1887

Chapter 26 : Structure and Activity of the Type VI Secretion System

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Structure and Activity of the Type VI Secretion System, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781683670285/9781683670278_Chap26-1.gif /docserver/preview/fulltext/10.1128/9781683670285/9781683670278_Chap26-2.gif

Abstract:

The type VI secretion system (T6SS) is a multiprotein machine that belongs to the versatile family of contractile injection systems (CISs) ( ). CISs deliver effectors into target cells using a spring-like mechanism ( ). Briefly, CISs assemble a needle-like structure, loaded with effectors, wrapped into a sheath built in an extended, metastable conformation ( Fig. 1 ). Contraction of the sheath propels the needle toward the competitor cell. Genomes of Gram-negative bacteria usually encode one or several T6SSs, with an overrepresentation in and ( ; for a review on the role of T6SS in gut-associated , see the chapter by Coyne and Comstock [ ]). The broad arsenal of effectors delivered by T6SSs includes antibacterial proteins such as peptidoglycan hydrolases, eukaryotic effectors that act on cell cytoskeleton, and toxins that can target all cell types, such as DNases, phospholipases, and NAD hydrolases ( ). Consequently, the T6SS plays a critical role in reshaping bacterial communities and, directly or indirectly, in pathogenesis ( ). Destroying bacterial competitors also provides exogenous DNA that can be acquired in naturally competent bacteria and that serves as a reservoir for antibiotic resistance gene spread ( ). This chapter lists the major effector families and summarizes the current knowledge on the assembly and mode of action of the T6SS.

Citation: Cherrak Y, Flaugnatti N, Durand E, Journet L, Cascales E. 2019. Structure and Activity of the Type VI Secretion System, p 329-342. In Sandkvist M, Cascales E, Christie P (ed), Protein Secretion in Bacteria. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PSIB-0031-2019
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Schematic representation of the T6SS. The different subunits are labeled, as are the different subcomplexes. IM, inner membrane; OM, outer membrane.

Citation: Cherrak Y, Flaugnatti N, Durand E, Journet L, Cascales E. 2019. Structure and Activity of the Type VI Secretion System, p 329-342. In Sandkvist M, Cascales E, Christie P (ed), Protein Secretion in Bacteria. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PSIB-0031-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Assembly and mechanism of firing of the T6SS. T6SS biogenesis starts with the positioning and assembly of the membrane complex and the assembly of the BP ( ). The recruitment and docking of the BP on the membrane complex ( ) initiate the TssA-mediated polymerization of the tail tube/sheath tubular structure ( to ), which is stopped when hitting the opposite membrane by the TagA stopper ( ). Sheath contraction propels the tube/spike needle into the target ( ). The ClpV ATPase is recruited to the contracted sheath to recycle sheath subunits ( ). Needle components, and effectors associated with them, are delivered inside the target ( ).

Citation: Cherrak Y, Flaugnatti N, Durand E, Journet L, Cascales E. 2019. Structure and Activity of the Type VI Secretion System, p 329-342. In Sandkvist M, Cascales E, Christie P (ed), Protein Secretion in Bacteria. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PSIB-0031-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Schematic representation of the mechanisms of effector loading. Effectors are depicted as red circles. Specialized effectors are chimeric needle proteins with extensions encoding the effector. Cargo effectors are independent proteins that associate with needle components (Hcp, VgrG, and PAAR). Binding of cargo effectors to needle components could be direct or mediated by adaptor modules that are independent proteins (adaptors) or extensions of VgrG and PAAR (internal adaptors).

