1887

Chapter 23 : Hostile Takeover: Hijacking of Endoplasmic Reticulum Function by T4SS and T3SS Effectors Creates a Niche for Intracellular Pathogens

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Hostile Takeover: Hijacking of Endoplasmic Reticulum Function by T4SS and T3SS Effectors Creates a Niche for Intracellular Pathogens, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781683670285/9781683670278_Chap23-1.gif /docserver/preview/fulltext/10.1128/9781683670285/9781683670278_Chap23-2.gif

Abstract:

Multiple intracellular pathogens utilize the type III secretion system (T3SS) and type IV secretion system (T4SS) to target functions of the host cell’s endoplasmic reticulum (ER). While pathogens such as and have long been known to replicate in association with the ER ( ), the connection of vacuoles containing other intracellular pathogens, such as ( ), spp. ( ), and and its relatives ( ), with the ER has been recognized relatively recently. However, manipulation of ER function is not limited to pathogens that replicate within a vacuole, as cytosolic pathogens such as ( ) and ( ) also target ER-based functions via secreted effectors to promote their intracellular growth.

Citation: Tsai A, English B, Tsolis R. 2019. Hostile Takeover: Hijacking of Endoplasmic Reticulum Function by T4SS and T3SS Effectors Creates a Niche for Intracellular Pathogens, p 291-305. In Sandkvist M, Cascales E, Christie P (ed), Protein Secretion in Bacteria. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PSIB-0027-2019
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Hijacking of vesicular traffic between ER and Golgi by T4SS effectors of (left) and (right). It has been proposed that like , also intercepts Golgi-ER traffic ( ). Abbreviations: ERGIC, ER-to-Golgi intermediate compartment; ERES, ER exit site; COG, conserved oligomeric Golgi complex.

Citation: Tsai A, English B, Tsolis R. 2019. Hostile Takeover: Hijacking of Endoplasmic Reticulum Function by T4SS and T3SS Effectors Creates a Niche for Intracellular Pathogens, p 291-305. In Sandkvist M, Cascales E, Christie P (ed), Protein Secretion in Bacteria. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PSIB-0027-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Role of pathogen effectors in tethering of pathogen-containing vacuoles to the ER. Abbreviations: Rtn4, reticulon 4; LCV, large-cell variant; SCV, small-cell variant; RB, reticulate body; EB, elementary body.

Citation: Tsai A, English B, Tsolis R. 2019. Hostile Takeover: Hijacking of Endoplasmic Reticulum Function by T4SS and T3SS Effectors Creates a Niche for Intracellular Pathogens, p 291-305. In Sandkvist M, Cascales E, Christie P (ed), Protein Secretion in Bacteria. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PSIB-0027-2019
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781683670285.chap23
1. Anderson TD,, Cheville NF . 1986. Ultrastructural morphometric analysis of Brucella abortus-infected trophoblasts in experimental placentitis. Bacterial replication occurs in rough endoplasmic reticulum. Am J Pathol 124 : 226 237.
2. Swanson MS,, Isberg RR . 1995. Association of Legionella pneumophila with the macrophage endoplasmic reticulum. Infect Immun 63 : 3609 3620.
