No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 5:

Responding to the Environment

Oxidative Stress

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • Author: James A. Imlay1
  • Editor: James M. Slauch2
    Affiliations: 1: Department of Microbiology, University of Illinois, Urbana, IL 61801; 2: The Schoold of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL
  • Received 16 January 2009 Accepted 16 January 2009 Published 26 September 2009
  • Address correspondence to James A. Imlay [email protected].
image of Oxidative Stress
    Preview this reference work article:
    Zoom in

    Oxidative Stress, Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/3/2/5_4_4_module-1.gif /docserver/preview/fulltext/ecosalplus/3/2/5_4_4_module-2.gif
  • Abstract:

    The ancestors of and ultimately evolved to thrive in air-saturated liquids, in which oxygen levels reach 210 μM at 37°C. However, in 1976 Brown and colleagues reported that some sensitivity persists: growth defects still become apparent when hyperoxia is imposed on cultures of . This residual vulnerability was important in that it raised the prospect that normal levels of oxygen might also injure bacteria, albeit at reduced rates that are not overtly toxic. The intent of this article is both to describe the threat that molecular oxygen poses for bacteria and to detail what we currently understand about the strategies by which and defend themselves against it. mutants that lack either superoxide dismutases or catalases and peroxidases exhibit a variety of growth defects. These phenotypes constitute the best evidence that aerobic cells continually generate intracellular superoxide and hydrogen peroxide at potentially lethal doses. Superoxide has reduction potentials that allow it to serve in vitro as either a weak univalent reductant or a stronger univalent oxidant. The addition of micromolar hydrogen peroxide to lab media will immediately block the growth of most cells, and protracted exposure will result in the loss of viability. The need for inducible antioxidant systems seems especially obvious for enteric bacteria, which move quickly from the anaerobic gut to fully aerobic surface waters or even to ROS-perfused phagolysosomes. and have provided two paradigmatic models of oxidative-stress responses: the SoxRS and OxyR systems.

  • Citation: Imlay J. 2009. Oxidative Stress, EcoSal Plus 2009; doi:10.1128/ecosalplus.5.4.4


