Chapter 29 : Gliding Motility and the Type IX Secretion System

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Gliding Motility and the Type IX Secretion System, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781683670285/9781683670278_Chap29-1.gif /docserver/preview/fulltext/10.1128/9781683670285/9781683670278_Chap29-2.gif


Members of the phylum have many unique features, including novel machinery for protein secretion and gliding motility ( ). Most members secrete proteins across the outer membrane (OM) using the type IX protein secretion system (T9SS), which is confined to this phylum. Many also crawl rapidly over surfaces by gliding motility. For these gliding bacteria, the motility machinery and T9SS appear to be intertwined. Here we explore gliding motility, the T9SS, and the connections between them.

Citation: McBride M. 2019. Gliding Motility and the Type IX Secretion System, p 363-374. In Sandkvist M, Cascales E, Christie P (ed), Protein Secretion in Bacteria. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PSIB-0002-2018
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Gliding of cells. Characteristic movements of cells. Spreading colonies formed by wild-type cells and nonspreading colonies formed by cells of a nonmotile mutant. Bar corresponds to 1 mm. Model of gliding. Gld proteins in the cell envelope form the PMF-powered rotary motors that are attached to the cell wall and propel adhesins, such as SprB and RemA, along looped helical tracks on the cell surface. The action of the motors on adhesins that are attached to the substratum results in forward movement and rotation of the cell. Two rotary motors are shown. Rotation of one motor propels a baseplate carrying SprB and RemA adhesins and delivers it to the next motor. Modified from reference .

Citation: McBride M. 2019. Gliding Motility and the Type IX Secretion System, p 363-374. In Sandkvist M, Cascales E, Christie P (ed), Protein Secretion in Bacteria. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PSIB-0002-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

T9SS and gliding motility proteins. Proteins in blue are associated with the T9SS, and proteins in green are motility proteins that are not directly associated with the T9SS. Orthologous T9SS proteins between panels A and B are shown in the same relative positions, color, and shapes. GldK, GldL, GldM, GldN, SprA, SprE, and SprT correspond to PorK, PorL, PorM, PorN, Sov, PorW, and PorT, respectively. Black lines are lipid tails on lipoproteins. Proteins secreted by the T9SS have predicted N-terminal signal peptides (yellow) that target them to the Sec system for export across the cytoplasmic membrane (CM) and C-terminal domains (red) that target them to the T9SS for secretion across the outer membrane (OM). Proteins are not drawn to scale, and stoichiometry of components is not illustrated. T9SS proteins. Where protein names were not available, locus tags (from strain W83) were used. The gingipain protease RgpB is shown covalently attached to the outer membrane acidic lipopolysaccharide (A-LPS). Secretion complex and attachment complex are indicated by the large and small blue barrels, respectively. T9SS and gliding motility proteins. SprB is a motility adhesin that is propelled by some of the other proteins shown. SprF is required for secretion of SprB but not for secretion of other proteins. SprF and nine other proteins are related to PorP. PorV is required for secretion of ChiA and many other proteins, but not for secretion of SprB.

Citation: McBride M. 2019. Gliding Motility and the Type IX Secretion System, p 363-374. In Sandkvist M, Cascales E, Christie P (ed), Protein Secretion in Bacteria. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PSIB-0002-2018
Permissions and Reprints Request Permissions
Download as Powerpoint


