef][PubMed]
137. Nivaskumar M,, Bouvier G,, Campos M,, Nadeau N,, Yu X,, Egelman EH,, Nilges M,, Francetic O . 2014. Distinct docking and stabilization steps of the pseudopilus conformational transition path suggest rotational assembly of type IV pilus-like fibers. Structure 22 : 685 696.[CrossRef][PubMed]
138. Nivaskumar M,, Francetic O . 2014. Type II secretion system: a magic beanstalk or a protein escalator. Biochim Biophys Acta 1843 : 1568 1577.[CrossRef][PubMed]
139. O’Neal CJ,, Amaya EI,, Jobling MG,, Holmes RK,, Hol WGJ . 2004. Crystal structures of an intrinsically active cholera toxin mutant yield insight into the toxin activation mechanism. Biochemistry 43 : 3772 3782.[CrossRef][PubMed]
140. Wedekind JE,, Trame CB,, Dorywalska M,, Koehl P,, Raschke TM,, McKee M,, FitzGerald D,, Collier RJ,, McKay DB . 2001. Refined crystallographic structure of Pseudomonas aeruginosa exotoxin A and its implications for the molecular mechanism of toxicity. J Mol Biol 314 : 823 837.[CrossRef][PubMed]
141. Yoder MD,, Jurnak F . 1995. Protein motifs. 3. The parallel beta helix and other coiled folds. FASEB J 9 : 335 342.[CrossRef][PubMed]
142. Yu AC,, Worrall LJ,, Strynadka NC . 2012. Structural insight into the bacterial mucinase StcE essential to adhesion and immune evasion during enterohemorrhagic E. coli infection. Structure 20 : 707 717.[CrossRef][PubMed]
143. Giglio KM,, Fong JC,, Yildiz FH,, Sondermann H . 2013. Structural basis for biofilm formation via the Vibrio cholerae matrix protein RbmA. J Bacteriol 195 : 3277 3286.[CrossRef][PubMed]
144. Maestre-Reyna M,, Wu WJ,, Wang AH . 2013. Structural insights into RbmA, a biofilm scaffolding protein of V. cholerae. PLoS One 8 : e82458.[CrossRef][PubMed]
145. Rule CS,, Patrick M,, Camberg JL,, Maricic N,, Hol WGJ,, Sandkvist M . 2016. Zinc coordination is essential for the function and activity of the type II secretion ATPase EpsE. Microbiologyopen 5 : 870 882.[CrossRef][PubMed]
146. Fulara A,, Vandenberghe I,, Read RJ,, Devreese B,, Savvides SN . 2018. Structure and oligomerization of the periplasmic domain of GspL from the type II secretion system of Pseudomonas aeruginosa. Sci Rep 8 : 16760.[CrossRef][PubMed]
147. Zhang Y,, Faucher F,, Zhang W,, Wang S,, Neville N,, Poole K,, Zheng J,, Jia Z . 2018. Structure-guided disruption of the pseudopilus tip complex inhibits the type II secretion in Pseudomonas aeruginosa. PLoS Pathog 14 : e1007343.[CrossRef][PubMed]
148. Korotkov KV,, Delarosa JR,, Hol WGJ . 2013. A dodecameric ring-like structure of the N0 domain of the type II secretin from enterotoxigenic Escherichia coli. J Struct Biol 183 : 354 362.[CrossRef][PubMed]
149. Wretlind B,, Pavlovskis OR . 1984. Genetic mapping and characterization of Pseudomonas aeruginosa mutants defective in the formation of extracellular proteins. J Bacteriol 158 : 801 808.[PubMed]
150. Bo JN,, Howard SP . 1991. Mutagenesis and isolation of Aeromonas hydrophila genes which are required for extracellular secretion. J Bacteriol 173 : 1241 1249.[CrossRef]
151. Paranjpye RN,, Lara JC,, Pepe JC,, Pepe CM,, Strom MS . 1998. The type IV leader peptidase/N-methyltransferase of Vibrio vulnificus controls factors required for adherence to HEp-2 cells and virulence in iron-overloaded mice. Infect Immun 66 : 5659 5668.[PubMed]
152. Sikora AE,, Zielke RA,, Lawrence DA,, Andrews PC,, Sandkvist M . 2011. Proteomic analysis of the Vibrio cholerae type II secretome reveals new proteins, including three related serine proteases. J Biol Chem 286 : 16555 16566.[CrossRef][PubMed]
153. Szabady RL,, Yanta JH,, Halladin DK,, Schofield MJ,, Welch RA . 2011. TagA is a secreted protease of Vibrio cholerae that specifically cleaves mucin glycoproteins. Microbiology 157 : 516 525.[CrossRef][PubMed]
154. Golovkine G,, Faudry E,, Bouillot S,, Voulhoux R,, Attrée I,, Huber P . 2014. VE-cadherin cleavage by LasB protease from Pseudomonas aeruginosa facilitates type III secretion system toxicity in endothelial cells. PLoS Pathog 10 : e1003939.[CrossRef][PubMed]