1. Blanchard JL, Wholely WY, Conlon EM, Pomposiello PJ. 2007. Rapid changes in gene expression dynamics in response to superoxide reveal SoxRS-dependent and -independent transcriptional networks. PLoS ONE 2:e1186. [PubMed][CrossRef]
2. Murakami K, Tsubouchi R, Ogawa MF, Yoshino M. 2006. Oxidative inactivation of reduced NADP-generating enzymes in E. coli: iron-dependent inactivation with affinity cleavage of NADP-isocitrate dehydrogenase. Arch Microbiol 186:385–392. [PubMed][CrossRef]
3. Saito Y, Uraki F, Nakajima S, Asaeda A, Ono K, Kubo K, Yamamoto K. 1997. Characterization of endonuclease III ( nth) and endonuclease VIII ( nei) mutants of Escherichia coli K-12. J Bacteriol 179:3783–3785.[PubMed]
4. Vazquez-Torres A, Xu Y, Jones-Carson J, Holden DW, Lucia SM, Dinauer MC, Mastroeni P, Fang FC. 2000. Salmonella pathogenicity island 2-dependent evasion of the phagocyte NADPH oxidase. Science 287:1655–1658. [PubMed][CrossRef]
5. Kargalioglu Y, Imlay JA. 1994. Importance of anaerobic superoxide dismutase synthesis in facilitating outgrowth of Escherichia coli upon entry into an aerobic habitat. J Bacteriol 176:7653–7658.[PubMed]
6. Nathan C, Shiloh MU. 2000. Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci USA 97:8841–8848. [PubMed][CrossRef]
7. Canvin J, Langford PR, Wilks KE, Kroll JS. 1996. Identification of sodC encoding periplasmic [Cu,Zn]-superoxide dismutase in Salmonella. FEMS Microbiol Lett 136:215–220. [PubMed][CrossRef]
8. Jakob U, Muse W, Eser M, Bardwell JC. 1999. Chaperone activity with a redox switch. Cell 96:341–352. [PubMed][CrossRef]
9. Boyer E, Bergevin I, Malo D, Gros P, Cellier MFM. 2002. Acquisition of Mn(II) in addition to Fe(II) is required for full virulence of Salmonella enterica Serovar Typhimurium. Infect Immun 70:6032–6042. [PubMed][CrossRef]
10. Martin RG, Rosner JL. 2002. Genomics of the marA/soxS/rob regulon of Escherichia coli: identification of directly activated promoters by application of molecular genetics and informatics to microarray data. Mol Microbiol 44:1611–1624. [PubMed][CrossRef]
11. Massey V, Strickland S, Mayhew SG, Howell LG, Engel PC, Matthews RG, Schuman M, Sullivan PA. 1969. The production of superoxide anion radicals in the reaction of reduced flavins and flavoproteins with molecular oxygen. Biochem Biophys Res Commun 36:891–897. [PubMed][CrossRef]
12. Gardner PR, Fridovich I. 1992. Inactivation-reactivation of aconitase in Escherichia coli. A sensitive measure of superoxide radical. J Biol Chem 267:8757–8763.[PubMed]
13. Griffith KL, Shah IM, Wolf RE Jr. 2004. Proteolytic degradation of Escherichia coli transcription activators Sox and MarA as the mechanism for reversing the induction of the superoxide (SoxRS) and multiple antibiotic resistance (Mar) regulons. Mol Microbiol 51:1801–1816. [PubMed][CrossRef]
14. Krishnakumar R, Kim B, Mollo EA, Imlay JA, Slauch JM. 2007. Structural properties of perioplasmic SodC1 that correlate with virulence in Salmonella enterica serovar Typhimurium. J Bacteriol 189:4343–4352. [PubMed][CrossRef]
15. Massey V. 1994. Activation of molecular oxygen by flavins and flavoproteins. J Biol Chem 36:22459–22462.
16. Martinez A, Kolter R. 1997. Protection of DNA during oxidative stress by the nonspecific DNA-binding protein Dps. J Bacteriol 179:5188–5194.[PubMed]
17. Winterbourn CC, Metodiewa D. 1999. Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide. Free Rad Biol Med 27:322–328. [PubMed][CrossRef]
18. Schwartz CJ, Djaman O, Imlay JA, Kiley PJ. 2000. The cysteine desulfurase, IscS, has a major role in in vivo Fe-S cluster formation in Escherichia coli. Proc Natl Acad Sci USA 97:9009–9014. [PubMed][CrossRef]
19. Schwartz CJ, Giel JL, Patschkowski T, Luther C, Ruzicka FJ, Beinert H, Kiley PJ. 2001. IscR, an Fe-S cluster-containing transcription factor, represses expression of Escherichia coli genes encoding Fe-S cluster assembly proteins. Proc. Natl. Acad. Sci. USA 98:14895–14900. [PubMed][CrossRef]
20. Benov L, Fridovich I. 1999. Why superoxide imposes an aromatic amino acid auxotrophy in Escherichia coli. J Biol Chem 274:4202–4206. [PubMed][CrossRef]
21. Gordon MA. 2008. Salmonella infections in immunocompromised adults. J Infect 56:413–422. [PubMed][CrossRef]
22. Kona J, Brinck T. 2006. A combined molecular dynamics simulation and quantum chemical study on the mechanism for activation of the OxyR transcription factor by hydrogen peroxide. Org Biomol Chem 4:3468–3478. [PubMed][CrossRef]