3. Campoy EM,, Zoppino FC,, Colombo MI . 2011. The early secretory pathway contributes to the growth of the Coxiella-replicative niche. Infect Immun 79 : 402 413.[CrossRef][PubMed]
4. Justis AV,, Hansen B,, Beare PA,, King KB,, Heinzen RA,, Gilk SD . 2017. Interactions between the Coxiella burnetii parasitophorous vacuole and the endoplasmic reticulum involve the host protein ORP1L. Cell Microbiol 19 : e12637.[CrossRef][PubMed]
5. Niu H,, Xiong Q,, Yamamoto A,, Hayashi-Nishino M,, Rikihisa Y . 2012. Autophagosomes induced by a bacterial Beclin 1 binding protein facilitate obligatory intracellular infection. Proc Natl Acad Sci U S A 109 : 20800 20807.[CrossRef][PubMed]
6. Truchan HK,, Cockburn CL,, Hebert KS,, Magunda F,, Noh SM,, Carlyon JA . 2016. The pathogen-occupied vacuoles of Anaplasma phagocytophilum and Anaplasma marginale interact with the endoplasmic reticulum. Front Cell Infect Microbiol 6 : 22.[CrossRef]
7. Derré I . 2015. Chlamydiae interaction with the endoplasmic reticulum: contact, function and consequences. Cell Microbiol 17 : 959 966.[CrossRef][PubMed]
8. Mehlitz A,, Karunakaran K,, Herweg JA,, Krohne G,, van de Linde S,, Rieck E,, Sauer M,, Rudel T . 2014. The chlamydial organism Simkania negevensis forms ER vacuole contact sites and inhibits ER-stress. Cell Microbiol 16 : 1224 1243.[CrossRef][PubMed]
9. Rodino KG,, VieBrock L,, Evans SM,, Ge H,, Richards AL,, Carlyon JA . 2017. Orientia tsutsugamushi modulates endoplasmic reticulum-associated degradation to benefit its growth. Infect Immun 86 : e00596-17.[CrossRef][PubMed]
10. VieBrock L,, Evans SM,, Beyer AR,, Larson CL,, Beare PA,, Ge H,, Singh S,, Rodino KG,, Heinzen RA,, Richards AL,, Carlyon JA . 2015. Orientia tsutsugamushi ankyrin repeat-containing protein family members are type 1 secretion system substrates that traffic to the host cell endoplasmic reticulum. Front Cell Infect Microbiol 4 : 186.[CrossRef][PubMed]
11. Lehman SS,, Noriea NF,, Aistleitner K,, Clark TR,, Dooley CA,, Nair V,, Kaur SJ,, Rahman MS,, Gillespie JJ,, Azad AF,, Hackstadt T . 2018. The rickettsial ankyrin repeat protein 2 is a type IV secreted effector that associates with the endoplasmic reticulum. mBio 9 : e00975-18.[CrossRef][PubMed]
12. McCaffrey K,, Braakman I . 2016. Protein quality control at the endoplasmic reticulum. Essays Biochem 60 : 227 235.[CrossRef][PubMed]
13. Helenius A,, Aebi M . 2004. Roles of N-linked glycans in the endoplasmic reticulum. Annu Rev Biochem 73 : 1019 1049.[CrossRef][PubMed]
14. Preston GM,, Brodsky JL . 2017. The evolving role of ubiquitin modification in endoplasmic reticulum-associated degradation. Biochem J 474 : 445 469.[CrossRef][PubMed]
15. Jacquemyn J,, Cascalho A,, Goodchild RE . 2017. The ins and outs of endoplasmic reticulum-controlled lipid biosynthesis. EMBO Rep 18 : 1905 1921.[CrossRef][PubMed]
16. Toledo A,, Benach JL . 2015. Hijacking and use of host lipids by intracellular pathogens. Microbiol Spectr 3 : VMBF-0001-2014.
17. Kim PK,, Mullen RT,, Schumann U,, Lippincott-Schwartz J . 2006. The origin and maintenance of mammalian peroxisomes involves a de novo PEX16-dependent pathway from the ER. J Cell Biol 173 : 521 532.[CrossRef][PubMed]
18. Joshi AS,, Zhang H,, Prinz WA . 2017. Organelle biogenesis in the endoplasmic reticulum. Nat Cell Biol 19 : 876 882.[CrossRef][PubMed]
19. Wu H,, Carvalho P,, Voeltz GK . 2018. Here, there, and everywhere: the importance of ER membrane contact sites. Science 361 : eaan5835.[CrossRef][PubMed]