155. DuMont AL,, Cianciotto NP . 2017. Stenotrophomonas maltophilia serine protease StmPr1 induces matrilysis, anoikis, and protease-activated receptor 2 activation in human lung epithelial cells. Infect Immun 85 : e00544-17.[CrossRef][PubMed]
156. Truchan HK,, Christman HD,, White RC,, Rutledge NS,, Cianciotto NP . 2017. Type II secretion substrates of Legionella pneumophila translocate out of the pathogen-occupied vacuole via a semipermeable membrane. mBio 8 : e00870-17.[CrossRef][PubMed]
157. Jha G,, Rajeshwari R,, Sonti RV . 2005. Bacterial type two secretion system secreted proteins: double-edged swords for plant pathogens. Mol Plant Microbe Interact 18 : 891 898.[CrossRef][PubMed]
158. Nascimento R,, Gouran H,, Chakraborty S,, Gillespie HW,, Almeida-Souza HO,, Tu A,, Rao BJ,, Feldstein PA,, Bruening G,, Goulart LR,, Dandekar AM . 2016. The type II secreted lipase/esterase LesA is a key virulence factor required for Xylella fastidiosa pathogenesis in grapevines. Sci Rep 6 : 18598.[CrossRef][PubMed]
159. Overbye LJ,, Sandkvist M,, Bagdasarian M . 1993. Genes required for extracellular secretion of enterotoxin are clustered in Vibrio cholerae. Gene 132 : 101 106.[CrossRef]
160. Francetic O,, Belin D,, Badaut C,, Pugsley AP . 2000. Expression of the endogenous type II secretion pathway in Escherichia coli leads to chitinase secretion. EMBO J 19 : 6697 6703.[CrossRef][PubMed]
161. Aragon V,, Kurtz S,, Cianciotto NP . 2001. Legionella pneumophila major acid phosphatase and its role in intracellular infection. Infect Immun 69 : 177 185.[CrossRef][PubMed]
162. Ball G,, Durand E,, Lazdunski A,, Filloux A . 2002. A novel type II secretion system in Pseudomonas aeruginosa. Mol Microbiol 43 : 475 485.[CrossRef][PubMed]
163. Putker F,, Tommassen-van Boxtel R,, Stork M,, Rodríguez-Herva JJ,, Koster M,, Tommassen J . 2013. The type II secretion system (Xcp) of Pseudomonas putida is active and involved in the secretion of phosphatases. Environ Microbiol 15 : 2658 2671.[PubMed]
164. Rossier O,, Dao J,, Cianciotto NP . 2009. A type II secreted RNase of Legionella pneumophila facilitates optimal intracellular infection of Hartmannella vermiformis. Microbiology 155 : 882 890.[CrossRef][PubMed]
165. Mulcahy H,, Charron-Mazenod L,, Lewenza S . 2010. Pseudomonas aeruginosa produces an extracellular deoxyribonuclease that is required for utilization of DNA as a nutrient source. Environ Microbiol 12 : 1621 1629.[PubMed]
166. DiChristina TJ,, Moore CM,, Haller CA . 2002. Dissimilatory Fe(III) and Mn(IV) reduction by Shewanella putrefaciens requires ferE, a homolog of the pulE ( gspE) type II protein secretion gene. J Bacteriol 184 : 142 151.[CrossRef][PubMed]
167. Shi L,, Deng S,, Marshall MJ,, Wang Z,, Kennedy DW,, Dohnalkova AC,, Mottaz HM,, Hill EA,, Gorby YA,, Beliaev AS,, Richardson DJ,, Zachara JM,, Fredrickson JK . 2008. Direct involvement of type II secretion system in extracellular translocation of Shewanella oneidensis outer membrane cytochromes MtrC and OmcA. J Bacteriol 190 : 5512 5516.[CrossRef][PubMed]
168. Kirn TJ,, Jude BA,, Taylor RK . 2005. A colonization factor links Vibrio cholerae environmental survival and human infection. Nature 438 : 863 866.[CrossRef][PubMed]
169. Cadoret F,, Ball G,, Douzi B,, Voulhoux R . 2014. Txc, a new type II secretion system of Pseudomonas aeruginosa strain PA7, is regulated by the TtsS/TtsR two-component system and directs specific secretion of the CbpE chitin-binding protein. J Bacteriol 196 : 2376 2386.[CrossRef][PubMed]


Generic image for table

Examples of T2SS substrates

Citation: Korotkov K, Sandkvist M. 2019. Architecture, Function, and Substrates of the Type II Secretion System, p 227-244. In Sandkvist M, Cascales E, Christie P (ed), Protein Secretion in Bacteria. ASM Press, Washington, DC. doi: 10.1128/ecosalplus.ESP-0034-2018

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error