Chapter 7 : Protein Secretion in Spirochetes

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Protein Secretion in Spirochetes, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781683670285/9781683670278_Chap07-1.gif /docserver/preview/fulltext/10.1128/9781683670285/9781683670278_Chap07-2.gif


Spirochetes form a distinct bacterial phylum of slender, diderm (dual-membrane) bacteria that exhibit either a coiled “corkscrew” or flat-wave “serpentine” morphology. These distinct phenotypes are at least partly due to various numbers of periplasmic flagella that are inserted subterminally at both poles of the bacteria, wrapping around the protoplasmic cylinder and often overlapping in the middle of the cell. Coordinated rotation of the flagellar bands or bundles, sometimes referred to as axial filaments, leads to rotation of the cell cylinder and cellular motility that is particularly prominent in viscous environments.

Citation: Zückert W. 2019. Protein Secretion in Spirochetes, p 77-89. In Sandkvist M, Cascales E, Christie P (ed), Protein Secretion in Bacteria. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PSIB-0026-2019
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Envelope structures of model spirochetes , , and . Spirochetes have a common diderm envelope structure with an inner membrane (IM) and outer membrane (OM) and a periplasmic space in between that contains a thin peptidoglycan cell wall and periplasmic flagella. A major difference between the three genera is seen in the OM: displays a limited set of integral OM proteins (OMPs), among them the unusual porin P13 with a predicted α-helical TM topology, but a large variable set of surface lipoproteins. The OM most closely resembles a Gram-negative OM, with lipopolysaccharide (LPS) being the major component of the surface leaflet, complemented by a large number of OMPs and a limited set of surface lipoproteins. expresses only rare OMPs with limited surface exposure. Some of the model proteins under study are labeled in italics. See text for details.

Citation: Zückert W. 2019. Protein Secretion in Spirochetes, p 77-89. In Sandkvist M, Cascales E, Christie P (ed), Protein Secretion in Bacteria. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PSIB-0026-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Generalized model of spirochetal protein secretion. The left half shows type I to III secretion systems (T1SS, T2SS, and T3SS) as well as the pathways involved in the secretion of nonlipidated membrane and periplasmic proteins. The right half shows the pathways for lipoprotein (LP) modification, sorting, and secretions. Pathway components or mechanisms that appear unique to a particular spirochetal genus are labeled by stippled red circles with the genus initial: , ; , ; and , . For example, a potential T2SS has been identified only for . The pathways in blue delineate the current alternative periplasmic and OM mechanisms that may be involved in the secretion of α-helical integral OMPs and surface lipoproteins in ; of note, could also take advantage of its T2SS to secrete surface lipoproteins ( ). Release of outer membrane vesicles (OMVs) has been observed and studied in . See text for details.