Citation: Cherrak Y, Flaugnatti N, Durand E, Journet L, Cascales E. 2019. Structure and Activity of the Type VI Secretion System, p 329-342. In Sandkvist M, Cascales E, Christie P (ed), Protein Secretion in Bacteria. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PSIB-0031-2019
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781683670285.chap26
1. Bönemann G,, Pietrosiuk A,, Mogk A . 2010. Tubules and donuts: a type VI secretion story. Mol Microbiol 76 : 815 821.[CrossRef][PubMed]
2. Zoued A,, Brunet YR,, Durand E,, Aschtgen MS,, Logger L,, Douzi B,, Journet L,, Cambillau C,, Cascales E . 2014. Architecture and assembly of the type VI secretion system. Biochim Biophys Acta 1843 : 1664 1673.[CrossRef][PubMed]
3. Cascales E . 2017. Microbiology: and Amoebophilus invented the machine gun! Curr Biol 27 : R1170 R1173.[CrossRef][PubMed]
4. Taylor NMI,, van Raaij MJ,, Leiman PG . 2018. Contractile injection systems of bacteriophages and related systems. Mol Microbiol 108 : 6 15.[CrossRef][PubMed]
5. Brackmann M,, Nazarov S,, Wang J,, Basler M . 2017. Using force to punch holes: mechanics of contractile nanomachines. Trends Cell Biol 27 : 623 632.[CrossRef][PubMed]
6. Cianfanelli FR,, Monlezun L,, Coulthurst SJ . 2016. Aim, load, fire: the type VI secretion system, a bacterial nanoweapon. Trends Microbiol 24 : 51 62.[CrossRef][PubMed]
7. Coyne MJ,, Comstock LE . 2019. Type VI secretion systems and the gut microbiota. Microbiol Spectr 7 : PSIB-0009-2018.[CrossRef][PubMed]
8. Bingle LE,, Bailey CM,, Pallen MJ . 2008. Type VI secretion: a beginner’s guide. Curr Opin Microbiol 11 : 3 8.[CrossRef][PubMed]
9. Cascales E . 2008. The type VI secretion toolkit. EMBO Rep 9 : 735 741.[CrossRef][PubMed]
10. Boyer F,, Fichant G,, Berthod J,, Vandenbrouck Y,, Attree I . 2009. Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources? BMC Genomics 10 : 104.[CrossRef][PubMed]
11. Russell AB,, Peterson SB,, Mougous JD . 2014. Type VI secretion system effectors: poisons with a purpose. Nat Rev Microbiol 12 : 137 148.[CrossRef][PubMed]
12. Durand E,, Cambillau C,, Cascales E,, Journet L . 2014. VgrG, Tae, Tle, and beyond: the versatile arsenal of type VI secretion effectors. Trends Microbiol 22 : 498 507.[CrossRef][PubMed]
13. Alcoforado Diniz J,, Liu YC,, Coulthurst SJ . 2015. Molecular weaponry: diverse effectors delivered by the type VI secretion system. Cell Microbiol 17 : 1742 1751.[CrossRef][PubMed]
14. Hachani A,, Wood TE,, Filloux A . 2016. Type VI secretion and anti-host effectors. Curr Opin Microbiol 29 : 81 93.[CrossRef][PubMed]
15. Fu Y,, Waldor MK,, Mekalanos JJ . 2013. Tn-Seq analysis of Vibrio cholerae intestinal colonization reveals a role for T6SS-mediated antibacterial activity in the host. Cell Host Microbe 14 : 652 663.[CrossRef][PubMed]
16. Sana TG,, Flaugnatti N,, Lugo KA,, Lam LH,, Jacobson A,, Baylot V,, Durand E,, Journet L,, Cascales E,, Monack DM . 2016. Salmonella Typhimurium utilizes a T6SS-mediated antibacterial weapon to establish in the host gut. Proc Natl Acad Sci U S A 113 : E5044 E5051.[CrossRef][PubMed]
17. Sana TG,, Lugo KA,, Monack DM . 2017. T6SS: the bacterial “fight club” in the host gut. PLoS Pathog 13 : e1006325.[CrossRef][PubMed]
18. Chassaing B,, Cascales E . 2018. Antibacterial weapons: targeted destruction in the microbiota. Trends Microbiol 26 : 329 338.[CrossRef][PubMed]
19. García-Bayona L,, Comstock LE . 2018. Bacterial antagonism in host-associated microbial communities. Science 361 : eaat2456.[CrossRef][PubMed]
20. Veening JW,, Blokesch M . 2017. Interbacterial predation as a strategy for DNA acquisition in naturally competent bacteria. Nat Rev Microbiol 15 : 621 629.[CrossRef][PubMed]
21. Pukatzki S,, Ma AT,, Sturtevant D,, Krastins B,, Sarracino D,, Nelson WC,, Heidelberg JF,, Mekalanos JJ . 2006. Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci U S A 103 : 1528 1533.[CrossRef][PubMed]
22. Sana TG,, Baumann C,, Merdes A,, Soscia C,, Rattei T,, Hachani A,, Jones C,, Bennett KL,, Filloux A,, Superti-Furga G,, Voulhoux R,, Bleves S . 2015. Internalization of Pseudomonas aeruginosa strain PAO1 into epithelial cells is promoted by interaction of a T6SS effector with the microtubule network. mBio 6 : e00712-15.[CrossRef][PubMed]
