1887

Chapter 30 : Similarities and Differences between Colicin and Filamentous Phage Uptake by Bacterial Cells

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Similarities and Differences between Colicin and Filamentous Phage Uptake by Bacterial Cells, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781683670285/9781683670278_Chap30-1.gif /docserver/preview/fulltext/10.1128/9781683670285/9781683670278_Chap30-2.gif

Abstract:

The cell envelope of Gram-negative bacteria, such as , is characterized by the presence of two membranes, the inner (IM) and outer (OM) membranes, separated by the periplasm and a thin layer of peptidoglycan (PG). This envelope is a formidable barrier against a myriad of harmful compounds, while simultaneously allowing the entry of nutrients necessary for cell survival. However, this barrier, like the Maginot Line in France during the Second World War, is not completely impenetrable, and exogenous particles, including some toxins and viruses, can pierce it.

Citation: Duché D, Houot L. 2019. Similarities and Differences between Colicin and Filamentous Phage Uptake by Bacterial Cells, p 375-387. In Sandkvist M, Cascales E, Christie P (ed), Protein Secretion in Bacteria. ASM Press, Washington, DC. doi: 10.1128/ecosalplus.ESP-0030-2018
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Schematic representation highlighting the similar general organization of colicin and phage pIII proteins for translocation (T or N1 domain), reception (R or N2 domain), and activity or anchoring (A or C domain). Structures of full-length colicin E3 (top left; PDB code 1JCH) bound to its immunity protein (in green), full-length colicin N (top right; PDB code 1A87), and M13 phage protein pIII-N1 and -N2 domains (bottom left; PDB code 1G3P) and superposition (bottom right) of TolAIII domain (gray) interacting with the colicin A T domain on its convex side (cocrystal; PDB code 3QDR) and interacting with G3P-N1 on its concave side (cocrystal PDB code 1TOL). The color code used for each protein domain is the same for panels A and B.

Citation: Duché D, Houot L. 2019. Similarities and Differences between Colicin and Filamentous Phage Uptake by Bacterial Cells, p 375-387. In Sandkvist M, Cascales E, Christie P (ed), Protein Secretion in Bacteria. ASM Press, Washington, DC. doi: 10.1128/ecosalplus.ESP-0030-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

In stage 1, colicin binds to the OM receptor by its central domain ( ). In stage 2(a), the disordered N-terminal segment of the T domain translocates through the OM β-barrel and interacts with a free periplasmic TolB or dissociates TolB from Pal ( ). In stage 2(b), the N-terminal segment interacts with other Tol proteins ( ). At this stage, the immunity protein of nuclease colicins is released ( ). Then the unfolded C-terminal domain is thought to cross the OM through the interface between OmpF and the lipid bilayers ( ) or directly through the OmpF porin ( ). In stage 3, for pore-forming colicins () the C-terminal domain inserts spontaneously into the IM and forms voltage-gated channels that depolarize and kill the target bacteria (for a review, see reference ). For nuclease colicins (), the C-terminal domain is cleaved by FtsH ( ), an essential ATP-dependent IM protease, and spontaneously crosses the IM ( ) or uses FtsH for its transfer ( ). In stage 1, the phage minor coat protein pIII-N2 domain binds to the tip of an F pilus protruding from the cell surface ( ). In stage 2, pilus retraction pulls the phage into the cell periplasm, possibly through the pilus secretin pore. Once there, the phage pIII-N1 domain interacts with the globular domain of TolA (TolAIII) ( ). In , a direct interaction between TolAII and phage pIII-N2 has been reported (dashed arrow) ( ). The PMF-dependent TolQR motor may trigger conformational changes of TolA that bring the phage particle in close contact with the IM. The phage uncapping process during the uptake stage (stage 3) is speculative. In the model, pIII oligomerizes to form a channel in the IM of the host through its C-ter domain (pIII-C). Then diffusion of the phage pVIII major coat protein in the IM leads to disassembly of the capsid, releasing the internal pressure of the structure. This force is thought to drive phage DNA injection through the IM pIII-C channel ( ). The phage is composed of three to five copies of pIII, but only one copy has been represented, and other minor virion coat proteins have been omitted for simplicity. OM, outer membrane; IM, inner membrane; PG, peptidoglycan; peri, periplasm; cyto, cytoplasm; rec, receptor; trans, translocator.