20. Friedman JR,, Lackner LL,, West M,, DiBenedetto JR,, Nunnari J,, Voeltz GK . 2011. ER tubules mark sites of mitochondrial division. Science 334 : 358 362.[CrossRef][PubMed]
21. Cárdenas C,, Miller RA,, Smith I,, Bui T,, Molgó J,, Müller M,, Vais H,, Cheung KH,, Yang J,, Parker I,, Thompson CB,, Birnbaum MJ,, Hallows KR,, Foskett JK . 2010. Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell 142 : 270 283.[CrossRef][PubMed]
22. Rizzuto R,, Pinton P,, Carrington W,, Fay FS,, Fogarty KE,, Lifshitz LM,, Tuft RA,, Pozzan T . 1998. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280 : 1763 1766.[CrossRef][PubMed]
23. Friedman JR,, Dibenedetto JR,, West M,, Rowland AA,, Voeltz GK . 2013. Endoplasmic reticulum-endosome contact increases as endosomes traffic and mature. Mol Biol Cell 24 : 1030 1040.[CrossRef][PubMed]
24. Miller C,, Celli J . 2016. Avoidance and subversion of eukaryotic homeostatic autophagy mechanisms by bacterial pathogens. J Mol Biol 428 : 3387 3398.[CrossRef][PubMed]
25. Axe EL,, Walker SA,, Manifava M,, Chandra P,, Roderick HL,, Habermann A,, Griffiths G,, Ktistakis NT . 2008. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol 182 : 685 701.[CrossRef]
26. Sedzicki J,, Tschon T,, Low SH,, Willemart K,, Goldie KN,, Letesson JJ,, Stahlberg H,, Dehio C . 2018. 3D correlative electron microscopy reveals continuity of Brucella-containing vacuoles with the endoplasmic reticulum. J Cell Sci 131 : jcs210799.[CrossRef][PubMed]
27. Beyer AR,, Rodino KG,, VieBrock L,, Green RS,, Tegels BK,, Oliver LD Jr,, Marconi RT,, Carlyon JA . 2017. Orientia tsutsugamushi Ank9 is a multifunctional effector that utilizes a novel GRIP-like Golgi localization domain for Golgi-to-endoplasmic reticulum trafficking and interacts with host COPB2. Cell Microbiol 19 : e12727.[CrossRef][PubMed]
28. Dehio C,, Tsolis RM . 2017. Type IV effector secretion and subversion of host functions by Bartonella and Brucella species. Curr Top Microbiol Immunol 413 : 269 295.[CrossRef][PubMed]
29. Celli J . 2015. The changing nature of the Brucella-containing vacuole. Cell Microbiol 17 : 951 958.[CrossRef][PubMed]
30. Celli J,, Salcedo SP,, Gorvel JP . 2005. Brucella coopts the small GTPase Sar1 for intracellular replication. Proc Natl Acad Sci U S A 102 : 1673 1678.[CrossRef][PubMed]
31. Fugier E,, Salcedo SP,, de Chastellier C,, Pophillat M,, Muller A,, Arce-Gorvel V,, Fourquet P,, Gorvel JP . 2009. The glyceraldehyde-3-phosphate dehydrogenase and the small GTPase Rab 2 are crucial for Brucella replication. PLoS Pathog 5 : e1000487.[CrossRef][PubMed]
32. de Jong MF,, Starr T,, Winter MG,, den Hartigh AB,, Child R,, Knodler LA,, van Dijl JM,, Celli J,, Tsolis RM . 2013. Sensing of bacterial type IV secretion via the unfolded protein response. mBio 4 : e00418-12.[CrossRef][PubMed]
33. de Jong MF,, Sun YH,, den Hartigh AB,, van Dijl JM,, Tsolis RM . 2008. Identification of VceA and VceC, two members of the VjbR regulon that are translocated into macrophages by the Brucella type IV secretion system. Mol Microbiol 70 : 1378 1396.[CrossRef][PubMed]
34. Keestra-Gounder AM,, Byndloss MX,, Seyffert N,, Young BM,, Chávez-Arroyo A,, Tsai AY,, Cevallos SA,, Winter MG,, Pham OH,, Tiffany CR,, de Jong MF,, Kerrinnes T,, Ravindran R,, Luciw PA,, McSorley SJ,, Bäumler AJ,, Tsolis RM . 2016. NOD1 and NOD2 signalling links ER stress with inflammation. Nature 532 : 394 397.[CrossRef][PubMed]
35. Myeni S,, Child R,, Ng TW,, Kupko JJ III,, Wehrly TD,, Porcella SF,, Knodler LA,, Celli J . 2013. Brucella modulates secretory trafficking via multiple type IV secretion effector proteins. PLoS Pathog 9 : e1003556.[CrossRef][PubMed]