23. Schwarz S,, Singh P,, Robertson JD,, LeRoux M,, Skerrett SJ,, Goodlett DR,, West TE,, Mougous JD . 2014. VgrG-5 is a Burkholderia type VI secretion system-exported protein required for multinucleated giant cell formation and virulence. Infect Immun 82 : 1445 1452.[CrossRef][PubMed]
24. Pukatzki S,, Ma AT,, Revel AT,, Sturtevant D,, Mekalanos JJ . 2007. Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc Natl Acad Sci U S A 104 : 15508 15513.[CrossRef][PubMed]
25. Suarez G,, Sierra JC,, Erova TE,, Sha J,, Horneman AJ,, Chopra AK . 2010. A type VI secretion system effector protein, VgrG1, from Aeromonas hydrophila that induces host cell toxicity by ADP ribosylation of actin. J Bacteriol 192 : 155 168.[CrossRef][PubMed]
26. Durand E,, Derrez E,, Audoly G,, Spinelli S,, Ortiz-Lombardia M,, Raoult D,, Cascales E,, Cambillau C . 2012. Crystal structure of the VgrG1 actin cross-linking domain of the Vibrio cholerae type VI secretion system. J Biol Chem 287 : 38190 38199.[CrossRef][PubMed]
27. Aubert DF,, Xu H,, Yang J,, Shi X,, Gao W,, Li L,, Bisaro F,, Chen S,, Valvano MA,, Shao F . 2016. A Burkholderia type VI effector deamidates Rho GTPases to activate the pyrin inflammasome and trigger inflammation. Cell Host Microbe 19 : 664 674.[CrossRef][PubMed]
28. Eshraghi A,, Kim J,, Walls AC,, Ledvina HE,, Miller CN,, Ramsey KM,, Whitney JC,, Radey MC,, Peterson SB,, Ruhland BR,, Tran BQ,, Goo YA,, Goodlett DR,, Dove SL,, Celli J,, Veesler D,, Mougous JD . 2016. Secreted effectors encoded within and outside of the Francisella pathogenicity island promote intramacrophage growth. Cell Host Microbe 20 : 573 583.[CrossRef][PubMed]
29. Ledvina HE,, Kelly KA,, Eshraghi A,, Plemel RL,, Peterson SB,, Lee B,, Steele S,, Adler M,, Kawula TH,, Merz AJ,, Skerrett SJ,, Celli J,, Mougous JD . 2018. A phosphatidylinositol 3-kinase effector alters phagosomal maturation to promote intracellular growth of Francisella. Cell Host Microbe 24 : 285 295.e8.[CrossRef][PubMed]
30. Lennings J,, West TE,, Schwarz S . 2019. The Burkholderia type VI secretion system 5: composition, regulation and role in virulence. Front Microbiol 9 : 3339.[CrossRef][PubMed]
31. Hood RD,, Singh P,, Hsu F,, Güvener T,, Carl MA,, Trinidad RR,, Silverman JM,, Ohlson BB,, Hicks KG,, Plemel RL,, Li M,, Schwarz S,, Wang WY,, Merz AJ,, Goodlett DR,, Mougous JD . 2010. A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe 7 : 25 37.[CrossRef][PubMed]
32. Russell AB,, Hood RD,, Bui NK,, LeRoux M,, Vollmer W,, Mougous JD . 2011. Type VI secretion delivers bacteriolytic effectors to target cells. Nature 475 : 343 347.[CrossRef][PubMed]
33. Russell AB,, LeRoux M,, Hathazi K,, Agnello DM,, Ishikawa T,, Wiggins PA,, Wai SN,, Mougous JD . 2013. Diverse type VI secretion phospholipases are functionally plastic antibacterial effectors. Nature 496 : 508 512.[CrossRef][PubMed]
34. Ma LS,, Hachani A,, Lin JS,, Filloux A,, Lai EM . 2014. Agrobacterium tumefaciens deploys a superfamily of type VI secretion DNase effectors as weapons for interbacterial competition in planta. Cell Host Microbe 16 : 94 104.[CrossRef][PubMed]
35. Whitney JC,, Quentin D,, Sawai S,, LeRoux M,, Harding BN,, Ledvina HE,, Tran BQ,, Robinson H,, Goo YA,, Goodlett DR,, Raunser S,, Mougous JD . 2015. An interbacterial NAD(P)(+) glycohydrolase toxin requires elongation factor Tu for delivery to target cells. Cell 163 : 607 619.[CrossRef][PubMed]
36. Pissaridou P,, Allsopp LP,, Wettstadt S,, Howard SA,, Mavridou DAI,, Filloux A . 2018. The Pseudomonas aeruginosa T6SS-VgrG1b spike is topped by a PAAR protein eliciting DNA damage to bacterial competitors. Proc Natl Acad Sci U S A 115 : 12519 12524.[CrossRef][PubMed]
37. Ting SY,, Bosch DE,, Mangiameli SM,, Radey MC,, Huang S,, Park YJ,, Kelly KA,, Filip SK,, Goo YA,, Eng JK,, Allaire M,, Veesler D,, Wiggins PA,, Peterson SB,, Mougous JD . 2018. Bifunctional immunity proteins protect bacteria against FtsZ-targeting ADP-ribosylating toxins. Cell 175 : 1380 1392.e14.[CrossRef][PubMed]
38. Wang T,, Si M,, Song Y,, Zhu W,, Gao F,, Wang Y,, Zhang L,, Zhang W,, Wei G,, Luo ZQ,, Shen X . 2015. Type VI secretion system transports Zn2+ to combat multiple stresses and host immunity. PLoS Pathog 11 : e1005020.[CrossRef][PubMed]