Citation: Duché D, Houot L. 2019. Similarities and Differences between Colicin and Filamentous Phage Uptake by Bacterial Cells, p 375-387. In Sandkvist M, Cascales E, Christie P (ed), Protein Secretion in Bacteria. ASM Press, Washington, DC. doi: 10.1128/ecosalplus.ESP-0030-2018
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781683670285.chap30
1. Cascales E,, Buchanan SK,, Duché D,, Kleanthous C,, Lloubès R,, Postle K,, Riley M,, Slatin S,, Cavard D . 2007. Colicin biology. Microbiol Mol Biol Rev 71 : 158 229.[CrossRef][PubMed]
2. Rakonjac J,, Bennett NJ,, Spagnuolo J,, Gagic D,, Russel M . 2011. Filamentous bacteriophage: biology, phage display and nanotechnology applications. Curr Issues Mol Biol 13 : 51 76.[PubMed]
3. Waldor MK,, Mekalanos JJ . 1996. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272 : 1910 1914.[CrossRef]
4. Cascales E,, Lloubès R,, Sturgis JN . 2001. The TolQ-TolR proteins energize TolA and share homologies with the flagellar motor proteins MotA-MotB. Mol Microbiol 42 : 795 807.[CrossRef][PubMed]
5. Baty D,, Frenette M,, Lloubès R,, Géli V,, Howard SP,, Pattus F,, Lazdunski C . 1988. Functional domains of colicin A. Mol Microbiol 2 : 807 811.[CrossRef][PubMed]
6. Dankert JR,, Uratani Y,, Grabau C,, Cramer WA,, Hermodson M . 1982. On a domain structure of colicin E1. A COOH-terminal peptide fragment active in membrane depolarization. J Biol Chem 257 : 3857 3863.[PubMed]
7. Escuyer V,, Mock M . 1987. DNA sequence analysis of three missense mutations affecting colicin E3 bactericidal activity. Mol Microbiol 1 : 82 85.[CrossRef][PubMed]
8. Martinez MC,, Lazdunski C,, Pattus F . 1983. Isolation, molecular and functional properties of the C-terminal domain of colicin A. EMBO J 2 : 1501 1507.[CrossRef][PubMed]
9. Ohno-Iwashita Y,, Imahori K . 1980. Assignment of the functional loci in colicin E2 and E3 molecules by the characterization of their proteolytic fragments. Biochemistry 19 : 652 659.[CrossRef][PubMed]
10. Ohno-Iwashita Y,, Imahori K . 1982. Assignment of the functional loci in the colicin E1 molecule by characterization of its proteolytic fragments. J Biol Chem 257 : 6446 6451.[PubMed]
11. Wiener M,, Freymann D,, Ghosh P,, Stroud RM . 1997. Crystal structure of colicin Ia. Nature 385 : 461 464.[CrossRef][PubMed]
12. Vetter IR,, Parker MW,, Tucker AD,, Lakey JH,, Pattus F,, Tsernoglou D . 1998. Crystal structure of a colicin N fragment suggests a model for toxicity. Structure 6 : 863 874.[CrossRef][PubMed]
13. Soelaiman S,, Jakes K,, Wu N,, Li C,, Shoham M . 2001. Crystal structure of colicin E3: implications for cell entry and ribosome inactivation. Mol Cell 8 : 1053 1062.[CrossRef][PubMed]
14. Deprez C,, Blanchard L,, Guerlesquin F,, Gavioli M,, Simorre JP,, Lazdunski C,, Marion D,, Lloubès R . 2002. Macromolecular import into Escherichia coli: the TolA C-terminal domain changes conformation when interacting with the colicin A toxin. Biochemistry 41 : 2589 2598.[CrossRef][PubMed]
15. Grant RA,, Lin TC,, Konigsberg W,, Webster RE . 1981. Structure of the filamentous bacteriophage fl. Location of the A, C, and D minor coat proteins. J Biol Chem 256 : 539 546.[PubMed]
16. Holliger P,, Riechmann L . 1997. A conserved infection pathway for filamentous bacteriophages is suggested by the structure of the membrane penetration domain of the minor coat protein g3p from phage fd. Structure 5 : 265 275.[CrossRef]
17. Heilpern AJ,, Waldor MK . 2003. pIIICTX, a predicted CTXphi minor coat protein, can expand the host range of coliphage fd to include Vibrio cholerae. J Bacteriol 185 : 1037 1044.[CrossRef][PubMed]
18. Lubkowski J,, Hennecke F,, Plückthun A,, Wlodawer A . 1999. Filamentous phage infection: crystal structure of g3p in complex with its coreceptor, the C-terminal domain of TolA. Structure 7 : 711 722.[CrossRef]