Citation: Zückert W. 2019. Protein Secretion in Spirochetes, p 77-89. In Sandkvist M, Cascales E, Christie P (ed), Protein Secretion in Bacteria. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PSIB-0026-2019
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Barbour AG, . 2018. Borreliaceae. In Whitman WB,, Rainey F,, Kämpfer P,, Trujillo M,, Chun J,, DeVos P,, Hedlund B,, Dedysh S (ed), Bergey’s Manual of Systematics of Archaea and Bacteria. Wiley, New York, NY.[CrossRef]
2. Kudryashev M,, Cyrklaff M,, Baumeister W,, Simon MM,, Wallich R,, Frischknecht F . 2009. Comparative cryo-electron tomography of pathogenic Lyme disease spirochetes. Mol Microbiol 71 : 1415 1434.[CrossRef][PubMed]
3. Liu J,, Lin T,, Botkin DJ,, McCrum E,, Winkler H,, Norris SJ . 2009. Intact flagellar motor of Borrelia burgdorferi revealed by cryo-electron tomography: evidence for stator ring curvature and rotor/C-ring assembly flexion. J Bacteriol 191 : 5026 5036.[CrossRef][PubMed]
4. Izard J,, Renken C,, Hsieh CE,, Desrosiers DC,, Dunham-Ems S,, La Vake C,, Gebhardt LL,, Limberger RJ,, Cox DL,, Marko M,, Radolf JD . 2009. Cryo-electron tomography elucidates the molecular architecture of Treponema pallidum, the syphilis spirochete. J Bacteriol 191 : 7566 7580.[CrossRef][PubMed]
5. Liu J,, Howell JK,, Bradley SD,, Zheng Y,, Zhou ZH,, Norris SJ . 2010. Cellular architecture of Treponema pallidum: novel flagellum, periplasmic cone, and cell envelope as revealed by cryo electron tomography. J Mol Biol 403 : 546 561.[CrossRef][PubMed]
6. Raddi G,, Morado DR,, Yan J,, Haake DA,, Yang XF,, Liu J . 2012. Three-dimensional structures of pathogenic and saprophytic Leptospira species revealed by cryo-electron tomography. J Bacteriol 194 : 1299 1306.[CrossRef][PubMed]
7. Dowdell AS,, Murphy MD,, Azodi C,, Swanson SK,, Florens L,, Chen S,, Zückert WR . 2017. Comprehensive spatial analysis of the Borrelia burgdorferi lipoproteome reveals a compartmentalization bias toward the bacterial surface. J Bacteriol 199 : 00658-16.[CrossRef][PubMed]
8. Radolf JD,, Deka RK,, Anand A,, Šmajs D,, Norgard MV,, Yang XF . 2016. Treponema pallidum, the syphilis spirochete: making a living as a stealth pathogen. Nat Rev Microbiol 14 : 744 759.[CrossRef][PubMed]
9. Dashper SG,, Seers CA,, Tan KH,, Reynolds EC . 2011. Virulence factors of the oral spirochete Treponema denticola. J Dent Res 90 : 691 703.[CrossRef][PubMed]
10. Radolf JD,, Caimano MJ,, Stevenson B,, Hu LT . 2012. Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat Rev Microbiol 10 : 87 99.[CrossRef][PubMed]
11. Steere AC,, Strle F,, Wormser GP,, Hu LT,, Branda JA,, Hovius JW,, Li X,, Mead PS . 2016. Lyme borreliosis. Nat Rev Dis Primers 2 : 16090.[CrossRef][PubMed]
12. Natale DA,, Galperin MY,, Tatusov RL,, Koonin EV . 2000. Using the COG database to improve gene recognition in complete genomes. Genetica 108 : 9 17.[CrossRef][PubMed]
13. Tatusov RL,, Galperin MY,, Natale DA,, Koonin EV . 2000. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28 : 33 36.[CrossRef][PubMed]