36. Sherwood RK,, Roy CR . 2016. Autophagy evasion and endoplasmic reticulum subversion: the yin and yang of Legionella intracellular infection. Annu Rev Microbiol 70 : 413 433.[CrossRef][PubMed]
37. Nagai H,, Kagan JC,, Zhu X,, Kahn RA,, Roy CR . 2002. A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes. Science 295 : 679 682.[CrossRef][PubMed]
38. Stenmark H . 2009. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10 : 513 525.[CrossRef][PubMed]
39. Machner MP,, Isberg RR . 2006. Targeting of host Rab GTPase function by the intravacuolar pathogen Legionella pneumophila. Dev Cell 11 : 47 56.[CrossRef][PubMed]
40. Neunuebel MR,, Machner MP . 2012. The taming of a Rab GTPase by Legionella pneumophila. Small GTPases 3 : 28 33.[CrossRef][PubMed]
41. Brombacher E,, Urwyler S,, Ragaz C,, Weber SS,, Kami K,, Overduin M,, Hilbi H . 2009. Rab1 guanine nucleotide exchange factor SidM is a major phosphatidylinositol 4-phosphate-binding effector protein of Legionella pneumophila. J Biol Chem 284 : 4846 4856.[CrossRef][PubMed]
42. Müller MP,, Peters H,, Blümer J,, Blankenfeldt W,, Goody RS,, Itzen A . 2010. The Legionella effector protein DrrA AMPylates the membrane traffic regulator Rab1b. Science 329 : 946 949.[CrossRef][PubMed]
43. Derré I,, Isberg RR . 2005. LidA, a translocated substrate of the Legionella pneumophila type IV secretion system, interferes with the early secretory pathway. Infect Immun 73 : 4370 4380.[CrossRef][PubMed]
44. So EC,, Schroeder GN,, Carson D,, Mattheis C,, Mousnier A,, Broncel M,, Tate EW,, Frankel G . 2016. The Rab-binding profiles of bacterial virulence factors during infection. J Biol Chem 291 : 5832 5843.[CrossRef][PubMed]
45. Schoebel S,, Cichy AL,, Goody RS,, Itzen A . 2011. Protein LidA from Legionella is a Rab GTPase supereffector. Proc Natl Acad Sci U S A 108 : 17945 17950.[CrossRef][PubMed]
46. Arasaki K,, Toomre DK,, Roy CR . 2012. The Legionella pneumophila effector DrrA is sufficient to stimulate SNARE-dependent membrane fusion. Cell Host Microbe 11 : 46 57.[CrossRef][PubMed]
47. Neunuebel MR,, Chen Y,, Gaspar AH,, Backlund PS Jr,, Yergey A,, Machner MP . 2011. De-AMPylation of the small GTPase Rab1 by the pathogen Legionella pneumophila. Science 333 : 453 456.[CrossRef][PubMed]
48. Ingmundson A,, Delprato A,, Lambright DG,, Roy CR . 2007. Legionella pneumophila proteins that regulate Rab1 membrane cycling. Nature 450 : 365 369.[CrossRef][PubMed]
49. Pan X,, Lührmann A,, Satoh A,, Laskowski-Arce MA,, Roy CR . 2008. Ankyrin repeat proteins comprise a diverse family of bacterial type IV effectors. Science 320 : 1651 1654.[CrossRef][PubMed]
50. Mukherjee S,, Liu X,, Arasaki K,, McDonough J,, Galán JE,, Roy CR . 2011. Modulation of Rab GTPase function by a protein phosphocholine transferase. Nature 477 : 103 106.[CrossRef][PubMed]
51. Goody PR,, Heller K,, Oesterlin LK,, Müller MP,, Itzen A,, Goody RS . 2012. Reversible phosphocholination of Rab proteins by Legionella pneumophila effector proteins. EMBO J 31 : 1774 1784.[CrossRef][PubMed]
52. Tan Y,, Arnold RJ,, Luo ZQ . 2011. Legionella pneumophila regulates the small GTPase Rab1 activity by reversible phosphorylcholination. Proc Natl Acad Sci U S A 108 : 21212 21217.[CrossRef][PubMed]
53. Levin RS,, Hertz NT,, Burlingame AL,, Shokat KM,, Mukherjee S . 2016. Innate immunity kinase TAK1 phosphorylates Rab1 on a hotspot for posttranslational modifications by host and pathogen. Proc Natl Acad Sci U S A 113 : E4776 E4783.[CrossRef][PubMed]