1. McBride MJ,, Zhu Y . 2013. Gliding motility and Por secretion system genes are widespread among members of the phylum Bacteroidetes. J Bacteriol 195 : 270 278.[CrossRef][PubMed]
2. Lasica AM,, Ksiazek M,, Madej M,, Potempa J . 2017. The type IX secretion system (T9SS): highlights and recent insights into its structure and function. Front Cell Infect Microbiol 7 : 215.[CrossRef][PubMed]
3. Veith PD,, Glew MD,, Gorasia DG,, Reynolds EC . 2017. Type IX secretion: the generation of bacterial cell surface coatings involved in virulence, gliding motility and the degradation of complex biopolymers. Mol Microbiol 106 : 35 53.[CrossRef][PubMed]
4. Hutchinson HB,, Clayton J . 1919. On the decomposition of cellulose by an aerobic organism ( Spirochaeta cytophaga, n. sp.). J Agric Sci 9 : 143 173.[CrossRef]
5. Nakane D,, Sato K,, Wada H,, McBride MJ,, Nakayama K . 2013. Helical flow of surface protein required for bacterial gliding motility. Proc Natl Acad Sci U S A 110 : 11145 11150.[CrossRef][PubMed]
6. Nelson SS,, Bollampalli S,, McBride MJ . 2008. SprB is a cell surface component of the Flavobacterium johnsoniae gliding motility machinery. J Bacteriol 190 : 2851 2857.[CrossRef][PubMed]
7. Jarrell KF,, McBride MJ . 2008. The surprisingly diverse ways that prokaryotes move. Nat Rev Microbiol 6 : 466 476.[CrossRef][PubMed]
8. Miyata M . 2010. Unique centipede mechanism of Mycoplasma gliding. Annu Rev Microbiol 64 : 519 537.[CrossRef][PubMed]
9. Nan B,, McBride MJ,, Chen J,, Zusman DR,, Oster G . 2014. Bacteria that glide with helical tracks. Curr Biol 24 : R169 R173.[CrossRef][PubMed]
10. Cho YW,, Gonzales A,, Harwood TV,, Huynh J,, Hwang Y,, Park JS,, Trieu AQ,, Italia P,, Pallipuram VK,, Risser DD . 2017. Dynamic localization of HmpF regulates type IV pilus activity and directional motility in the filamentous cyanobacterium Nostoc punctiforme. Mol Microbiol 106 : 252 265.[CrossRef][PubMed]
11. Lapidus IR,, Berg HC . 1982. Gliding motility of Cytophaga sp. strain U67. J Bacteriol 151 : 384 398.[PubMed]
12. Pate JL,, Chang L-YE . 1979. Evidence that gliding motility in prokaryotic cells is driven by rotary assemblies in the cell envelopes. Curr Microbiol 2 : 59 64.[CrossRef]
13. McBride MJ,, Nakane D . 2015. Flavobacterium gliding motility and the type IX secretion system. Curr Opin Microbiol 28 : 72 77.[CrossRef][PubMed]
14. Shrivastava A,, Rhodes RG,, Pochiraju S,, Nakane D,, McBride MJ . 2012. Flavobacterium johnsoniae RemA is a mobile cell surface lectin involved in gliding. J Bacteriol 194 : 3678 3688.[CrossRef][PubMed]
15. Shrivastava A,, Berg HC . 2015. Towards a model for Flavobacterium gliding. Curr Opin Microbiol 28 : 93 97.[CrossRef][PubMed]
16. Shrivastava A,, Lele PP,, Berg HC . 2015. A rotary motor drives Flavobacterium gliding. Curr Biol 25 : 338 341.[CrossRef][PubMed]
17. Shrivastava A,, Roland T,, Berg HC . 2016. The screw-like movement of a gliding bacterium is powered by spiral motion of cell-surface adhesins. Biophys J 111 : 1008 1013.[CrossRef][PubMed]
18. Braun TF,, Khubbar MK,, Saffarini DA,, McBride MJ . 2005. Flavobacterium johnsoniae gliding motility genes identified by mariner mutagenesis. J Bacteriol 187 : 6943 6952.[CrossRef][PubMed]
19. Shrivastava A,, Johnston JJ,, van Baaren JM,, McBride MJ . 2013. Flavobacterium johnsoniae GldK, GldL, GldM, and SprA are required for secretion of the cell surface gliding motility adhesins SprB and RemA. J Bacteriol 195 : 3201 3212.[CrossRef][PubMed]