14. Fraser CM,, Casjens S,, Huang WM,, Sutton GG,, Clayton R,, Lathigra R,, White O,, Ketchum KA,, Dodson R,, Hickey EK,, Gwinn M,, Dougherty B,, Tomb JF,, Fleischmann RD,, Richardson D,, Peterson J,, Kerlavage AR,, Quackenbush J,, Salzberg S,, Hanson M,, van Vugt R,, Palmer N,, Adams MD,, Gocayne J,, Weidman J,, Utterback T,, Watthey L,, McDonald L,, Artiach P,, Bowman C,, Garland S,, Fuji C,, Cotton MD,, Horst K,, Roberts K,, Hatch B,, Smith HO,, Venter JC . 1997. Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390 : 580 586.[CrossRef][PubMed]
15. Casjens S,, Palmer N,, van Vugt R,, Huang WM,, Stevenson B,, Rosa P,, Lathigra R,, Sutton G,, Peterson J,, Dodson RJ,, Haft D,, Hickey E,, Gwinn M,, White O,, Fraser CM . 2000. A bacterial genome in flux: the twelve linear and nine circular extrachromosomal DNAs in an infectious isolate of the Lyme disease spirochete Borrelia burgdorferi. Mol Microbiol 35 : 490 516.[CrossRef][PubMed]
16. Fraser CM,, Norris SJ,, Weinstock GM,, White O,, Sutton GG,, Dodson R,, Gwinn M,, Hickey EK,, Clayton R,, Ketchum KA,, Sodergren E,, Hardham JM,, McLeod MP,, Salzberg S,, Peterson J,, Khalak H,, Richardson D,, Howell JK,, Chidambaram M,, Utterback T,, McDonald L,, Artiach P,, Bowman C,, Cotton MD,, Fujii C,, Garland S,, Hatch B,, Horst K,, Roberts K,, Sandusky M,, Weidman J,, Smith HO,, Venter JC . 1998. Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science 281 : 375 388.[CrossRef][PubMed]
17. Seshadri R,, Myers GS,, Tettelin H,, Eisen JA,, Heidelberg JF,, Dodson RJ,, Davidsen TM,, DeBoy RT,, Fouts DE,, Haft DH,, Selengut J,, Ren Q,, Brinkac LM,, Madupu R,, Kolonay J,, Durkin SA,, Daugherty SC,, Shetty J,, Shvartsbeyn A,, Gebregeorgis E,, Geer K,, Tsegaye G,, Malek J,, Ayodeji B,, Shatsman S,, McLeod MP,, Smajs D,, Howell JK,, Pal S,, Amin A,, Vashisth P,, McNeill TZ,, Xiang Q,, Sodergren E,, Baca E,, Weinstock GM,, Norris SJ,, Fraser CM,, Paulsen IT . 2004. Comparison of the genome of the oral pathogen Treponema denticola with other spirochete genomes. Proc Natl Acad Sci U S A 101 : 5646 5651.[CrossRef][PubMed]
18. Nascimento AL,, Ko AI,, Martins EA,, Monteiro-Vitorello CB,, Ho PL,, Haake DA,, Verjovski-Almeida S,, Hartskeerl RA,, Marques MV,, Oliveira MC,, Menck CF,, Leite LC,, Carrer H,, Coutinho LL,, Degrave WM,, Dellagostin OA,, El-Dorry H,, Ferro ES,, Ferro MI,, Furlan LR,, Gamberini M,, Giglioti EA,, Góes-Neto A,, Goldman GH,, Goldman MH,, Harakava R,, Jerônimo SM,, Junqueira-de-Azevedo IL,, Kimura ET,, Kuramae EE,, Lemos EG,, Lemos MV,, Marino CL,, Nunes LR,, de Oliveira RC,, Pereira GG,, Reis MS,, Schriefer A,, Siqueira WJ,, Sommer P,, Tsai SM,, Simpson AJ,, Ferro JA,, Camargo LE,, Kitajima JP,, Setubal JC,, Van Sluys MA . 2004. Comparative genomics of two Leptospira interrogans serovars reveals novel insights into physiology and pathogenesis. J Bacteriol 186 : 2164 2172.[CrossRef][PubMed]
19. Deka RK,, Brautigam CA,, Goldberg M,, Schuck P,, Tomchick DR,, Norgard MV . 2012. Structural, bioinformatic, and in vivo analyses of two Treponema pallidum lipoproteins reveal a unique TRAP transporter. J Mol Biol 416 : 678 696.[CrossRef][PubMed]
20. Zückert WR,, Meyer J,, Barbour AG . 1999. Comparative analysis and immunological characterization of the Borrelia Bdr protein family. Infect Immun 67 : 3257 3266.