54. Derré I,, Swiss R,, Agaisse H . 2011. The lipid transfer protein CERT interacts with the Chlamydia inclusion protein IncD and participates to ER- Chlamydia inclusion membrane contact sites. PLoS Pathog 7 : e1002092.[CrossRef][PubMed]
55. Stanhope R,, Flora E,, Bayne C,, Derré I . 2017. IncV, a FFAT motif-containing Chlamydia protein, tethers the endoplasmic reticulum to the pathogen-containing vacuole. Proc Natl Acad Sci U S A 114 : 12039 12044.[CrossRef][PubMed]
56. van Schaik EJ,, Chen C,, Mertens K,, Weber MM,, Samuel JE . 2013. Molecular pathogenesis of the obligate intracellular bacterium Coxiella burnetii. Nat Rev Microbiol 11 : 561 573.[CrossRef][PubMed]
57. Beare PA,, Gilk SD,, Larson CL,, Hill J,, Stead CM,, Omsland A,, Cockrell DC,, Howe D,, Voth DE,, Heinzen RA . 2011. Dot/Icm type IVB secretion system requirements for Coxiella burnetii growth in human macrophages. mBio 2 : e00175-11.[CrossRef][PubMed]
58. Carey KL,, Newton HJ,, Lührmann A,, Roy CR . 2011. The Coxiella burnetii Dot/Icm system delivers a unique repertoire of type IV effectors into host cells and is required for intracellular replication. PLoS Pathog 7 : e1002056.[CrossRef][PubMed]
59. Graham JG,, Winchell CG,, Sharma UM,, Voth DE . 2015. Identification of ElpA, a Coxiella burnetii pathotype-specific Dot/Icm type IV secretion system substrate. Infect Immun 83 : 1190 1198.[CrossRef][PubMed]
60. Weber MM,, Chen C,, Rowin K,, Mertens K,, Galvan G,, Zhi H,, Dealing CM,, Roman VA,, Banga S,, Tan Y,, Luo ZQ,, Samuel JE . 2013. Identification of Coxiella burnetii type IV secretion substrates required for intracellular replication and Coxiella-containing vacuole formation. J Bacteriol 195 : 3914 3924.[CrossRef][PubMed]
61. Haenssler E,, Ramabhadran V,, Murphy CS,, Heidtman MI,, Isberg RR . 2015. Endoplasmic reticulum tubule protein reticulon 4 associates with the Legionella pneumophila vacuole and with translocated substrate Ceg9. Infect Immun 83 : 3479 3489.[CrossRef][PubMed]
62. Voeltz GK,, Prinz WA,, Shibata Y,, Rist JM,, Rapoport TA . 2006. A class of membrane proteins shaping the tubular endoplasmic reticulum. Cell 124 : 573 586.[CrossRef][PubMed]
63. Jozsef L,, Tashiro K,, Kuo A,, Park EJ,, Skoura A,, Albinsson S,, Rivera-Molina F,, Harrison KD,, Iwakiri Y,, Toomre D,, Sessa WC . 2014. Reticulon 4 is necessary for endoplasmic reticulum tubulation, STIM1-Orai1 coupling, and store-operated calcium entry. J Biol Chem 289 : 9380 9395.[CrossRef][PubMed]
64. Kotewicz KM,, Ramabhadran V,, Sjoblom N,, Vogel JP,, Haenssler E,, Zhang M,, Behringer J,, Scheck RA,, Isberg RR . 2017. A single Legionella effector catalyzes a multistep ubiquitination pathway to rearrange tubular endoplasmic reticulum for replication. Cell Host Microbe 21 : 169 181.[CrossRef][PubMed]
65. Luo ZQ,, Isberg RR . 2004. Multiple substrates of the Legionella pneumophila Dot/Icm system identified by interbacterial protein transfer. Proc Natl Acad Sci U S A 101 : 841 846.[CrossRef][PubMed]
66. Ragaz C,, Pietsch H,, Urwyler S,, Tiaden A,, Weber SS,, Hilbi H . 2008. The Legionella pneumophila phosphatidylinositol-4 phosphate-binding type IV substrate SidC recruits endoplasmic reticulum vesicles to a replication-permissive vacuole. Cell Microbiol 10 : 2416 2433.[CrossRef][PubMed]
67. Weber SS,, Ragaz C,, Reus K,, Nyfeler Y,, Hilbi H . 2006. Legionella pneumophila exploits PI(4)P to anchor secreted effector proteins to the replicative vacuole. PLoS Pathog 2 : e46.[CrossRef][PubMed]