39. Si M,, Zhao C,, Burkinshaw B,, Zhang B,, Wei D,, Wang Y,, Dong TG,, Shen X . 2017. Manganese scavenging and oxidative stress response mediated by type VI secretion system in Burkholderia thailandensis. Proc Natl Acad Sci U S A 114 : E2233 E2242.[CrossRef][PubMed]
40. Si M,, Wang Y,, Zhang B,, Zhao C,, Kang Y,, Bai H,, Wei D,, Zhu L,, Zhang L,, Dong TG,, Shen X . 2017. The type VI secretion system engages a redox-regulated dual-functional heme transporter for zinc acquisition. Cell Rep 20 : 949 959.[CrossRef][PubMed]
41. Verster AJ,, Ross BD,, Radey MC,, Bao Y,, Goodman AL,, Mougous JD,, Borenstein E . 2017. The landscape of type VI secretion across human gut microbiomes reveals its role in community composition. Cell Host Microbe 22 : 411 419.e4.[CrossRef][PubMed]
42. Bernard CS,, Brunet YR,, Gueguen E,, Cascales E . 2010. Nooks and crannies in type VI secretion regulation. J Bacteriol 192 : 3850 3860.[CrossRef][PubMed]
43. Silverman JM,, Brunet YR,, Cascales E,, Mougous JD . 2012. Structure and regulation of the type VI secretion system. Annu Rev Microbiol 66 : 453 472.[CrossRef][PubMed]
44. Miyata ST,, Bachmann V,, Pukatzki S . 2013. Type VI secretion system regulation as a consequence of evolutionary pressure. J Med Microbiol 62 : 663 676.[CrossRef][PubMed]
45. LeRoux M,, Peterson SB,, Mougous JD . 2015. Bacterial danger sensing. J Mol Biol 427 : 3744 3753.[CrossRef][PubMed]
46. Ho BT,, Dong TG,, Mekalanos JJ . 2014. A view to a kill: the bacterial type VI secretion system. Cell Host Microbe 15 : 9 21.[CrossRef][PubMed]
47. Basler M . 2015. Type VI secretion system: secretion by a contractile nanomachine. Philos Trans R Soc Lond B Biol Sci 370 : 20150021.[CrossRef][PubMed]
48. Coulthurst S . 2019. The type VI secretion system: a versatile bacterial weapon. Microbiology 165 : 503 515.[CrossRef][PubMed]
49. Durand E,, Nguyen VS,, Zoued A,, Logger L,, Péhau-Arnaudet G,, Aschtgen MS,, Spinelli S,, Desmyter A,, Bardiaux B,, Dujeancourt A,, Roussel A,, Cambillau C,, Cascales E,, Fronzes R . 2015. Biogenesis and structure of a type VI secretion membrane core complex. Nature 523 : 555 560.[CrossRef][PubMed]
50. Brunet YR,, Zoued A,, Boyer F,, Douzi B,, Cascales E . 2015. The type VI secretion TssEFGK-VgrG phage-like baseplate is recruited to the TssJLM membrane complex via multiple contacts and serves as assembly platform for tail tube/sheath polymerization. PLoS Genet 11 : e1005545.[CrossRef][PubMed]
51. Gerc AJ,, Diepold A,, Trunk K,, Porter M,, Rickman C,, Armitage JP,, Stanley-Wall NR,, Coulthurst SJ . 2015. Visualization of the Serratia type VI secretion system reveals unprovoked attacks and dynamic assembly. Cell Rep 12 : 2131 2142.[CrossRef][PubMed]
52. Basler M,, Pilhofer M,, Henderson GP,, Jensen GJ,, Mekalanos JJ . 2012. Type VI secretion requires a dynamic contractile phage tail-like structure. Nature 483 : 182 186.[CrossRef][PubMed]
53. Aschtgen MS,, Gavioli M,, Dessen A,, Lloubès R,, Cascales E . 2010. The SciZ protein anchors the enteroaggregative Escherichia coli type VI secretion system to the cell wall. Mol Microbiol 75 : 886 899.[CrossRef][PubMed]
54. Aschtgen MS,, Bernard CS,, De Bentzmann S,, Lloubès R,, Cascales E . 2008. SciN is an outer membrane lipoprotein required for type VI secretion in enteroaggregative Escherichia coli. J Bacteriol 190 : 7523 7531.[CrossRef][PubMed]
55. Ma LS,, Lin JS,, Lai EM . 2009. An IcmF family protein, ImpL M, is an integral inner membrane protein interacting with ImpK L, and its walker a motif is required for type VI secretion system-mediated Hcp secretion in Agrobacterium tumefaciens. J Bacteriol 191 : 4316 4329.[CrossRef][PubMed]
56. Aschtgen MS,, Zoued A,, Lloubès R,, Journet L,, Cascales E . 2012. The C-tail anchored TssL subunit, an essential protein of the enteroaggregative Escherichia coli Sci-1 type VI secretion system, is inserted by YidC. Microbiologyopen 1 : 71 82.[CrossRef][PubMed]
57. Logger L,, Aschtgen MS,, Guérin M,, Cascales E,, Durand E . 2016. Molecular dissection of the interface between the type VI secretion TssM cytoplasmic domain and the TssG baseplate component. J Mol Biol 428 : 4424 4437.[CrossRef][PubMed]