19. Lubkowski J,, Hennecke F,, Plückthun A,, Wlodawer A . 1998. The structural basis of phage display elucidated by the crystal structure of the N-terminal domains of g3p. Nat Struct Biol 5 : 140 147.[CrossRef][PubMed]
20. Holliger P,, Riechmann L,, Williams RL . 1999. Crystal structure of the two N-terminal domains of g3p from filamentous phage fd at 1.9 A: evidence for conformational lability. J Mol Biol 288 : 649 657.[CrossRef][PubMed]
21. Lorenz SH,, Jakob RP,, Weininger U,, Balbach J,, Dobbek H,, Schmid FX . 2011. The filamentous phages fd and IF1 use different mechanisms to infect Escherichia coli. J Mol Biol 405 : 989 1003.[CrossRef][PubMed]
22. Ford CG,, Kolappan S,, Phan HT,, Waldor MK,, Winther-Larsen HC,, Craig L . 2012. Crystal structures of a CTXphi pIII domain unbound and in complex with a Vibrio cholerae TolA domain reveal novel interaction interfaces. J Biol Chem 287 : 36258 36272.[CrossRef][PubMed]
23. Di Masi DR,, White JC,, Schnaitman CA,, Bradbeer C . 1973. Transport of vitamin B12 in Escherichia coli: common receptor sites for vitamin B12 and the E colicins on the outer membrane of the cell envelope. J Bacteriol 115 : 506 513.[PubMed]
24. Cavard D,, Lazdunski C . 1981. Involvement of BtuB and OmpF proteinsin binding and uptake of colicin A. FEMS Microbiol Lett 12 : 311 316.[CrossRef]
25. Chai T,, Wu V,, Foulds J . 1982. Colicin A receptor: role of two Escherichia coli outer membrane proteins (OmpF protein and btuB gene product) and lipopolysaccharide. J Bacteriol 151 : 983 988.[PubMed]
26. Kurisu G,, Zakharov SD,, Zhalnina MV,, Bano S,, Eroukova VY,, Rokitskaya TI,, Antonenko YN,, Wiener MC,, Cramer WA . 2003. The structure of BtuB with bound colicin E3 R-domain implies a translocon. Nat Struct Biol 10 : 948 954.[CrossRef][PubMed]
27. Sharma O,, Yamashita E,, Zhalnina MV,, Zakharov SD,, Datsenko KA,, Wanner BL,, Cramer WA . 2007. Structure of the complex of the colicin E2 R-domain and its BtuB receptor. The outer membrane colicin translocon. J Biol Chem 282 : 23163 23170.[CrossRef][PubMed]
28. Zakharov SD,, Eroukova VY,, Rokitskaya TI,, Zhalnina MV,, Sharma O,, Loll PJ,, Zgurskaya HI,, Antonenko YN,, Cramer WA . 2004. Colicin occlusion of OmpF and TolC channels: outer membrane translocons for colicin import. Biophys J 87 : 3901 3911.[CrossRef][PubMed]
29. Yamashita E,, Zhalnina MV,, Zakharov SD,, Sharma O,, Cramer WA . 2008. Crystal structures of the OmpF porin: function in a colicin translocon. EMBO J 27 : 2171 2180.[CrossRef][PubMed]
30. Housden NG,, Wojdyla JA,, Korczynska J,, Grishkovskaya I,, Kirkpatrick N,, Brzozowski AM,, Kleanthous C . 2010. Directed epitope delivery across the Escherichia coli outer membrane through the porin OmpF. Proc Natl Acad Sci U S A 107 : 21412 21417.[CrossRef][PubMed]
31. Housden NG,, Hopper JT,, Lukoyanova N,, Rodriguez-Larrea D,, Wojdyla JA,, Klein A,, Kaminska R,, Bayley H,, Saibil HR,, Robinson CV,, Kleanthous C . 2013. Intrinsically disordered protein threads through the bacterial outer-membrane porin OmpF. Science 340 : 1570 1574.[CrossRef][PubMed]
32. Housden NG,, Rassam P,, Lee S,, Samsudin F,, Kaminska R,, Sharp C,, Goult JD,, Francis ML,, Khalid S,, Bayley H,, Kleanthous C . 2018. Directional porin binding of intrinsically disordered protein sequences promotes colicin epitope display in the bacterial periplasm. Biochemistry 57 : 4374 4381.[CrossRef][PubMed]
33. Deng LW,, Perham RN . 2002. Delineating the site of interaction on the pIII protein of filamentous bacteriophage fd with the F-pilus of Escherichia coli. J Mol Biol 319 : 603 614.[CrossRef][PubMed]
34. Martin A,, Schmid FX . 2003. A proline switch controls folding and domain interactions in the gene-3-protein of the filamentous phage fd. J Mol Biol 331 : 1131 1140.[CrossRef]