20. Zhu Y,, McBride MJ . 2016. Comparative analysis of Cellulophaga algicola and Flavobacterium johnsoniae gliding motility. J Bacteriol 198 : 1743 1754.[CrossRef][PubMed]
21. Chang LE,, Pate JL,, Betzig RJ . 1984. Isolation and characterization of nonspreading mutants of the gliding bacterium Cytophaga johnsonae. J Bacteriol 159 : 26 35.[PubMed]
22. Rhodes RG,, Samarasam MN,, Shrivastava A,, van Baaren JM,, Pochiraju S,, Bollampalli S,, McBride MJ . 2010. Flavobacterium johnsoniae gldN and gldO are partially redundant genes required for gliding motility and surface localization of SprB. J Bacteriol 192 : 1201 1211.[CrossRef][PubMed]
23. Sato K,, Naito M,, Yukitake H,, Hirakawa H,, Shoji M,, McBride MJ,, Rhodes RG,, Nakayama K . 2010. A protein secretion system linked to bacteroidete gliding motility and pathogenesis. Proc Natl Acad Sci U S A 107 : 276 281.[CrossRef][PubMed]
24. Pathirana RD,, O’Brien-Simpson NM,, Brammar GC,, Slakeski N,, Reynolds EC . 2007. Kgp and RgpB, but not RgpA, are important for Porphyromonas gingivalis virulence in the murine periodontitis model. Infect Immun 75 : 1436 1442.[CrossRef][PubMed]
25. O’Brien-Simpson NM,, Paolini RA,, Hoffmann B,, Slakeski N,, Dashper SG,, Reynolds EC . 2001. Role of RgpA, RgpB, and Kgp proteinases in virulence of Porphyromonas gingivalis W50 in a murine lesion model. Infect Immun 69 : 7527 7534.[CrossRef][PubMed]
26. Seers CA,, Slakeski N,, Veith PD,, Nikolof T,, Chen YY,, Dashper SG,, Reynolds EC . 2006. The RgpB C-terminal domain has a role in attachment of RgpB to the outer membrane and belongs to a novel C-terminal-domain family found in Porphyromonas gingivalis. J Bacteriol 188 : 6376 6386.[CrossRef][PubMed]
27. Nguyen KA,, Travis J,, Potempa J . 2007. Does the importance of the C-terminal residues in the maturation of RgpB from Porphyromonas gingivalis reveal a novel mechanism for protein export in a subgroup of Gram-negative bacteria? J Bacteriol 189 : 833 843.[CrossRef][PubMed]
28. Veith PD,, Talbo GH,, Slakeski N,, Dashper SG,, Moore C,, Paolini RA,, Reynolds EC . 2002. Major outer membrane proteins and proteolytic processing of RgpA and Kgp of Porphyromonas gingivalis W50. Biochem J 363 : 105 115.[CrossRef][PubMed]
29. Sato K,, Sakai E,, Veith PD,, Shoji M,, Kikuchi Y,, Yukitake H,, Ohara N,, Naito M,, Okamoto K,, Reynolds EC,, Nakayama K . 2005. Identification of a new membrane-associated protein that influences transport/maturation of gingipains and adhesins of Porphyromonas gingivalis. J Biol Chem 280 : 8668 8677.[CrossRef][PubMed]
30. Nelson SS,, Glocka PP,, Agarwal S,, Grimm DP,, McBride MJ . 2007. Flavobacterium johnsoniae SprA is a cell surface protein involved in gliding motility. J Bacteriol 189 : 7145 7150.[CrossRef][PubMed]
31. Saiki K,, Konishi K . 2007. Identification of a Porphyromonas gingivalis novel protein Sov required for the secretion of gingipains. Microbiol Immunol 51 : 483 491.[CrossRef][PubMed]
32. Ishiguro I,, Saiki K,, Konishi K . 2009. PG27 is a novel membrane protein essential for a Porphyromonas gingivalis protease secretion system. FEMS Microbiol Lett 292 : 261 267.[CrossRef][PubMed]
33. Shrivastava A . 2013. Cell surface adhesins, exopolysaccharides and the Por (type IX) secretion system of Flavobacterium johnsoniae. PhD dissertation. University of Wisconsin, Milwaukee, Milwaukee, WI.
34. Kharade SS,, McBride MJ . 2015. Flavobacterium johnsoniae PorV is required for secretion of a subset of proteins targeted to the type IX secretion system. J Bacteriol 197 : 147 158.[CrossRef][PubMed]