21. Roberts DM,, Theisen M,, Marconi RT . 2000. Analysis of the cellular localization of Bdr paralogs in Borrelia burgdorferi, a causative agent of Lyme disease: evidence for functional diversity. J Bacteriol 182 : 4222 4226.[CrossRef][PubMed]
22. Barbour AG,, Jasinskas A,, Kayala MA,, Davies DH,, Steere AC,, Baldi P,, Felgner PL . 2008. A genome-wide proteome array reveals a limited set of immunogens in natural infections of humans and white-footed mice with Borrelia burgdorferi. Infect Immun 76 : 3374 3389.[CrossRef][PubMed]
23. Haake DA,, Zückert WR . 2015. The leptospiral outer membrane. Curr Top Microbiol Immunol 387 : 187 221.[CrossRef][PubMed]
24. Bunikis I,, Denker K,, Ostberg Y,, Andersen C,, Benz R,, Bergström S . 2008. An RND-type efflux system in Borrelia burgdorferi is involved in virulence and resistance to antimicrobial compounds. PLoS Pathog 4 : e1000009.[CrossRef][PubMed]
25. Lin T,, Gao L,, Zhao X,, Liu J,, Norris SJ . 2015. Mutations in the Borrelia burgdorferi flagellar type III secretion system genes fliH and fliI profoundly affect spirochete flagellar assembly, morphology, motility, structure, and cell division. mBio 6 : e00579-15.[CrossRef][PubMed]
26. Setubal JC,, Reis M,, Matsunaga J,, Haake DA . 2006. Lipoprotein computational prediction in spirochaetal genomes. Microbiology 152 : 113 121.[CrossRef][PubMed]
27. Pinne M,, Matsunaga J,, Haake DA . 2012. Leptospiral outer membrane protein microarray, a novel approach to identification of host ligand-binding proteins. J Bacteriol 194 : 6074 6087.[CrossRef][PubMed]
28. Hazlett KR,, Cox DL,, Decaffmeyer M,, Bennett MP,, Desrosiers DC,, La Vake CJ,, La Vake ME,, Bourell KW,, Robinson EJ,, Brasseur R,, Radolf JD . 2005. TP0453, a concealed outer membrane protein of Treponema pallidum, enhances membrane permeability. J Bacteriol 187 : 6499 6508.[CrossRef][PubMed]
29. Chan K,, Nasereddin T,, Alter L,, Centurion-Lara A,, Giacani L,, Parveen N . 2016. Treponema pallidum lipoprotein TP0435 expressed in Borrelia burgdorferi produces multiple surface/periplasmic isoforms and mediates adherence. Sci Rep 6 : 25593.[CrossRef][PubMed]
30. Pinne M,, Haake DA . 2013. LipL32 is a subsurface lipoprotein of Leptospira interrogans: presentation of new data and reevaluation of previous studies. PLoS One 8 : e51025.[CrossRef][PubMed]
31. Belisle JT,, Brandt ME,, Radolf JD,, Norgard MV . 1994. Fatty acids of Treponema pallidum and Borrelia burgdorferi lipoproteins. J Bacteriol 176 : 2151 2157.[CrossRef][PubMed]
32. Brandt ME,, Riley BS,, Radolf JD,, Norgard MV . 1990. Immunogenic integral membrane proteins of Borrelia burgdorferi are lipoproteins. Infect Immun 58 : 983 991.
33. Beermann C,, Lochnit G,, Geyer R,, Groscurth P,, Filgueira L . 2000. The lipid component of lipoproteins from Borrelia burgdorferi: structural analysis, antigenicity, and presentation via human dendritic cells. Biochem Biophys Res Commun 267 : 897 905.[CrossRef][PubMed]
34. Zückert WR . 2014. Secretion of bacterial lipoproteins: through the cytoplasmic membrane, the periplasm and beyond. Biochim Biophys Acta 1843 : 1509 1516.[CrossRef][PubMed]
35. Erdile LF,, Brandt MA,, Warakomski DJ,, Westrack GJ,, Sadziene A,, Barbour AG,, Mays JP . 1993. Role of attached lipid in immunogenicity of Borrelia burgdorferi OspA. Infect Immun 61 : 81 90.
36. Shang ES,, Summers TA,, Haake DA . 1996. Molecular cloning and sequence analysis of the gene encoding LipL41, a surface-exposed lipoprotein of pathogenic Leptospira species. Infect Immun 64 : 2322 2330.
37. Swancutt MA,, Radolf JD,, Norgard MV . 1990. The 34-kilodalton membrane immunogen of Treponema pallidum is a lipoprotein. Infect Immun 58 : 384 392.