35. Jacobson A . 1972. Role of F pili in the penetration of bacteriophage fl. J Virol 10 : 835 843.[PubMed]
36. Gao Y,, Hauke CA,, Marles JM,, Taylor RK . 2016. Effects of tcpB mutations on biogenesis and function of TCP, the type IVb pilus of Vibrio cholerae. J Bacteriol 198 : 2818 2828.[CrossRef][PubMed]
37. Ng D,, Harn T,, Altindal T,, Kolappan S,, Marles JM,, Lala R,, Spielman I,, Gao Y,, Hauke CA,, Kovacikova G,, Verjee Z,, Taylor RK,, Biais N,, Craig L . 2016. The Vibrio cholerae minor pilin TcpB initiates assembly and retraction of the toxin-coregulated pilus. PLoS Pathog 12 : e1006109.[CrossRef][PubMed]
38. Russel M,, Whirlow H,, Sun TP,, Webster RE . 1988. Low-frequency infection of F- bacteria by transducing particles of filamentous bacteriophages. J Bacteriol 170 : 5312 5316.[CrossRef][PubMed]
39. Heilpern AJ,, Waldor MK . 2000. CTXphi infection of Vibrio cholerae requires the tolQRA gene products. J Bacteriol 182 : 1739 1747.[CrossRef][PubMed]
40. Sturgis JN . 2001. Organisation and evolution of the tol-pal gene cluster. J Mol Microbiol Biotechnol 3 : 113 122.[PubMed]
41. Derouiche R,, Bénédetti H,, Lazzaroni JC,, Lazdunski C,, Lloubès R . 1995. Protein complex within Escherichia coli inner membrane. TolA N-terminal domain interacts with TolQ and TolR proteins. J Biol Chem 270 : 11078 11084.[CrossRef][PubMed]
42. Germon P,, Clavel T,, Vianney A,, Portalier R,, Lazzaroni JC . 1998. Mutational analysis of the Escherichia coli K-12 TolA N-terminal region and characterization of its TolQ-interacting domain by genetic suppression. J Bacteriol 180 : 6433 6439.[PubMed]
43. Journet L,, Rigal A,, Lazdunski C,, Bénédetti H . 1999. Role of TolR N-terminal, central, and C-terminal domains in dimerization and interaction with TolA and TolQ. J Bacteriol 181 : 4476 4484.[PubMed]
44. Lazzaroni JC,, Vianney A,, Popot JL,, Bénédetti H,, Samatey F,, Lazdunski C,, Portalier R,, Géli V . 1995. Transmembrane alpha-helix interactions are required for the functional assembly of the Escherichia coli Tol complex. J Mol Biol 246 : 1 7.[CrossRef][PubMed]
45. Bourdineaud JP,, Howard SP,, Lazdunski C . 1989. Localization and assembly into the Escherichia coli envelope of a protein required for entry of colicin A. J Bacteriol 171 : 2458 2465.[CrossRef][PubMed]
46. Kampfenkel K,, Braun V . 1993. Membrane topologies of the TolQ and TolR proteins of Escherichia coli: inactivation of TolQ by a missense mutation in the proposed first transmembrane segment. J Bacteriol 175 : 4485 4491.[CrossRef][PubMed]
47. Vianney A,, Lewin TM,, Beyer WF Jr,, Lazzaroni JC,, Portalier R,, Webster RE . 1994. Membrane topology and mutational analysis of the TolQ protein of Escherichia coli required for the uptake of macromolecules and cell envelope integrity. J Bacteriol 176 : 822 829.[CrossRef][PubMed]
48. Levengood SK,, Beyer WF Jr,, Webster RE . 1991. TolA: a membrane protein involved in colicin uptake contains an extended helical region. Proc Natl Acad Sci U S A 88 : 5939 5943.[CrossRef][PubMed]
49. Abergel C,, Bouveret E,, Claverie JM,, Brown K,, Rigal A,, Lazdunski C,, Bénédetti H . 1999. Structure of the Escherichia coli TolB protein determined by MAD methods at 1.95 A resolution. Structure 7 : 1291 1300.[CrossRef][PubMed]
50. Carr S,, Penfold CN,, Bamford V,, James R,, Hemmings AM . 2000. The structure of TolB, an essential component of the tol-dependent translocation system, and its protein-protein interaction with the translocation domain of colicin E9. Structure 8 : 57 66.[CrossRef][PubMed]
51. Lazzaroni JC,, Portalier R . 1992. The excC gene of Escherichia coli K-12 required for cell envelope integrity encodes the peptidoglycan-associated lipoprotein (PAL). Mol Microbiol 6 : 735 742.[CrossRef][PubMed]