35. Sato K,, Yukitake H,, Narita Y,, Shoji M,, Naito M,, Nakayama K . 2013. Identification of Porphyromonas gingivalis proteins secreted by the Por secretion system. FEMS Microbiol Lett 338 : 68 76.[CrossRef][PubMed]
36. Kulkarni SS,, Zhu Y,, Brendel CJ,, McBride MJ . 2017. Diverse C-terminal sequences involved in Flavobacterium johnsoniae protein secretion. J Bacteriol 199 : e00884-16.[CrossRef][PubMed]
37. Wilson MM,, Anderson DE,, Bernstein HD . 2015. Analysis of the outer membrane proteome and secretome of Bacteroides fragilis reveals a multiplicity of secretion mechanisms. PLoS One 10 : e0117732.[CrossRef][PubMed]
38. Russell AB,, Wexler AG,, Harding BN,, Whitney JC,, Bohn AJ,, Goo YA,, Tran BQ,, Barry NA,, Zheng H,, Peterson SB,, Chou S,, Gonen T,, Goodlett DR,, Goodman AL,, Mougous JD . 2014. A type VI secretion-related pathway in Bacteroidetes mediates interbacterial antagonism. Cell Host Microbe 16 : 227 236.[CrossRef][PubMed]
39. Glew MD,, Veith PD,, Peng B,, Chen YY,, Gorasia DG,, Yang Q,, Slakeski N,, Chen D,, Moore C,, Crawford S,, Reynolds EC . 2012. PG0026 is the C-terminal signal peptidase of a novel secretion system of Porphyromonas gingivalis. J Biol Chem 287 : 24605 24617.[CrossRef][PubMed]
40. Kharade SS,, McBride MJ . 2014. Flavobacterium johnsoniae chitinase ChiA is required for chitin utilization and is secreted by the type IX secretion system. J Bacteriol 196 : 961 970.[CrossRef][PubMed]
41. Shoji M,, Sato K,, Yukitake H,, Kondo Y,, Narita Y,, Kadowaki T,, Naito M,, Nakayama K . 2011. Por secretion system-dependent secretion and glycosylation of Porphyromonas gingivalis hemin-binding protein 35. PLoS One 6 : e21372.[CrossRef][PubMed]
42. Slakeski N,, Seers CA,, Ng K,, Moore C,, Cleal SM,, Veith PD,, Lo AW,, Reynolds EC . 2011. C-terminal domain residues important for secretion and attachment of RgpB in Porphyromonas gingivalis. J Bacteriol 193 : 132 142.[CrossRef][PubMed]
43. Veith PD,, Nor Muhammad NA,, Dashper SG,, Likić VA,, Gorasia DG,, Chen D,, Byrne SJ,, Catmull DV,, Reynolds EC . 2013. Protein substrates of a novel secretion system are numerous in the Bacteroidetes phylum and have in common a cleavable C-terminal secretion signal, extensive post-translational modification, and cell-surface attachment. J Proteome Res 12 : 4449 4461.[CrossRef][PubMed]
44. de Diego I,, Ksiazek M,, Mizgalska D,, Koneru L,, Golik P,, Szmigielski B,, Nowak M,, Nowakowska Z,, Potempa B,, Houston JA,, Enghild JJ,, Thøgersen IB,, Gao J,, Kwan AH,, Trewhella J,, Dubin G,, Gomis-Rüth FX,, Nguyen KA,, Potempa J . 2016. The outer-membrane export signal of Porphyromonas gingivalis type IX secretion system (T9SS) is a conserved C-terminal β-sandwich domain. Sci Rep 6 : 23123.[CrossRef][PubMed]
45. Lasica AM,, Goulas T,, Mizgalska D,, Zhou X,, de Diego I,, Ksiazek M,, Madej M,, Guo Y,, Guevara T,, Nowak M,, Potempa B,, Goel A,, Sztukowska M,, Prabhakar AT,, Bzowska M,, Widziolek M,, Thøgersen IB,, Enghild JJ,, Simonian M,, Kulczyk AW,, Nguyen KA,, Potempa J,, Gomis-Rüth FX . 2016. Structural and functional probing of PorZ, an essential bacterial surface component of the type-IX secretion system of human oral-microbiomic Porphyromonas gingivalis. Sci Rep 6 : 37708.[CrossRef][PubMed]
46. Zhu Y,, McBride MJ . 2014. Deletion of the Cytophaga hutchinsonii type IX secretion system gene sprP results in defects in gliding motility and cellulose utilization. Appl Microbiol Biotechnol 98 : 763 775.[CrossRef][PubMed]