38. Chen S,, Kumru OS,, Zückert WR . 2011. Determination of Borrelia surface lipoprotein anchor topology by surface proteolysis. J Bacteriol 193 : 6379 6383.[CrossRef][PubMed]
39. Chen S,, Zückert WR . 2011. Probing the Borrelia burgdorferi surface lipoprotein secretion pathway using a conditionally folding protein domain. J Bacteriol 193 : 6724 6732.[CrossRef][PubMed]
40. Kumru OS,, Schulze RJ,, Rodnin MV,, Ladokhin AS,, Zückert WR . 2011. Surface localization determinants of Borrelia OspC/Vsp family lipoproteins. J Bacteriol 193 : 2814 2825.[CrossRef][PubMed]
41. Schulze RJ,, Chen S,, Kumru OS,, Zückert WR . 2010. Translocation of Borrelia burgdorferi surface lipoprotein OspA through the outer membrane requires an unfolded conformation and can initiate at the C-terminus. Mol Microbiol 76 : 1266 1278.[CrossRef][PubMed]
42. Kumru OS,, Schulze RJ,, Slusser JG,, Zückert WR . 2010. Development and validation of a FACS-based lipoprotein localization screen in the Lyme disease spirochete Borrelia burgdorferi. BMC Microbiol 10 : 277.[CrossRef][PubMed]
43. Schulze RJ,, Zückert WR . 2006. Borrelia burgdorferi lipoproteins are secreted to the outer surface by default. Mol Microbiol 59 : 1473 1484.[CrossRef][PubMed]
44. Li X,, Gu Y,, Dong H,, Wang W,, Dong C . 2015. Trapped lipopolysaccharide and LptD intermediates reveal lipopolysaccharide translocation steps across the Escherichia coli outer membrane. Sci Rep 5 : 11883.[CrossRef][PubMed]
45. Konovalova A,, Kahne DE,, Silhavy TJ . 2017. Outer membrane biogenesis. Annu Rev Microbiol 71 : 539 556.[CrossRef][PubMed]
46. Kenedy MR,, Scott EJ II,, Shrestha B,, Anand A,, Iqbal H,, Radolf JD,, Dyer DW,, Akins DR . 2016. Consensus computational network analysis for identifying candidate outer membrane proteins from Borrelia spirochetes. BMC Microbiol 16 : 141.[CrossRef][PubMed]
47. Lin T,, Gao L,, Zhang C,, Odeh E,, Jacobs MB,, Coutte L,, Chaconas G,, Philipp MT,, Norris SJ . 2012. Analysis of an ordered, comprehensive STM mutant library in infectious Borrelia burgdorferi: insights into the genes required for mouse infectivity. PLoS One 7 : e47532.[CrossRef][PubMed]
48. Lin T,, Troy EB,, Hu LT,, Gao L,, Norris SJ . 2014. Transposon mutagenesis as an approach to improved understanding of Borrelia pathogenesis and biology. Front Cell Infect Microbiol 4 : 63.[CrossRef][PubMed]
49. Hossain H,, Wellensiek HJ,, Geyer R,, Lochnit G . 2001. Structural analysis of glycolipids from Borrelia burgdorferi. Biochimie 83 : 683 692.[CrossRef]
50. Ben-Menachem G,, Kubler-Kielb J,, Coxon B,, Yergey A,, Schneerson R . 2003. A newly discovered cholesteryl galactoside from Borrelia burgdorferi. Proc Natl Acad Sci U S A 100 : 7913 7918.[CrossRef][PubMed]
51. Schröder NW,, Eckert J,, Stübs G,, Schumann RR . 2008. Immune responses induced by spirochetal outer membrane lipoproteins and glycolipids. Immunobiology 213 : 329 340.[CrossRef][PubMed]
52. Cox DL,, Luthra A,, Dunham-Ems S,, Desrosiers DC,, Salazar JC,, Caimano MJ,, Radolf JD . 2010. Surface immunolabeling and consensus computational framework to identify candidate rare outer membrane proteins of Treponema pallidum. Infect Immun 78 : 5178 5194.[CrossRef][PubMed]
53. Sadziene A,, Thomas DD,, Barbour AG . 1995. Borrelia burgdorferi mutant lacking Osp: biological and immunological characterization. Infect Immun 63 : 1573 1580.