23. Nachin L, Loiseau L, Expert D, Barras F. 2003. SufC: an unorthodox cytoplasmic ABC ATPase required for [Fe-S] biogenesis under oxidative stress. EMBO J 22:427–437. [PubMed][CrossRef]
24. Cano DA, Pucciarelli MG, Garcia-del Portillo F, Casadesus J. 2002. Role of the RecBCD recombination pathway in Salmonella virulence. J Bacteriol 184:592–595. [PubMed][CrossRef]
25. Ezraty B, Grimaud R, Hassouni ME, Moinier D, Barras F. 2004. Methionine sulfoxide reductases protect Ffh from oxidative damages in Escherichia coli. EMBO J 23:1868–1877. [PubMed][CrossRef]
26. Fee JA. 1982. Is superoxide important in oxygen poisoning? Trends Biochem. Sci 7:84–86. [CrossRef]
27. Halliwell B, Gutteridge JM, Aruoma OI. 1987. The deoxyribose method: a simple “test-tube” assay for determination of rate constants for reactions of hydroxyl radicals. Anal Biochem 165:215–219. [PubMed][CrossRef]
28. Que Q, Helmann JD. 2000. Manganese homeostasis in Bacillus subtilis is regulated by MntR, a bifunctional regulator related to the diphtheria toxin repressor family of proteins. Mol Microbiol 35:1454–1488. [PubMed][CrossRef]
29. Koo MS, Lee JH, Ray SY, Yeo WS, Lee JW, Lee KL, Koh YS, Kang SO, Roe JH. 2003. A reducing system of the superoxide sensor SoxR in Escherichia coli. EMBO J 22:2614–2622. [PubMed][CrossRef]
30. Loiseau L, Ollagnier-de-Choudens S, Lascoux D, Forest E, Fontecave M, Barras F. 2005. Analysis of the heteromeric CsdA-CsdE cysteine desulfurase, assisting Fe-S cluster biogenesis in Escherichia coli. J Biol Chem 280:26760–26769. [PubMed][CrossRef]
31. Halsey TA, Vazquez-Torres A, Gravdahl DJ, Fang FC, Libby SJ. 2004. The ferritin-like Dps protein is required for Salmonella enterica serovar Typhimurium oxidative stress resistance and virulence. Infect Immun 72:1155–1158. [PubMed][CrossRef]
32. Hassan HM, Fridovich I. 1979. Intracellular production of superoxide radical and of hydrogen peroxide by redox active compounds. Arch Biochem Biophys 196:385–395. [PubMed][CrossRef]
33. Dean RT, Fu S, Stocker R, Davies MJ. 1997. Biochemistry and pathology of radical-mediated protein oxidation. Biochem J 324:1–18.[PubMed]
34. Eisenstark A, Calcutt MJ, Becker-Hapak M, Ivanova A. 1996. Role of Escherichia coli rpoS and associated genes in defense against oxidative damage. Free Rad Biol Med 21:975–993. [PubMed][CrossRef]
35. Zaffagnini M, Michelet L, Marchand C, Sparla F, Decottignies P, Marechal PL, Miginiac-Maslow M, Noctor G, Trost P, Lemaire SD. 2007. The thioredoxin-independent isoform of chloroplastic glyceraldehyde-3-phosphate dehydrogenase is selectively regulated by glutathionylation. FEBS J 274:212–226. [PubMed][CrossRef]
36. Gort AS, Imlay JA. 1998. Balance between endogenous superoxide stress and antioxidant defenses. J Bacteriol 180:1402–1410.[PubMed]
37. Seaver LC, Imlay JA. 2001. Hydrogen peroxide fluxes and compartmentalization inside growing Escherichia coli. J Bacteriol 183:7182–7189. [PubMed][CrossRef]
38. Shah IM, Wolf RE Jr. 2005. Sequence requirements for Lon-dependent degradation of the Escherichia coli transcription activator SoxS: identification of the SoxS residues critical to proteolysis and specific inhibition of in vitro degradation by a peptide comprised of the N-terminal 21 amino acid residues. J Mol Biol 357:718–731. [CrossRef]
39. Christman MF, Morgan RW, Jacobson FS, Ames BN. 1985. Positive control of a regulon for defenses against oxidative stress and some heat-shock proteins in Salmonella typhimurium. Cell 41:753–762. [PubMed][CrossRef]
40. Beyer WF Jr, Fridovich I. 1987. Effect of hydrogen peroxide on the iron-containing superoxide dismutase of Escherichia coli. Biochemistry 26:1251–1257. [PubMed][CrossRef]
41. Farr SB, D'Ari R, Touati D. 1986. Oxygen-dependent mutagenesis in Escherichia coli lacking superoxide dismutase. Proc Natl Acad Sci USA 83:8268–8272. [PubMed][CrossRef]
42. Figueroa-Bossi N, Bossi L. 1999. Inducible prophages contribute to Salmonella virulence in mice. Mol Microbiol 33:167–176. [PubMed][CrossRef]
43. Sakai A, Nakanishi M, Yoshiyama K, Maki H. 2006. Impact of reactive oxygen species on spontaneous mutagenesis in Escherichia coli. Genes Cells 11:767–778. [PubMed][CrossRef]
44. Weber H, Polen T, Heuveling J, Wendisch VF, Hengge R. 2005. Genome-wide analysis of the general stress response network in Escherichia coli: sigma S-dependent genes, promoters, and sigma factor selectivity. J Bacteriol 187:1591–1603. [PubMed][CrossRef]
45. Nnyepi MR, Peng Y, Broderick JB. 2007. Inactivation of E. coli pyruvate formate-lyase: role of AdhE and small molecules. Arch Biochem Biophys 459:1–9. [PubMed][CrossRef]