52. Bouveret E,, Bénédetti H,, Rigal A,, Loret E,, Lazdunski C . 1999. In vitro characterization of peptidoglycan-associated lipoprotein (PAL)-peptidoglycan and PAL-TolB interactions. J Bacteriol 181 : 6306 6311.[PubMed]
53. Ray MC,, Germon P,, Vianney A,, Portalier R,, Lazzaroni JC . 2000. Identification by genetic suppression of Escherichia coli TolB residues important for TolB-Pal interaction. J Bacteriol 182 : 821 824.[CrossRef][PubMed]
54. Cascales E,, Bernadac A,, Gavioli M,, Lazzaroni JC,, Lloubes R . 2002. Pal lipoprotein of Escherichia coli plays a major role in outer membrane integrity. J Bacteriol 184 : 754 759.[CrossRef][PubMed]
55. Parsons LM,, Lin F,, Orban J . 2006. Peptidoglycan recognition by Pal, an outer membrane lipoprotein. Biochemistry 45 : 2122 2128.[CrossRef][PubMed]
56. Bouveret E,, Derouiche R,, Rigal A,, Lloubès R,, Lazdunski C,, Bénédetti H . 1995. Peptidoglycan-associated lipoprotein-TolB interaction. A possible key to explaining the formation of contact sites between the inner and outer membranes of Escherichia coli. J Biol Chem 270 : 11071 11077.[CrossRef][PubMed]
57. Cascales E,, Gavioli M,, Sturgis JN,, Lloubès R . 2000. Proton motive force drives the interaction of the inner membrane TolA and outer membrane Pal proteins in Escherichia coli. Mol Microbiol 38 : 904 915.[CrossRef][PubMed]
58. Walburger A,, Lazdunski C,, Corda Y . 2002. The Tol/Pal system function requires an interaction between the C-terminal domain of TolA and the N-terminal domain of TolB. Mol Microbiol 44 : 695 708.[CrossRef][PubMed]
59. Dubuisson JF,, Vianney A,, Lazzaroni JC . 2002. Mutational analysis of the TolA C-terminal domain of Escherichia coli and genetic evidence for an interaction between TolA and TolB. J Bacteriol 184 : 4620 4625.[CrossRef][PubMed]
60. Cascales E,, Lloubès R . 2004. Deletion analyses of the peptidoglycan-associated lipoprotein Pal reveals three independent binding sequences including a TolA box. Mol Microbiol 51 : 873 885.[CrossRef][PubMed]
61. Germon P,, Ray MC,, Vianney A,, Lazzaroni JC . 2001. Energy-dependent conformational change in the TolA protein of Escherichia coli involves its N-terminal domain, TolQ, and TolR. J Bacteriol 183 : 4110 4114.[CrossRef][PubMed]
62. Yeh YC,, Comolli LR,, Downing KH,, Shapiro L,, McAdams HH . 2010. The Caulobacter Tol-Pal complex is essential for outer membrane integrity and the positioning of a polar localization factor. J Bacteriol 192 : 4847 4858.[CrossRef][PubMed]
63. Houot L,, Navarro R,, Nouailler M,, Duché D,, Guerlesquin F,, Lloubes R . 2017. Electrostatic interactions between the CTX phage minor coat protein and the bacterial host receptor TolA drive the pathogenic conversion of Vibrio cholerae. J Biol Chem 292 : 13584 13598. (Erratum, J Biol Chem 293:7263, 2018.)[CrossRef][PubMed]
64. Gaspar JA,, Thomas JA,, Marolda CL,, Valvano MA . 2000. Surface expression of O-specific lipopolysaccharide in Escherichia coli requires the function of the TolA protein. Mol Microbiol 38 : 262 275.[CrossRef][PubMed]
65. Dennis JJ,, Lafontaine ER,, Sokol PA . 1996. Identification and characterization of the tolQRA genes of Pseudomonas aeruginosa. J Bacteriol 178 : 7059 7068.[CrossRef][PubMed]
66. Meury J,, Devilliers G . 1999. Impairment of cell division in tolA mutants of Escherichia coli at low and high medium osmolarities. Biol Cell 91 : 67 75.[CrossRef][PubMed]
67. Bernstein A,, Rolfe B,, Onodera K . 1972. Pleiotropic properties and genetic organization of the tolA,B locus of Escherichia coli K-12. J Bacteriol 112 : 74 83.[PubMed]
68. Bernadac A,, Gavioli M,, Lazzaroni JC,, Raina S,, Lloubès R . 1998. Escherichia coli tol-pal mutants form outer membrane vesicles. J Bacteriol 180 : 4872 4878.