58. Felisberto-Rodrigues C,, Durand E,, Aschtgen MS,, Blangy S,, Ortiz-Lombardia M,, Douzi B,, Cambillau C,, Cascales E . 2011. Towards a structural comprehension of bacterial type VI secretion systems: characterization of the TssJ-TssM complex of an Escherichia coli pathovar. PLoS Pathog 7 : e1002386.[CrossRef][PubMed]
59. Rao VA,, Shepherd SM,, English G,, Coulthurst SJ,, Hunter WN . 2011. The structure of Serratia marcescens Lip, a membrane-bound component of the type VI secretion system. Acta Crystallogr D Biol Crystallogr 67 : 1065 1072.[CrossRef][PubMed]
60. Robb CS,, Assmus M,, Nano FE,, Boraston AB . 2013. Structure of the T6SS lipoprotein TssJ1 from Pseudomonas aeruginosa. Acta Crystallogr Sect F Struct Biol Cryst Commun 69 : 607 610.[CrossRef][PubMed]
61. Durand E,, Zoued A,, Spinelli S,, Watson PJ,, Aschtgen MS,, Journet L,, Cambillau C,, Cascales E . 2012. Structural characterization and oligomerization of the TssL protein, a component shared by bacterial type VI and type IVb secretion systems. J Biol Chem 287 : 14157 14168.[CrossRef][PubMed]
62. Robb CS,, Nano FE,, Boraston AB . 2012. The structure of the conserved type six secretion protein TssL (DotU) from Francisella novicida. J Mol Biol 419 : 277 283.[CrossRef][PubMed]
63. Chang JH,, Kim YG . 2015. Crystal structure of the bacterial type VI secretion system component TssL from Vibrio cholerae. J Microbiol 53 : 32 37.[CrossRef][PubMed]
64. Zoued A,, Cassaro CJ,, Durand E,, Douzi B,, España AP,, Cambillau C,, Journet L,, Cascales E . 2016. Structure-function analysis of the TssL cytoplasmic domain reveals a new interaction between the type VI secretion baseplate and membrane complexes. J Mol Biol 428 : 4413 4423.[CrossRef][PubMed]
65. Zoued A,, Duneau JP,, Durand E,, España AP,, Journet L,, Guerlesquin F,, Cascales E . 2018. Tryptophan-mediated dimerization of the TssL transmembrane anchor is required for type VI secretion system activity. J Mol Biol 430 : 987 1003.[CrossRef][PubMed]
66. Zoued A,, Durand E,, Bebeacua C,, Brunet YR,, Douzi B,, Cambillau C,, Cascales E,, Journet L . 2013. TssK is a trimeric cytoplasmic protein interacting with components of both phage-like and membrane anchoring complexes of the type VI secretion system. J Biol Chem 288 : 27031 27041.[CrossRef][PubMed]
67. Nguyen VS,, Logger L,, Spinelli S,, Legrand P,, Huyen Pham TT,, Nhung Trinh TT,, Cherrak Y,, Zoued A,, Desmyter A,, Durand E,, Roussel A,, Kellenberger C,, Cascales E,, Cambillau C . 2017. Type VI secretion TssK baseplate protein exhibits structural similarity with phage receptor-binding proteins and evolved to bind the membrane complex. Nat Microbiol 2 : 17103.[CrossRef][PubMed]
68. Rapisarda C,, Cherrak Y,, Kooger R,, Schmidt V,, Pellarin R,, Logger L,, Cascales E,, Pilhofer M,, Durand E,, Fronzes R . 2019. In situ and high-resolution cryo-EM structure of a bacterial type VI secretion system membrane complex. EMBO J 38 : e100886.[CrossRef][PubMed]
69. Yin M,, Yan Z,, Li X . 2019. Architecture of type VI secretion system membrane core complex. Cell Res 29 : 251 253.[CrossRef][PubMed]
70. Aschtgen MS,, Thomas MS,, Cascales E . 2010. Anchoring the type VI secretion system to the peptidoglycan: TssL, TagL, TagP... what else? Virulence 1 : 535 540.[CrossRef][PubMed]
71. Santin YG,, Camy CE,, Zoued A,, Doan T,, Aschtgen MS,, Cascales E . 2019. Role and recruitment of the TagL peptidoglycan-binding protein during type VI secretion system biogenesis. J Bacteriol 201 : e00173-19.[CrossRef][PubMed]
72. Weber BS,, Hennon SW,, Wright MS,, Scott NE,, de Berardinis V,, Foster LJ,, Ayala JA,, Adams MD,, Feldman MF . 2016. Genetic dissection of the type VI secretion system in Acinetobacter and identification of a novel peptidoglycan hydrolase, TagX, required for its biogenesis. mBio 7 : e01253-16.[CrossRef][PubMed]
73. Santin YG,, Cascales E . 2017. Domestication of a housekeeping transglycosylase for assembly of a type VI secretion system. EMBO Rep 18 : 138 149.[CrossRef][PubMed]