68. Hsu F,, Luo X,, Qiu J,, Teng YB,, Jin J,, Smolka MB,, Luo ZQ,, Mao Y . 2014. The Legionella effector SidC defines a unique family of ubiquitin ligases important for bacterial phagosomal remodeling. Proc Natl Acad Sci U S A 111 : 10538 10543.[CrossRef][PubMed]
69. Horenkamp FA,, Kauffman KJ,, Kohler LJ,, Sherwood RK,, Krueger KP,, Shteyn V,, Roy CR,, Melia TJ,, Reinisch KM . 2015. The Legionella anti-autophagy effector RavZ targets the autophagosome via PI3P- and curvature-sensing motifs. Dev Cell 34 : 569 576.[CrossRef][PubMed]
70. Choy A,, Dancourt J,, Mugo B,, O’Connor TJ,, Isberg RR,, Melia TJ,, Roy CR . 2012. The Legionella effector RavZ inhibits host autophagy through irreversible Atg8 deconjugation. Science 338 : 1072 1076.[CrossRef][PubMed]
71. Rolando M,, Escoll P,, Nora T,, Botti J,, Boitez V,, Bedia C,, Daniels C,, Abraham G,, Stogios PJ,, Skarina T,, Christophe C,, Dervins-Ravault D,, Cazalet C,, Hilbi H,, Rupasinghe TW,, Tull D,, McConville MJ,, Ong SY,, Hartland EL,, Codogno P,, Levade T,, Naderer T,, Savchenko A,, Buchrieser C . 2016. Legionella pneumophila S1P-lyase targets host sphingolipid metabolism and restrains autophagy. Proc Natl Acad Sci U S A 113 : 1901 1906.[CrossRef][PubMed]
72. Rikihisa Y . 2017. Role and function of the type IV secretion system in Anaplasma and Ehrlichia species. Curr Top Microbiol Immunol 413 : 297 321.[CrossRef][PubMed]
73. Byndloss MX,, Keestra-Gounder AM,, Bäumler AJ,, Tsolis RM . 2016. NOD1 and NOD2: new functions linking endoplasmic reticulum stress and inflammation. DNA Cell Biol 35 : 311 313.[CrossRef][PubMed]
74. Celli J,, Tsolis RM . 2015. Bacteria, the endoplasmic reticulum and the unfolded protein response: friends or foes? Nat Rev Microbiol 13 : 71 82.[CrossRef][PubMed]
75. Salcedo SP,, Marchesini MI,, Lelouard H,, Fugier E,, Jolly G,, Balor S,, Muller A,, Lapaque N,, Demaria O,, Alexopoulou L,, Comerci DJ,, Ugalde RA,, Pierre P,, Gorvel JP . 2008. Brucella control of dendritic cell maturation is dependent on the TIR-containing protein Btp1. PLoS Pathog 4 : e21.[CrossRef][PubMed]
76. Smith JA,, Khan M,, Magnani DD,, Harms JS,, Durward M,, Radhakrishnan GK,, Liu YP,, Splitter GA . 2013. Brucella induces an unfolded protein response via TcpB that supports intracellular replication in macrophages. PLoS Pathog 9 : e1003785.[CrossRef][PubMed]
77. Felix C,, Kaplan Türköz B,, Ranaldi S,, Koelblen T,, Terradot L,, O’Callaghan D,, Vergunst AC . 2014. The Brucella TIR domain containing proteins BtpA and BtpB have a structural WxxxE motif important for protection against microtubule depolymerisation. Cell Commun Signal 12 : 53.[CrossRef][PubMed]
78. Radhakrishnan GK,, Harms JS,, Splitter GA . 2011. Modulation of microtubule dynamics by a TIR domain protein from the intracellular pathogen Brucella melitensis. Biochem J 439 : 79 83.[CrossRef][PubMed]
79. Gurel PS,, Hatch AL,, Higgs HN . 2014. Connecting the cytoskeleton to the endoplasmic reticulum and Golgi. Curr Biol 24 : R660 R672.[CrossRef][PubMed]
80. Claessen JH,, Ploegh HL . 2011. BAT3 guides misfolded glycoproteins out of the endoplasmic reticulum. PLoS One 6 : e28542.[CrossRef][PubMed]
81. Min CK,, Yang JS,, Kim S,, Choi MS,, Kim IS,, Cho NH . 2008. Genome-based construction of the metabolic pathways of Orientia tsutsugamushi and comparative analysis within the Rickettsiales order. Comp Funct Genomics 2008 : 623145.[PubMed]
82. Treacy-Abarca S,, Mukherjee S . 2015. Legionella suppresses the host unfolded protein response via multiple mechanisms. Nat Commun 6 : 7887.[CrossRef][PubMed]