54. Pinne M,, Thein M,, Denker K,, Benz R,, Coburn J,, Bergström S . 2007. Elimination of channel-forming activity by insertional inactivation of the p66 gene in Borrelia burgdorferi. FEMS Microbiol Lett 266 : 241 249.[CrossRef][PubMed]
55. Pinne M,, Östberg Y,, Comstedt P,, Bergström S . 2004. Molecular analysis of the channel-forming protein P13 and its paralogue family 48 from different Lyme disease Borrelia species. Microbiology 150 : 549 559.[CrossRef][PubMed]
56. Östberg Y,, Pinne M,, Benz R,, Rosa P,, Bergström S . 2002. Elimination of channel-forming activity by insertional inactivation of the p13 gene in Borrelia burgdorferi. J Bacteriol 184 : 6811 6819.[CrossRef][PubMed]
57. Nilsson CL,, Cooper HJ,, Håkansson K,, Marshall AG,, Ostberg Y,, Lavrinovicha M,, Bergström S . 2002. Characterization of the P13 membrane protein of Borrelia burgdorferi by mass spectrometry. J Am Soc Mass Spectrom 13 : 295 299.[CrossRef]
58. Noppa L,, Östberg Y,, Lavrinovicha M,, Bergström S . 2001. P13, an integral membrane protein of Borrelia burgdorferi, is C-terminally processed and contains surface-exposed domains. Infect Immun 69 : 3323 3334.[CrossRef][PubMed]
59. Östberg Y,, Carroll JA,, Pinne M,, Krum JG,, Rosa P,, Bergström S . 2004. Pleiotropic effects of inactivating a carboxyl-terminal protease, CtpA, in Borrelia burgdorferi. J Bacteriol 186 : 2074 2084.[CrossRef][PubMed]
60. Yang X,, Promnares K,, Qin J,, He M,, Shroder DY,, Kariu T,, Wang Y,, Pal U . 2011. Characterization of multiprotein complexes of the Borrelia burgdorferi outer membrane vesicles. J Proteome Res 10 : 4556 4566.[CrossRef][PubMed]
61. Bárcena-Uribarri I,, Thein M,, Barbot M,, Sans-Serramitjana E,, Bonde M,, Mentele R,, Lottspeich F,, Bergström S,, Benz R . 2014. Study of the protein complex, pore diameter, and pore-forming activity of the Borrelia burgdorferi P13 porin. J Biol Chem 289 : 18614 18624.[CrossRef][PubMed]
62. Bunikis J,, Barbour AG . 1999. Access of antibody or trypsin to an integral outer membrane protein (P66) of Borrelia burgdorferi is hindered by Osp lipoproteins. Infect Immun 67 : 2874 2883.
63. Bunikis J,, Noppa L,, Ostberg Y,, Barbour AG,, Bergström S . 1996. Surface exposure and species specificity of an immunoreactive domain of a 66-kilodalton outer membrane protein (P66) of the Borrelia spp. that cause Lyme disease. Infect Immun 64 : 5111 5116.
64. Skare JT,, Mirzabekov TA,, Shang ES,, Blanco DR,, Erdjument-Bromage H,, Bunikis J,, Bergström S,, Tempst P,, Kagan BL,, Miller JN,, Lovett MA . 1997. The Oms66 (p66) protein is a Borrelia burgdorferi porin. Infect Immun 65 : 3654 3661.