74. Russell AB,, Wexler AG,, Harding BN,, Whitney JC,, Bohn AJ,, Goo YA,, Tran BQ,, Barry NA,, Zheng H,, Peterson SB,, Chou S,, Gonen T,, Goodlett DR,, Goodman AL,, Mougous JD . 2014. A type VI secretion-related pathway in Bacteroidetes mediates interbacterial antagonism. Cell Host Microbe 16 : 227 236.[CrossRef][PubMed]
75. Coyne MJ,, Roelofs KG,, Comstock LE . 2016. Type VI secretion systems of human gut Bacteroidales segregate into three genetic architectures, two of which are contained on mobile genetic elements. BMC Genomics 17 : 58.[CrossRef][PubMed]
76. Nazarov S,, Schneider JP,, Brackmann M,, Goldie KN,, Stahlberg H,, Basler M . 2018. Cryo-EM reconstruction of type VI secretion system baseplate and sheath distal end. EMBO J 37 : e97103.[CrossRef][PubMed]
77. Cherrak Y,, Rapisarda C,, Pellarin R,, Bouvier G,, Bardiaux B,, Allain F,, Malosse C,, Rey M,, Chamot-Rooke J,, Cascales E,, Fronzes R,, Durand E . 2018. Biogenesis and structure of a type VI secretion baseplate. Nat Microbiol 3 : 1404 1416.[CrossRef][PubMed]
78. English G,, Byron O,, Cianfanelli FR,, Prescott AR,, Coulthurst SJ . 2014. Biochemical analysis of TssK, a core component of the bacterial type VI secretion system, reveals distinct oligomeric states of TssK and identifies a TssK-TssFG subcomplex. Biochem J 461 : 291 304.[CrossRef][PubMed]
79. Taylor NM,, Prokhorov NS,, Guerrero-Ferreira RC,, Shneider MM,, Browning C,, Goldie KN,, Stahlberg H,, Leiman PG . 2016. Structure of the T4 baseplate and its function in triggering sheath contraction. Nature 533 : 346 352.[CrossRef][PubMed]
80. Büttner CR,, Wu Y,, Maxwell KL,, Davidson AR . 2016. Baseplate assembly of phage Mu: defining the conserved core components of contractile-tailed phages and related bacterial systems. Proc Natl Acad Sci U S A 113 : 10174 10179.[CrossRef][PubMed]
81. Kostyuchenko VA,, Leiman PG,, Chipman PR,, Kanamaru S,, van Raaij MJ,, Arisaka F,, Mesyanzhinov VV,, Rossmann MG . 2003. Three-dimensional structure of bacteriophage T4 baseplate. Nat Struct Biol 10 : 688 693.[CrossRef][PubMed]
82. Planamente S,, Salih O,, Manoli E,, Albesa-Jové D,, Freemont PS,, Filloux A . 2016. TssA forms a gp6-like ring attached to the type VI secretion sheath. EMBO J 35 : 1613 1627.[CrossRef][PubMed]
83. Brunet YR,, Espinosa L,, Harchouni S,, Mignot T,, Cascales E . 2013. Imaging type VI secretion-mediated bacterial killing. Cell Rep 3 : 36 41.[CrossRef][PubMed]
84. Ballister ER,, Lai AH,, Zuckermann RN,, Cheng Y,, Mougous JD . 2008. In vitro self-assembly of tailorable nanotubes from a simple protein building block. Proc Natl Acad Sci U S A 105 : 3733 3738.[CrossRef][PubMed]
85. Leiman PG,, Basler M,, Ramagopal UA,, Bonanno JB,, Sauder JM,, Pukatzki S,, Burley SK,, Almo SC,, Mekalanos JJ . 2009. Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc Natl Acad Sci U S A 106 : 4154 4159.[CrossRef][PubMed]
86. Brunet YR,, Hénin J,, Celia H,, Cascales E . 2014. Type VI secretion and bacteriophage tail tubes share a common assembly pathway. EMBO Rep 15 : 315 321.[CrossRef][PubMed]
87. Mougous JD,, Cuff ME,, Raunser S,, Shen A,, Zhou M,, Gifford CA,, Goodman AL,, Joachimiak G,, Ordoñez CL,, Lory S,, Walz T,, Joachimiak A,, Mekalanos JJ . 2006. A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 312 : 1526 1530.[CrossRef][PubMed]
88. Douzi B,, Spinelli S,, Blangy S,, Roussel A,, Durand E,, Brunet YR,, Cascales E,, Cambillau C . 2014. Crystal structure and self-interaction of the type VI secretion tail-tube protein from enteroaggregative Escherichia coli. PLoS One 9 : e86918.[CrossRef][PubMed]
89. Renault MG,, Zamarreno Beas J,, Douzi B,, Chabalier M,, Zoued A,, Brunet YR,, Cambillau C,, Journet L,, Cascales E . 2018. The gp27-like hub of VgrG serves as adaptor to promote Hcp tube assembly. J Mol Biol 430( 18 Part B) : 3143 3156.[CrossRef][PubMed]
90. Shneider MM,, Buth SA,, Ho BT,, Basler M,, Mekalanos JJ,, Leiman PG . 2013. PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature 500 : 350 353.[CrossRef][PubMed]
91. Leiman PG,, Shneider MM . 2012. Contractile tail machines of bacteriophages. Adv Exp Med Biol 726 : 93 114.[CrossRef][PubMed]