83. Belyi Y,, Niggeweg R,, Opitz B,, Vogelsgesang M,, Hippenstiel S,, Wilm M,, Aktories K . 2006. Legionella pneumophila glucosyltransferase inhibits host elongation factor 1A. Proc Natl Acad Sci U S A 103 : 16953 16958.[CrossRef][PubMed]
84. Hempstead AD,, Isberg RR . 2015. Inhibition of host cell translation elongation by Legionella pneumophila blocks the host cell unfolded protein response. Proc Natl Acad Sci U S A 112 : E6790 E6797.[CrossRef][PubMed]
85. Smith JA . 2014. A new paradigm: innate immune sensing of viruses via the unfolded protein response. Front Microbiol 5 : 222.[CrossRef]
86. Gomez-Valero L,, Rusniok C,, Carson D,, Mondino S,, Pérez-Cobas AE,, Rolando M,, Pasricha S,, Reuter S,, Demirtas J,, Crumbach J,, Descorps-Declere S,, Hartland EL,, Jarraud S,, Dougan G,, Schroeder GN,, Frankel G,, Buchrieser C . 2019. More than 18,000 effectors in the Legionella genus genome provide multiple, independent combinations for replication in human cells. Proc Natl Acad Sci U S A 116 : 2265 2273.[CrossRef][PubMed]
87. Ensminger AW . 2016. Legionella pneumophila, armed to the hilt: justifying the largest arsenal of effectors in the bacterial world. Curr Opin Microbiol 29 : 74 80.[CrossRef][PubMed]
88. Mirrashidi KM,, Elwell CA,, Verschueren E,, Johnson JR,, Frando A,, Von Dollen J,, Rosenberg O,, Gulbahce N,, Jang G,, Johnson T,, Jäger S,, Gopalakrishnan AM,, Sherry J,, Dunn JD,, Olive A,, Penn B,, Shales M,, Cox JS,, Starnbach MN,, Derre I,, Valdivia R,, Krogan NJ,, Engel J . 2015. Global mapping of the Inc-human interactome reveals that retromer restricts Chlamydia infection. Cell Host Microbe 18 : 109 121.[CrossRef][PubMed]
89. Penn BH,, Netter Z,, Johnson JR,, Von Dollen J,, Jang GM,, Johnson T,, Ohol YM,, Maher C,, Bell SL,, Geiger K,, Golovkine G,, Du X,, Choi A,, Parry T,, Mohapatra BC,, Storck MD,, Band H,, Chen C,, Jager S,, Shales M,, Portnoy DA,, Hernandez R,, Coscoy L,, Cox JS,, Krogan NJ . 2018. An Mtb-human protein-protein interaction map identifies a switch between host antiviral and antibacterial responses. Mol Cell 71 : 637 648.e635.[PubMed]
90. Bärlocher K,, Welin A,, Hilbi H . 2017. Formation of the Legionella replicative compartment at the crossroads of retrograde trafficking. Front Cell Infect Microbiol 7 : 482.[CrossRef][PubMed]
91. Miller CN,, Smith EP,, Cundiff JA,, Knodler LA,, Bailey Blackburn J,, Lupashin V,, Celli J . 2017. A Brucella type IV effector targets the COG tethering complex to remodel host secretory traffic and promote intracellular replication. Cell Host Microbe 22 : 317 329.e317.[PubMed]
92. Belyi Y,, Tabakova I,, Stahl M,, Aktories K . 2008. Lgt: a family of cytotoxic glucosyltransferases produced by Legionella pneumophila. J Bacteriol 190 : 3026 3035.[CrossRef][PubMed]
93. Jeong KC,, Sexton JA,, Vogel JP . 2015. Spatiotemporal regulation of a Legionella pneumophila T4SS substrate by the metaeffector SidJ. PLoS Pathog 11 : e1004695.[CrossRef][PubMed]
94. Qiu J,, Sheedlo MJ,, Yu K,, Tan Y,, Nakayasu ES,, Das C,, Liu X,, Luo ZQ . 2016. Ubiquitination independent of E1 and E2 enzymes by bacterial effectors. Nature 533 : 120 124.[CrossRef][PubMed]
95. Sheedlo MJ,, Qiu J,, Tan Y,, Paul LN,, Luo ZQ,, Das C . 2015. Structural basis of substrate recognition by a bacterial deubiquitinase important for dynamics of phagosome ubiquitination. Proc Natl Acad Sci U S A 112 : 15090 15095.[CrossRef][PubMed]
96. Weber S,, Wagner M,, Hilbi H . 2014. Live-cell imaging of phosphoinositide dynamics and membrane architecture during Legionella infection. mBio 5 : e00839-13.[CrossRef][PubMed]