47. Li N,, Zhu Y,, LaFrentz BR,, Evenhuis JP,, Hunnicutt DW,, Conrad RA,, Barbier P,, Gullstrand CW,, Roets JE,, Powers JL,, Kulkarni SS,, Erbes DH,, García JC,, Nie P,, McBride MJ . 2017. The type IX secretion system is required for virulence of the fish pathogen Flavobacterium columnare. Appl Environ Microbiol 83 : e01769-17.[CrossRef][PubMed]
48. Guo Y,, Hu D,, Guo J,, Wang T,, Xiao Y,, Wang X,, Li S,, Liu M,, Li Z,, Bi D,, Zhou Z . 2017. Riemerella anatipestifer type IX secretion system is required for virulence and gelatinase secretion. Front Microbiol 8 : 2553.[CrossRef][PubMed]
49. Narita Y,, Sato K,, Yukitake H,, Shoji M,, Nakane D,, Nagano K,, Yoshimura F,, Naito M,, Nakayama K . 2014. Lack of a surface layer in Tannerella forsythia mutants deficient in the type IX secretion system. Microbiology 160 : 2295 2303.[CrossRef][PubMed]
50. Tomek MB,, Neumann L,, Nimeth I,, Koerdt A,, Andesner P,, Messner P,, Mach L,, Potempa JS,, Schäffer C . 2014. The S-layer proteins of Tannerella forsythia are secreted via a type IX secretion system that is decoupled from protein O-glycosylation. Mol Oral Microbiol 29 : 307 320.[CrossRef]
51. Kita D,, Shibata S,, Kikuchi Y,, Kokubu E,, Nakayama K,, Saito A,, Ishihara K . 2016. Involvement of the type IX secretion system in Capnocytophaga ochracea gliding motility and biofilm formation. Appl Environ Microbiol 82 : 1756 1766.[CrossRef][PubMed]
52. Paramonov N,, Rangarajan M,, Hashim A,, Gallagher A,, Aduse-Opoku J,, Slaney JM,, Hounsell E,, Curtis MA . 2005. Structural analysis of a novel anionic polysaccharide from Porphyromonas gingivalis strain W50 related to Arg-gingipain glycans. Mol Microbiol 58 : 847 863.[CrossRef][PubMed]
53. Gorasia DG,, Veith PD,, Chen D,, Seers CA,, Mitchell HA,, Chen YY,, Glew MD,, Dashper SG,, Reynolds EC . 2015. Porphyromonas gingivalis type IX secretion substrates are cleaved and modified by a sortase-like mechanism. PLoS Pathog 11 : e1005152.[CrossRef][PubMed]
54. Kadowaki T,, Yukitake H,, Naito M,, Sato K,, Kikuchi Y,, Kondo Y,, Shoji M,, Nakayama K . 2016. A two-component system regulates gene expression of the type IX secretion component proteins via an ECF sigma factor. Sci Rep 6 : 23288.[CrossRef][PubMed]
55. Vincent MS,, Durand E,, Cascales E . 2016. The PorX response regulator of the Porphyromonas gingivalis PorXY two-component system does not directly regulate the type IX secretion genes but binds the PorL subunit. Front Cell Infect Microbiol 6 : 96.[CrossRef][PubMed]
56. Glew MD,, Veith PD,, Chen D,, Gorasia DG,, Peng B,, Reynolds EC . 2017. PorV is an outer membrane shuttle protein for the type IX secretion system. Sci Rep 7 : 8790.[CrossRef][PubMed]
57. Heath JE,, Seers CA,, Veith PD,, Butler CA,, Nor Muhammad NA,, Chen YY,, Slakeski N,, Peng B,, Zhang L,, Dashper SG,, Cross KJ,, Cleal SM,, Moore C,, Reynolds EC . 2016. PG1058 is a novel multidomain protein component of the bacterial type IX secretion system. PLoS One 11 : e0164313.[CrossRef][PubMed]
58. Saiki K,, Konishi K . 2010. The role of Sov protein in the secretion of gingipain protease virulence factors of Porphyromonas gingivalis. FEMS Microbiol Lett 302 : 166 174.[CrossRef][PubMed]
59. Rhodes RG,, Nelson SS,, Pochiraju S,, McBride MJ . 2011. Flavobacterium johnsoniae sprB is part of an operon spanning the additional gliding motility genes sprC, sprD, and sprF. J Bacteriol 193 : 599 610.[CrossRef][PubMed]
60. Gorasia DG,, Veith PD,, Hanssen EG,, Glew MD,, Sato K,, Yukitake H,, Nakayama K,, Reynolds EC . 2016. Structural insights into the PorK and PorN components of the Porphyromonas gingivalis type IX secretion system. PLoS Pathog 12 : e1005820.[CrossRef][PubMed]