69. Fognini-Lefebvre N,, Lazzaroni JC,, Portalier R . 1987. tolA, tolB and excC, three cistrons involved in the control of pleiotropic release of periplasmic proteins by Escherichia coli K12. Mol Gen Genet 209 : 391 395.[CrossRef]
70. Lazzaroni JC,, Portalier RC . 1981. Genetic and biochemical characterization of periplasmic-leaky mutants of Escherichia coli K-12. J Bacteriol 145 : 1351 1358.
71. Prouty AM,, Van Velkinburgh JC,, Gunn JS . 2002. Salmonella enterica serovar Typhimurium resistance to bile: identification and characterization of the tolQRA cluster. J Bacteriol 184 : 1270 1276.[CrossRef]
72. Shrivastava R,, Jiang X,, Chng SS . 2017. Outer membrane lipid homeostasis via retrograde phospholipid transport in Escherichia coli. Mol Microbiol 106 : 395 408.[CrossRef][PubMed]
73. Masilamani R,, Cian MB,, Dalebroux ZD . 2018. Salmonella Tol-Pal reduces outer membrane glycerophospholipid levels for envelope homeostasis and survival during bacteremia. Infect Immun 86 : e00173-18.[CrossRef]
74. Gerding MA,, Ogata Y,, Pecora ND,, Niki H,, de Boer PA . 2007. The trans-envelope Tol-Pal complex is part of the cell division machinery and required for proper outer-membrane invagination during cell constriction in E. coli. Mol Microbiol 63 : 1008 1025.[CrossRef]
75. Bouveret E,, Rigal A,, Lazdunski C,, Bénédetti H . 1997. The N-terminal domain of colicin E3 interacts with TolB which is involved in the colicin translocation step. Mol Microbiol 23 : 909 920.[CrossRef][PubMed]
76. Bouveret E,, Rigal A,, Lazdunski C,, Bénédetti H . 1998. Distinct regions of the colicin A translocation domain are involved in the interaction with TolA and TolB proteins upon import into Escherichia coli. Mol Microbiol 27 : 143 157.[CrossRef][PubMed]
77. Loftus SR,, Walker D,, Maté MJ,, Bonsor DA,, James R,, Moore GR,, Kleanthous C . 2006. Competitive recruitment of the periplasmic translocation portal TolB by a natively disordered domain of colicin E9. Proc Natl Acad Sci U S A 103 : 12353 12358.[CrossRef]
78. Sun TP,, Webster RE . 1986. fii, a bacterial locus required for filamentous phage infection and its relation to colicin-tolerant tolA and tolB. J Bacteriol 165 : 107 115.[CrossRef]
79. Bonsor DA,, Grishkovskaya I,, Dodson EJ,, Kleanthous C . 2007. Molecular mimicry enables competitive recruitment by a natively disordered protein. J Am Chem Soc 129 : 4800 4807.[CrossRef]
80. Bonsor DA,, Hecht O,, Vankemmelbeke M,, Sharma A,, Krachler AM,, Housden NG,, Lilly KJ,, James R,, Moore GR,, Kleanthous C . 2009. Allosteric beta-propeller signalling in TolB and its manipulation by translocating colicins. EMBO J 28 : 2846 2857.[CrossRef]
81. Zhang Y,, Li C,, Vankemmelbeke MN,, Bardelang P,, Paoli M,, Penfold CN,, James R . 2010. The crystal structure of the TolB box of colicin A in complex with TolB reveals important differences in the recruitment of the common TolB translocation portal used by group A colicins. Mol Microbiol 75 : 623 636.[CrossRef]
82. Bénédetti H,, Lazdunski C,, Lloubès R . 1991. Protein import into Escherichia coli: colicins A and E1 interact with a component of their translocation system. EMBO J 10 : 1989 1995.[CrossRef]
83. Derouiche R,, Zeder-Lutz G,, Bénédetti H,, Gavioli M,, Rigal A,, Lazdunski C,, Lloubès R . 1997. Binding of colicins A and El to purified TolA domains. Microbiology 143 : 3185 3192.[CrossRef][PubMed]
84. Raggett EM,, Bainbridge G,, Evans LJ,, Cooper A,, Lakey JH . 1998. Discovery of critical Tol A-binding residues in the bactericidal toxin colicin N: a biophysical approach. Mol Microbiol 28 : 1335 1343.[CrossRef][PubMed]
85. Barnéoud-Arnoulet A,, Gavioli M,, Lloubès R,, Cascales E . 2010. Interaction of the colicin K bactericidal toxin with components of its import machinery in the periplasm of Escherichia coli. J Bacteriol 192 : 5934 5942.[CrossRef]