97. Bardill JP,, Miller JL,, Vogel JP . 2005. IcmS-dependent translocation of SdeA into macrophages by the Legionella pneumophila type IV secretion system. Mol Microbiol 56 : 90 103.[CrossRef][PubMed]
98. Hubber A,, Arasaki K,, Nakatsu F,, Hardiman C,, Lambright D,, De Camilli P,, Nagai H,, Roy CR . 2014. The machinery at endoplasmic reticulum-plasma membrane contact sites contributes to spatial regulation of multiple Legionella effector proteins. PLoS Pathog 10 : e1004222.[CrossRef][PubMed]
99. Machner MP,, Isberg RR . 2007. A bifunctional bacterial protein links GDI displacement to Rab1 activation. Science 318 : 974 977.[CrossRef][PubMed]
100. Murata T,, Delprato A,, Ingmundson A,, Toomre DK,, Lambright DG,, Roy CR . 2006. The Legionella pneumophila effector protein DrrA is a Rab1 guanine nucleotide-exchange factor. Nat Cell Biol 8 : 971 977.[CrossRef][PubMed]
101. Neunuebel MR,, Mohammadi S,, Jarnik M,, Machner MP . 2012. Legionella pneumophila LidA affects nucleotide binding and activity of the host GTPase Rab1. J Bacteriol 194 : 1389 1400.[CrossRef][PubMed]
102. Wang Z,, McCloskey A,, Cheng S,, Wu M,, Xue C,, Yu Z,, Fu J,, Liu Y,, Luo ZQ,, Liu X . 2018. Regulation of the small GTPase Rab1 function by a bacterial glucosyltransferase. Cell Discov 4 : 53.[CrossRef][PubMed]
103. Heidtman M,, Chen EJ,, Moy MY,, Isberg RR . 2009. Large-scale identification of Legionella pneumophila Dot/Icm substrates that modulate host cell vesicle trafficking pathways. Cell Microbiol 11 : 230 248.[CrossRef][PubMed]
104. Chen J,, Reyes M,, Clarke M,, Shuman HA . 2007. Host cell-dependent secretion and translocation of the LepA and LepB effectors of Legionella pneumophila. Cell Microbiol 9 : 1660 1671.[CrossRef][PubMed]
105. Dong N,, Niu M,, Hu L,, Yao Q,, Zhou R,, Shao F . 2016. Modulation of membrane phosphoinositide dynamics by the phosphatidylinositide 4-kinase activity of the Legionella LepB effector. Nat Microbiol 2 : 16236.[CrossRef][PubMed]
106. Arasaki K,, Mikami Y,, Shames SR,, Inoue H,, Wakana Y,, Tagaya M . 2017. Legionella effector Lpg1137 shuts down ER-mitochondria communication through cleavage of syntaxin 17. Nat Commun 8 : 15406.[CrossRef][PubMed]
107. Cortes C,, Rzomp KA,, Tvinnereim A,, Scidmore MA,, Wizel B . 2007. Chlamydia pneumoniae inclusion membrane protein Cpn0585 interacts with multiple Rab GTPases. Infect Immun 75 : 5586 5596.[CrossRef][PubMed]
108. Agaisse H,, Derré I . 2014. Expression of the effector protein IncD in Chlamydia trachomatis mediates recruitment of the lipid transfer protein CERT and the endoplasmic reticulum-resident protein VAPB to the inclusion membrane. Infect Immun 82 : 2037 2047.[CrossRef][PubMed]
109. Nguyen PH,, Lutter EI,, Hackstadt T . 2018. Chlamydia trachomatis inclusion membrane protein MrcA interacts with the inositol 1,4,5-trisphosphate receptor type 3 (ITPR3) to regulate extrusion formation. PLoS Pathog 14 : e1006911.[CrossRef][PubMed]

Tables

Generic image for table
TABLE 1

Secreted pathogen effectors that localize to the ER or modulate its function

Citation: Tsai A, English B, Tsolis R. 2019. Hostile Takeover: Hijacking of Endoplasmic Reticulum Function by T4SS and T3SS Effectors Creates a Niche for Intracellular Pathogens, p 291-305. In Sandkvist M, Cascales E, Christie P (ed), Protein Secretion in Bacteria. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PSIB-0027-2019

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error