65. Ristow LC,, Bonde M,, Lin YP,, Sato H,, Curtis M,, Wesley E,, Hahn BL,, Fang J,, Wilcox DA,, Leong JM,, Bergström S,, Coburn J . 2015. Integrin binding by Borrelia burgdorferi P66 facilitates dissemination but is not required for infectivity. Cell Microbiol 17 : 1021 1036.[CrossRef][PubMed]
66. Coburn J,, Cugini C . 2003. Targeted mutation of the outer membrane protein P66 disrupts attachment of the Lyme disease agent, Borrelia burgdorferi, to integrin alphavbeta3. Proc Natl Acad Sci U S A 100 : 7301 7306.[CrossRef][PubMed]
67. Iqbal H,, Kenedy MR,, Lybecker M,, Akins DR . 2016. The TamB ortholog of Borrelia burgdorferi interacts with the β-barrel assembly machine (BAM) complex protein BamA. Mol Microbiol 102 : 757 774.[CrossRef][PubMed]
68. Gherardini FC . 2013. Borrelia burgdorferi HtrA may promote dissemination and irritation. Mol Microbiol 90 : 209 213.[PubMed]
69. Stewart PE,, Hoff J,, Fischer E,, Krum JG,, Rosa PA . 2004. Genome-wide transposon mutagenesis of Borrelia burgdorferi for identification of phenotypic mutants. Appl Environ Microbiol 70 : 5973 5979.[CrossRef][PubMed]
70. Kariu T,, Yang X,, Marks CB,, Zhang X,, Pal U . 2013. Proteolysis of BB0323 results in two polypeptides that impact physiologic and infectious phenotypes in Borrelia burgdorferi. Mol Microbiol 88 : 510 522.[CrossRef][PubMed]
71. Coleman JL,, Crowley JT,, Toledo AM,, Benach JL . 2013. The HtrA protease of Borrelia burgdorferi degrades outer membrane protein BmpD and chemotaxis phosphatase CheX. Mol Microbiol 88 : 619 633.[CrossRef][PubMed]
72. Russell TM,, Delorey MJ,, Johnson BJ . 2013. Borrelia burgdorferi BbHtrA degrades host ECM proteins and stimulates release of inflammatory cytokines in vitro. Mol Microbiol 90 : 241 251.[PubMed]
73. Lenhart TR,, Kenedy MR,, Yang X,, Pal U,, Akins DR . 2012. BB0324 and BB0028 are constituents of the Borrelia burgdorferi β-barrel assembly machine (BAM) complex. BMC Microbiol 12 : 60.[CrossRef][PubMed]
74. Lenhart TR,, Akins DR . 2010. Borrelia burgdorferi locus BB0795 encodes a BamA orthologue required for growth and efficient localization of outer membrane proteins. Mol Microbiol 75 : 692 709.[CrossRef][PubMed]
75. Dunstan RA,, Hay ID,, Wilksch JJ,, Schittenhelm RB,, Purcell AW,, Clark J,, Costin A,, Ramm G,, Strugnell RA,, Lithgow T . 2015. Assembly of the secretion pores GspD, Wza and CsgG into bacterial outer membranes does not require the Omp85 proteins BamA or TamA. Mol Microbiol 97 : 616 629.[CrossRef][PubMed]
76. Misra R,, Stikeleather R,, Gabriele R . 2015. In vivo roles of BamA, BamB and BamD in the biogenesis of BamA, a core protein of the β-barrel assembly machine of Escherichia coli. J Mol Biol 427 : 1061 1074.[CrossRef][PubMed]
77. Gunasinghe SD,, Shiota T,, Stubenrauch CJ,, Schulze KE,, Webb CT,, Fulcher AJ,, Dunstan RA,, Hay ID,, Naderer T,, Whelan DR,, Bell TDM,, Elgass KD,, Strugnell RA,, Lithgow T . 2018. The WD40 protein BamB mediates coupling of BAM complexes into assembly precincts in the bacterial outer membrane. Cell Rep 23 : 2782 2794.[CrossRef][PubMed]