86. Click EM,, Webster RE . 1997. Filamentous phage infection: required interactions with the TolA protein. J Bacteriol 179 : 6464 6471.[CrossRef]
87. Riechmann L,, Holliger P . 1997. The C-terminal domain of TolA is the coreceptor for filamentous phage infection of E. coli. Cell 90 : 351 360.[CrossRef][PubMed]
88. Karlsson F,, Borrebaeck CA,, Nilsson N,, Malmborg-Hager AC . 2003. The mechanism of bacterial infection by filamentous phages involves molecular interactions between TolA and phage protein 3 domains. J Bacteriol 185 : 2628 2634.[CrossRef]
89. Schendel SL,, Click EM,, Webster RE,, Cramer WA . 1997. The TolA protein interacts with colicin E1 differently than with other group A colicins. J Bacteriol 179 : 3683 3690.[CrossRef]
90. Anderluh G,, Gökçe I,, Lakey JH . 2004. A natively unfolded toxin domain uses its receptor as a folding template. J Biol Chem 279 : 22002 22009.[CrossRef][PubMed]
91. Li C,, Zhang Y,, Vankemmelbeke M,, Hecht O,, Aleanizy FS,, Macdonald C,, Moore GR,, James R,, Penfold CN . 2012. Structural evidence that colicin A protein binds to a novel binding site of TolA protein in Escherichia coli periplasm. J Biol Chem 287 : 19048 19057.[CrossRef]
92. Hecht O,, Ridley H,, Lakey JH,, Moore GR . 2009. A common interaction for the entry of colicin N and filamentous phage into Escherichia coli. J Mol Biol 388 : 880 893.[CrossRef]
93. Ridley H,, Lakey JH . 2015. Antibacterial toxin colicin N and phage protein G3p compete with TolB for a binding site on TolA. Microbiology 161 : 503 515.[CrossRef]
94. Sun TP,, Webster RE . 1987. Nucleotide sequence of a gene cluster involved in entry of E colicins and single-stranded DNA of infecting filamentous bacteriophages into Escherichia coli. J Bacteriol 169 : 2667 2674.[CrossRef]
95. Journet L,, Bouveret E,, Rigal A,, Lloubes R,, Lazdunski C,, Bénédetti H . 2001. Import of colicins across the outer membrane of Escherichia coli involves multiple protein interactions in the periplasm. Mol Microbiol 42 : 331 344.[CrossRef]
96. Duché D,, Letellier L,, Géli V,, Bénédetti H,, Baty D . 1995. Quantification of group A colicin import sites. J Bacteriol 177 : 4935 4939.[CrossRef]
97. Duché D . 2007. Colicin E2 is still in contact with its receptor and import machinery when its nuclease domain enters the cytoplasm. J Bacteriol 189 : 4217 4222.[CrossRef]
98. Bénédetti H,, Lloubès R,, Lazdunski C,, Letellier L . 1992. Colicin A unfolds during its translocation in Escherichia coli cells and spans the whole cell envelope when its pore has formed. EMBO J 11 : 441 447.[CrossRef]
99. Duché D,, Baty D,, Chartier M,, Letellier L . 1994. Unfolding of colicin A during its translocation through the Escherichia coli envelope as demonstrated by disulfide bond engineering. J Biol Chem 269 : 24820 24825.[PubMed]
100. Griko YV,, Zakharov SD,, Cramer WA . 2000. Structural stability and domain organization of colicin E1. J Mol Biol 302 : 941 953.[CrossRef][PubMed]
101. Housden NG,, Loftus SR,, Moore GR,, James R,, Kleanthous C . 2005. Cell entry mechanism of enzymatic bacterial colicins: porin recruitment and the thermodynamics of receptor binding. Proc Natl Acad Sci U S A 102 : 13849 13854.[CrossRef]
102. Bennett NJ,, Rakonjac J . 2006. Unlocking of the filamentous bacteriophage virion during infection is mediated by the C domain of pIII. J Mol Biol 356 : 266 273.[CrossRef]
103. Glaser-Wuttke G,, Keppner J,, Rasched I . 1989. Pore-forming properties of the adsorption protein of filamentous phage fd. Biochim Biophys Acta 985 : 239 247.[CrossRef][PubMed]
104. Braun V,, Frenz J,, Hantke K,, Schaller K . 1980. Penetration of colicin M into cells of Escherichia coli. J Bacteriol 142 : 162 168.