61. Vincent MS,, Canestrari MJ,, Leone P,, Stathopulos J,, Ize B,, Zoued A,, Cambillau C,, Kellenberger C,, Roussel A,, Cascales E . 2017. Characterization of the Porphyromonas gingivalis type IX secretion trans-envelope PorKLMNP core complex. J Biol Chem 292 : 3252 3261.[CrossRef][PubMed]
62. Leone P,, Roche J,, Vincent MS,, Tran QH,, Desmyter A,, Cascales E,, Kellenberger C,, Cambillau C,, Roussel A . 2018. Type IX secretion system PorM and gliding machinery GldM form arches spanning the periplasmic space. Nat Commun 9 : 429.[CrossRef][PubMed]
63. Glew MD,, Veith PD,, Chen D,, Seers CA,, Chen YY,, Reynolds EC . 2014. Blue native-PAGE analysis of membrane protein complexes in Porphyromonas gingivalis. J Proteomics 110 : 72 92.[CrossRef][PubMed]
64. Lauber F,, Deme JC,, Lea SM,, Berks BC . 2018. Type 9 secretion system structures reveal a new protein transport mechanism. Nature 564 : 77 82.[CrossRef][PubMed]
65. Saiki K,, Konishi K . 2010. Identification of a novel Porphyromonas gingivalis outer membrane protein, PG534, required for the production of active gingipains. FEMS Microbiol Lett 310 : 168 174.[CrossRef][PubMed]
66. Taguchi Y,, Sato K,, Yukitake H,, Inoue T,, Nakayama M,, Naito M,, Kondo Y,, Kano K,, Hoshino T,, Nakayama K,, Takashiba S,, Ohara N . 2015. Involvement of an Skp-like protein, PGN_0300, in the type IX secretion system of Porphyromonas gingivalis. Infect Immun 84 : 230 240.[CrossRef][PubMed]
67. Johnston JJ,, Shrivastava A,, McBride MJ . 2017. Untangling Flavobacterium johnsoniae gliding motility and protein secretion. J Bacteriol 200 : e00362-17.[CrossRef][PubMed]
68. Minamino T,, Namba K . 2008. Distinct roles of the FliI ATPase and proton motive force in bacterial flagellar protein export. Nature 451 : 485 488.[CrossRef]
69. Paul K,, Erhardt M,, Hirano T,, Blair DF,, Hughes KT . 2008. Energy source of flagellar type III secretion. Nature 451 : 489 492.[CrossRef][PubMed]
70. Braun TF,, McBride MJ . 2005. Flavobacterium johnsoniae GldJ is a lipoprotein that is required for gliding motility. J Bacteriol 187 : 2628 2637.[CrossRef]
71. Nguyen KA,, Zylicz J,, Szczesny P,, Sroka A,, Hunter N,, Potempa J . 2009. Verification of a topology model of PorT as an integral outer-membrane protein in Porphyromonas gingivalis. Microbiology 155 : 328 337.[CrossRef][PubMed]
72. Rhodes RG,, Samarasam MN,, Van Groll EJ,, McBride MJ . 2011. Mutations in Flavobacterium johnsoniae sprE result in defects in gliding motility and protein secretion. J Bacteriol 193 : 5322 5327.[CrossRef][PubMed]
73. Saiki K,, Konishi K . 2014. Porphyromonas gingivalis C-terminal signal peptidase PG0026 and HagA interact with outer membrane protein PG27/LptO. Mol Oral Microbiol 29 : 32 44.[CrossRef][PubMed]
74. Chen YY,, Peng B,, Yang Q,, Glew MD,, Veith PD,, Cross KJ,, Goldie KN,, Chen D,, O’Brien-Simpson N,, Dashper SG,, Reynolds EC . 2011. The outer membrane protein LptO is essential for the O-deacylation of LPS and the co-ordinated secretion and attachment of A-LPS and CTD proteins in Porphyromonas gingivalis. Mol Microbiol 79 : 1380 1401.[CrossRef][PubMed]


Generic image for table

T9SS components

Citation: McBride M. 2019. Gliding Motility and the Type IX Secretion System, p 363-374. In Sandkvist M, Cascales E, Christie P (ed), Protein Secretion in Bacteria. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PSIB-0002-2018

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error