92. Spínola-Amilibia M,, Davó-Siguero I,, Ruiz FM,, Santillana E,, Medrano FJ,, Romero A . 2016. The structure of VgrG1 from Pseudomonas aeruginosa, the needle tip of the bacterial type VI secretion system. Acta Crystallogr D Struct Biol 72 : 22 33.[CrossRef][PubMed]
93. Uchida K,, Leiman PG,, Arisaka F,, Kanamaru S . 2014. Structure and properties of the C-terminal β-helical domain of VgrG protein from Escherichia coli O157. J Biochem 155 : 173 182.[CrossRef][PubMed]
94. Bönemann G,, Pietrosiuk A,, Diemand A,, Zentgraf H,, Mogk A . 2009. Remodelling of VipA/VipB tubules by ClpV-mediated threading is crucial for type VI protein secretion. EMBO J 28 : 315 325.[CrossRef][PubMed]
95. Lossi NS,, Dajani R,, Freemont P,, Filloux A . 2011. Structure-function analysis of HsiF, a gp25-like component of the type VI secretion system, in Pseudomonas aeruginosa. Microbiology 157 : 3292 3305.[CrossRef][PubMed]
96. Bröms JE,, Ishikawa T,, Wai SN,, Sjöstedt A . 2013. A functional VipA-VipB interaction is required for the type VI secretion system activity of Vibrio cholerae O1 strain A1552. BMC Microbiol 13 : 96.[CrossRef][PubMed]
97. Zhang XY,, Brunet YR,, Logger L,, Douzi B,, Cambillau C,, Journet L,, Cascales E . 2013. Dissection of the TssB-TssC interface during type VI secretion sheath complex formation. PLoS One 8 : e81074.[CrossRef][PubMed]
98. Kube S,, Kapitein N,, Zimniak T,, Herzog F,, Mogk A,, Wendler P . 2014. Structure of the VipA/B type VI secretion complex suggests a contraction-state-specific recycling mechanism. Cell Rep 8 : 20 30.[CrossRef][PubMed]
99. Kudryashev M,, Wang RY,, Brackmann M,, Scherer S,, Maier T,, Baker D,, DiMaio F,, Stahlberg H,, Egelman EH,, Basler M . 2015. Structure of the type VI secretion system contractile sheath. Cell 160 : 952 962.[CrossRef][PubMed]
100. Wang J,, Brackmann M,, Castaño-Díez D,, Kudryashev M,, Goldie KN,, Maier T,, Stahlberg H,, Basler M . 2017. Cryo-EM structure of the extended type VI secretion system sheath-tube complex. Nat Microbiol 2 : 1507 1512.[CrossRef][PubMed]
101. Brackmann M,, Wang J,, Basler M . 2018. Type VI secretion system sheath inter-subunit interactions modulate its contraction. EMBO Rep 19 : 225 233.[CrossRef][PubMed]
102. Kapitein N,, Bönemann G,, Pietrosiuk A,, Seyffer F,, Hausser I,, Locker JK,, Mogk A . 2013. ClpV recycles VipA/VipB tubules and prevents non-productive tubule formation to ensure efficient type VI protein secretion. Mol Microbiol 87 : 1013 1028.[CrossRef][PubMed]
103. Zoued A,, Durand E,, Brunet YR,, Spinelli S,, Douzi B,, Guzzo M,, Flaugnatti N,, Legrand P,, Journet L,, Fronzes R,, Mignot T,, Cambillau C,, Cascales E . 2016. Priming and polymerization of a bacterial contractile tail structure. Nature 531 : 59 63.[CrossRef][PubMed]
104. Vettiger A,, Winter J,, Lin L,, Basler M . 2017. The type VI secretion system sheath assembles at the end distal from the membrane anchor. Nat Commun 8 : 16088.[CrossRef][PubMed]
105. Zoued A,, Durand E,, Santin YG,, Journet L,, Roussel A,, Cambillau C,, Cascales E . 2017. TssA: the cap protein of the type VI secretion system tail. Bioessays 39 : 10.[CrossRef][PubMed]
106. Santin YG,, Doan T,, Lebrun R,, Espinosa L,, Journet L,, Cascales E . 2018. In vivo TssA proximity labelling during type VI secretion biogenesis reveals TagA as a protein that stops and holds the sheath. Nat Microbiol 3 : 1304 1313.[CrossRef][PubMed]
107. Dix SR,, Owen HJ,, Sun R,, Ahmad A,, Shastri S,, Spiewak HL,, Mosby DJ,, Harris MJ,, Batters SL,, Brooker TA,, Tzokov SB,, Sedelnikova SE,, Baker PJ,, Bullough PA,, Rice DW,, Thomas MS . 2018. Structural insights into the function of type VI secretion system TssA subunits. Nat Commun 9 : 4765.[CrossRef][PubMed]
108. Pietrosiuk A,, Lenherr ED,, Falk S,, Bönemann G,, Kopp J,, Zentgraf H,, Sinning I,, Mogk A . 2011. Molecular basis for the unique role of the AAA+ chaperone ClpV in type VI protein secretion. J Biol Chem 286 : 30010 30021.[CrossRef][PubMed]
109. Douzi B,, Brunet YR,, Spinelli S,, Lensi V,, Legrand P,, Blangy S,, Kumar A,, Journet L,, Cascales E,, Cambillau C . 2016. Structure and specificity of the type VI secretion system ClpV-TssC interaction in enteroaggregative Escherichia coli. Sci Rep 6 : 34405.[CrossRef][PubMed]