105. Bourdineaud JP,, Boulanger P,, Lazdunski C,, Letellier L . 1990. In vivo properties of colicin A: channel activity is voltage dependent but translocation may be voltage independent. Proc Natl Acad Sci U S A 87 : 1037 1041.[CrossRef]
106. Goemaere EL,, Cascales E,, Lloubès R . 2007. Mutational analyses define helix organization and key residues of a bacterial membrane energy-transducing complex. J Mol Biol 366 : 1424 1436.[CrossRef]
107. Lloubès R,, Goemaere E,, Zhang X,, Cascales E,, Duché D . 2012. Energetics of colicin import revealed by genetic cross-complementation between the Tol and Ton systems. Biochem Soc Trans 40 : 1480 1485.[CrossRef]
108. Duché D,, Frenkian A,, Prima V,, Lloubès R . 2006. Release of immunity protein requires functional endonuclease colicin import machinery. J Bacteriol 188 : 8593 8600.[CrossRef]
109. Vankemmelbeke M,, Zhang Y,, Moore GR,, Kleanthous C,, Penfold CN,, James R . 2009. Energy-dependent immunity protein release during tol-dependent nuclease colicin translocation. J Biol Chem 284 : 18932 18941.[CrossRef]
110. Yamamoto M,, Kanegasaki S,, Yoshikawa M . 1981. Role of membrane potential and ATP in complex formation between Escherichia coli male cells and filamentous phage fd. J Gen Microbiol 123 : 343 349.
111. Häse CC . 2003. Ion motive force dependence of protease secretion and phage transduction in Vibrio cholerae and Pseudomonas aeruginosa. FEMS Microbiol Lett 227 : 65 71.[CrossRef][PubMed]
112. Baboolal TG,, Conroy MJ,, Gill K,, Ridley H,, Visudtiphole V,, Bullough PA,, Lakey JH . 2008. Colicin N binds to the periphery of its receptor and translocator, outer membrane protein F. Structure 16 : 371 379.[CrossRef][PubMed]
113. Lakey JH,, Slatin SL . 2001. Pore-forming colicins and their relatives. Curr Top Microbiol Immunol 257 : 131 161.[CrossRef][PubMed]
114. Walker D,, Mosbahi K,, Vankemmelbeke M,, James R,, Kleanthous C . 2007. The role of electrostatics in colicin nuclease domain translocation into bacterial cells. J Biol Chem 282 : 31389 31397.[CrossRef][PubMed]
115. Chauleau M,, Mora L,, Serba J,, de Zamaroczy M . 2011. FtsH-dependent processing of RNase colicins D and E3 means that only the cytotoxic domains are imported into the cytoplasm. J Biol Chem 286 : 29397 29407.[CrossRef][PubMed]
116. Mosbahi K,, Lemaître C,, Keeble AH,, Mobasheri H,, Morel B,, James R,, Moore GR,, Lea EJ,, Kleanthous C . 2002. The cytotoxic domain of colicin E9 is a channel-forming endonuclease. Nat Struct Biol 9 : 476 484.[CrossRef]
117. Johnson CL,, Ridley H,, Marchetti R,, Silipo A,, Griffin DC,, Crawford L,, Bonev B,, Molinaro A,, Lakey JH . 2014. The antibacterial toxin colicin N binds to the inner core of lipopolysaccharide and close to its translocator protein. Mol Microbiol 92 : 440 452.[CrossRef]
118. Bradley DE,, Howard SP . 1992. A new colicin that adsorbs to outer-membrane protein Tsx but is dependent on the tonB instead of the tolQ membrane transport system. J Gen Microbiol 138 : 2721 2724.[CrossRef]
119. Smajs D,, Pilsl H,, Braun V . 1997. Colicin U, a novel colicin produced by Shigella boydii. J Bacteriol 179 : 4919 4928.[CrossRef][PubMed]
120. Jakob RP,, Geitner AJ,, Weininger U,, Balbach J,, Dobbek H,, Schmid FX . 2012. Structural and energetic basis of infection by the filamentous bacteriophage IKe. Mol Microbiol 84 : 1124 1138.[CrossRef][PubMed]
121. Campos J,, Martínez E,, Suzarte E,, Rodríguez BL,, Marrero K,, Silva Y,, Ledón T,, del Sol R,, Fando R . 2003. VGJ phi, a novel filamentous phage of Vibrio cholerae, integrates into the same chromosomal site as CTX phi. J Bacteriol 185 : 5685 5696.[CrossRef]
122. Holland SJ,, Sanz C,, Perham RN . 2006. Identification and specificity of pilus adsorption proteins of filamentous bacteriophages infecting Pseudomonas aeruginosa. Virology 345 : 540 548.[CrossRef]

Tables

Generic image for table
Table 1

Host proteins required for reception and translocation of filamentous phages and group A colicins

Citation: Duché D, Houot L. 2019. Similarities and Differences between Colicin and Filamentous Phage Uptake by Bacterial Cells, p 375-387. In Sandkvist M, Cascales E, Christie P (ed), Protein Secretion in Bacteria. ASM Press, Washington, DC. doi: 10.1128/ecosalplus.ESP-0030-2018

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error