78. Dunn JP,, Kenedy MR,, Iqbal H,, Akins DR . 2015. Characterization of the β-barrel assembly machine accessory lipoproteins from Borrelia burgdorferi. BMC Microbiol 15 : 70.[CrossRef][PubMed]
79. Stubenrauch CJ,, Lithgow T . 2019. The TAM: a translocation and assembly module of the β-barrel assembly machinery in bacterial outer membranes. EcoSal Plus 8 : ESP-0036-2018.[CrossRef][PubMed]
80. Stubenrauch C,, Grinter R,, Lithgow T . 2016. The modular nature of the β-barrel assembly machinery, illustrated in Borrelia burgdorferi. Mol Microbiol 102 : 753 756.[CrossRef][PubMed]
81. Picardeau M . 2017. Virulence of the zoonotic agent of leptospirosis: still terra incognita? Nat Rev Microbiol 15 : 297 307.[CrossRef][PubMed]
82. Dunham-Ems SM,, Caimano MJ,, Pal U,, Wolgemuth CW,, Eggers CH,, Balic A,, Radolf JD . 2009. Live imaging reveals a biphasic mode of dissemination of Borrelia burgdorferi within ticks. J Clin Invest 119 : 3652 3665.[CrossRef][PubMed]
83. Ellis TN,, Kuehn MJ . 2010. Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol Mol Biol Rev 74 : 81 94.[CrossRef][PubMed]
84. Floden AM,, Watt JA,, Brissette CA . 2011. Borrelia burgdorferi enolase is a surface-exposed plasminogen binding protein. PLoS One 6 : e27502.[CrossRef][PubMed]
85. Nogueira SV,, Smith AA,, Qin JH,, Pal U . 2012. A surface enolase participates in Borrelia burgdorferi-plasminogen interaction and contributes to pathogen survival within feeding ticks. Infect Immun 80 : 82 90.[CrossRef][PubMed]
86. Toledo A,, Coleman JL,, Kuhlow CJ,, Crowley JT,, Benach JL . 2012. The enolase of Borrelia burgdorferi is a plasminogen receptor released in outer membrane vesicles. Infect Immun 80 : 359 368.[CrossRef][PubMed]
87. Crowley JT,, Toledo AM,, LaRocca TJ,, Coleman JL,, London E,, Benach JL . 2013. Lipid exchange between Borrelia burgdorferi and host cells. PLoS Pathog 9 : e1003109.[CrossRef][PubMed]
88. Toledo A,, Crowley JT,, Coleman JL,, LaRocca TJ,, Chiantia S,, London E,, Benach JL . 2014. Selective association of outer surface lipoproteins with the lipid rafts of Borrelia burgdorferi. mBio 5 : e00899-14.[CrossRef][PubMed]
89. Toledo A,, Pérez A,, Coleman JL,, Benach JL . 2015. The lipid raft proteome of Borrelia burgdorferi. Proteomics 15 : 3662 3675.[CrossRef][PubMed]
90. Ward HB . 1908. The spirochetes and their relationship to other organisms. Am Nat 42 : 374 387.[CrossRef]
91. Drecktrah D,, Samuels DS . 2018. Genetic manipulation of Borrelia spp. Curr Top Microbiol Immunol 415 : 113 140.[CrossRef][PubMed]
92. Picardeau M . 2015. Genomics, proteomics, and genetics of leptospira. Curr Top Microbiol Immunol 387 : 43 63.[CrossRef][PubMed]
93. Edmondson DG,, Hu B,, Norris SJ . 2018. Long-term in vitro culture of the syphilis spirochete Treponema pallidum subsp. pallidum. mBio 9 : e01153-18.[CrossRef][PubMed]
94. Hampson DJ . 2017. The spirochete Brachyspira pilosicoli, enteric pathogen of animals and humans. Clin Microbiol Rev 31 : e00087-17.[CrossRef][PubMed]
95. Haake DA,, Zückert WR . 2018. Spirochetal lipoproteins in pathogenesis and immunity. Curr Top Microbiol Immunol 415 : 239 271.[CrossRef][PubMed]

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error