110. Unterweger D,, Kostiuk B,, Pukatzki S . 2017. Adaptor proteins of type VI secretion system effectors. Trends Microbiol 25 : 8 10.[CrossRef][PubMed]
111. Ma J,, Pan Z,, Huang J,, Sun M,, Lu C,, Yao H . 2017. The Hcp proteins fused with diverse extended-toxin domains represent a novel pattern of antibacterial effectors in type VI secretion systems. Virulence 8 : 1189 1202.[CrossRef][PubMed]
112. Brooks TM,, Unterweger D,, Bachmann V,, Kostiuk B,, Pukatzki S . 2013. Lytic activity of the Vibrio cholerae type VI secretion toxin VgrG-3 is inhibited by the antitoxin TsaB. J Biol Chem 288 : 7618 7625.[CrossRef][PubMed]
113. Toesca IJ,, French CT,, Miller JF . 2014. The type VI secretion system spike protein VgrG5 mediates membrane fusion during intercellular spread by pseudomallei group Burkholderia species. Infect Immun 82 : 1436 1444.[CrossRef][PubMed]
114. Silverman JM,, Agnello DM,, Zheng H,, Andrews BT,, Li M,, Catalano CE,, Gonen T,, Mougous JD . 2013. Haemolysin coregulated protein is an exported receptor and chaperone of type VI secretion substrates. Mol Cell 51 : 584 593.[CrossRef][PubMed]
115. Whitney JC,, Beck CM,, Goo YA,, Russell AB,, Harding BN,, De Leon JA,, Cunningham DA,, Tran BQ,, Low DA,, Goodlett DR,, Hayes CS,, Mougous JD . 2014. Genetically distinct pathways guide effector export through the type VI secretion system. Mol Microbiol 92 : 529 542.[CrossRef][PubMed]
116. Unterweger D,, Miyata ST,, Bachmann V,, Brooks TM,, Mullins T,, Kostiuk B,, Provenzano D,, Pukatzki S . 2014. The Vibrio cholerae type VI secretion system employs diverse effector modules for intraspecific competition. Nat Commun 5 : 3549.[CrossRef][PubMed]
117. Liang X,, Moore R,, Wilton M,, Wong MJ,, Lam L,, Dong TG . 2015. Identification of divergent type VI secretion effectors using a conserved chaperone domain. Proc Natl Acad Sci U S A 112 : 9106 9111.[CrossRef][PubMed]
118. Unterweger D,, Kostiuk B,, Ötjengerdes R,, Wilton A,, Diaz-Satizabal L,, Pukatzki S . 2015. Chimeric adaptor proteins translocate diverse type VI secretion system effectors in Vibrio cholerae. EMBO J 34 : 2198 2210.[CrossRef][PubMed]
119. Alcoforado Diniz J,, Coulthurst SJ . 2015. Intraspecies competition in Serratia marcescens is mediated by type VI-secreted Rhs effectors and a conserved effector-associated accessory protein. J Bacteriol 197 : 2350 2360.[CrossRef][PubMed]
120. Flaugnatti N,, Le TT,, Canaan S,, Aschtgen MS,, Nguyen VS,, Blangy S,, Kellenberger C,, Roussel A,, Cambillau C,, Cascales E,, Journet L . 2016. A phospholipase A1 antibacterial type VI secretion effector interacts directly with the C-terminal domain of the VgrG spike protein for delivery. Mol Microbiol 99 : 1099 1118.[CrossRef][PubMed]
121. Bondage DD,, Lin JS,, Ma LS,, Kuo CH,, Lai EM . 2016. VgrG C terminus confers the type VI effector transport specificity and is required for binding with PAAR and adaptor-effector complex. Proc Natl Acad Sci U S A 113 : E3931 E3940.[CrossRef][PubMed]
122. Cianfanelli FR,, Alcoforado Diniz J,, Guo M,, De Cesare V,, Trost M,, Coulthurst SJ . 2016. VgrG and PAAR proteins define distinct versions of a functional type VI secretion system. PLoS Pathog 12 : e1005735.[CrossRef][PubMed]
123. Ma J,, Sun M,, Dong W,, Pan Z,, Lu C,, Yao H . 2017. PAAR-Rhs proteins harbor various C-terminal toxins to diversify the antibacterial pathways of type VI secretion systems. Environ Microbiol 19 : 345 360.[CrossRef][PubMed]
124. Quentin D,, Ahmad S,, Shanthamoorthy P,, Mougous JD,, Whitney JC,, Raunser S . 2018. Mechanism of loading and translocation of type VI secretion system effector Tse6. Nat Microbiol 3 : 1142 1152.[CrossRef][PubMed]
125. Burkinshaw BJ,, Liang X,, Wong M,, Le ANH,, Lam L,, Dong TG . 2018. A type VI secretion system effector delivery mechanism dependent on PAAR and a chaperone-co-chaperone complex. Nat Microbiol 3 : 632 640.[CrossRef][PubMed]
126. Hachani A,, Allsopp LP,, Oduko Y,, Filloux A . 2014. The VgrG proteins are “à la carte” delivery systems for bacterial type VI effectors. J Biol Chem 289 : 17872 17884.[CrossRef][PubMed]

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error