46. Fang FC, Libby SJ, Buchmeier NA, Loewen PC, Switala J, Harwood J, Guiney DG. 1992. The alternative σ factor KatF (RpoS) regulates Salmonella virulence. Proc. Natl Acad Sci USA 89:11978–11982. [PubMed][CrossRef]
47. Napolitano R, Janel-Bintz R, Wagner J, Fuchs RP. 2000. All three SOS-inducible DNA polymerases (Pol II, Pol IV and Pol V) are involved in induced mutagenesis. EMBO J 19:6259–6265. [PubMed][CrossRef]
48. Figueroa-Bossi N, Uzzau S, Maloriol D, Bossi L. 2001. Variable assortment of prophages provides a transferable repertoire of pathogenic determinant in Salmonella. Mol Microbiol 39:260–271. [PubMed][CrossRef]
49. Krishnakumar R, Craig M, Imlay JA, Slauch JM. 2004. Differences in enzymatic properties allow SodCI but not SodCII to contribute to virulence in Salmonella enterica serovar Typhimurium strain 14028. J Bacteriol 186:5230–5238. [PubMed][CrossRef]
50. Garcia-del Portillo F, Foster JW, Finlay BB. 1993. Role of acid tolerance response genes in Salmonella typhimurium virulence. Infect Immun 61:4489–4492.[PubMed]
51. Liochev SI, Fridovich I. 1992. Fumarase C, the stable fumarase of Escherichia coli, is controlled by the soxRS regulon. Proc Natl Acad Sci USA 89:5892–5896. [PubMed][CrossRef]
52. Fitzsimons DW, ed 1979. Oxygen Free Radicals in Tissue Damage, p 43–56. Ciba Foundation Series 65. Elsevier/North-Holland, Amsterdam, The Netherlands.
53. Kussmaul L, Hirst J. 2006. The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proc Natl Acad Sci USA 103:7607–7612. [PubMed][CrossRef]
54. Gonzalez-Flecha B, Demple B. 1999. Role for the oxyS gene in regulation of intracellular hydrogen peroxide in Escherichia coli. J Bacteriol 181:3833–3836.[PubMed]
55. Gardner PR, Fridovich I. 1991. Superoxide sensitivity of the Escherichia coli 6-phosphogluconate dehydratase. J Biol Chem 266:1478–1483.[PubMed]
56. Kehres DG, Zaharik ML, Finlay BB, Maguire ME. 2000. The NRAMP proteins of Salmonella typhimurium and Escherichia coli are selective manganese transporters involved in the response to reactive oxygen. Mol Microbiol 36:1085–1100. [PubMed][CrossRef]
57. Liochev SI, Fridovich I. 1992. Effects of overproduction of superoxide dismutases in Escherichia coli on inhibition of growth and on induction of glucose-6-phosphate dehydrogenase by paraquat. Arch Biochem Biophys 294:138–143. [PubMed][CrossRef]
58. Benov L, Fridovich I. 1997. Superoxide imposes leakage of sulfite from Escherichia coli. Arch Biochem Biophys 347:271–274. [PubMed][CrossRef]
59. Soonsanga S, Fuangthong M, Helmann JD. 2007. Mutational analysis of active site residues essential for sensing of organic hydroperoxide by Bacillus subtilis OhrR. J Bacteriol 189:7069–7076. [PubMed][CrossRef]
60. Benov L, Ching LY, Day B, Fridovich I. 1995. Copper, zinc superoxide dismutase in Escherichia coli: periplasmic location. Arch Biochem Biophys 319:508–511. [PubMed][CrossRef]
61. Benov L, Kredich NM, Fridovich I. 1996. The mechanism of the auxotrophy for sulfur-containing amino acids imposed upon Escherichia coli by superoxide. J Biol Chem 271:21037–21040. [PubMed][CrossRef]
62. Chang EC, Kosman DJ. 1989. Intracellular Mn(II)-associated superoxide scavenging activity protects Cu,Zn superoxide dismutase-deficient Saccharomyces cerevisiae against dioxygen stress. J Biol Chem 264:12172–12178.[PubMed]
63. Imlay JA, Linn S. 1986. Bimodal pattern of killing of DNA-repair-defective or anoxically grown Escherichia coli by hydrogen peroxide. J Bacteriol 166:519–527.[PubMed]
64. D'Orazio M, Scotti R, Nicolini L, Cervoni L, Rotilio G, Battistoni A, Babbianelli R. 2008. Regulatory and structural properties differentiating the chromosomal and the bacteriophage-associated Escherichia coli O157:H7 Cu,Zn superoxide dismutases. MCB Microbiol 8:166–180.
65. Poole LB. 2005. Bacterial defenses against oxidants: mechanistic features of cysteine-based peroxidases and their flavoprotein reductases. Arch Biochem Biophys 433:240–254. [PubMed][CrossRef]
66. Ding H, Demple B. 1997. In vivo kinetics of a redox-regulated transcriptional switch. Proc Natl Acad Sci USA 94:8445–8449. [PubMed][CrossRef]
67. Horsburgh MJ, Wharton SJ, Cox AG, Ingham E, Peacock S, Foster SJ. 2002. MntR modulates expression of the PerR regulon and superoxide resistance in Staphylococcus aureus through control of manganese uptake. Mol Microbiol 44:1269–1286. [PubMed][CrossRef]
68. Bull C, Niederhoffer EC, Yoshida T, Fee JA. 1991. Kinetic studies of superoxide dismutases: properties of the manganese-containing protein from Thermus thermophilus. J Am. Chem. Soc. 113:4069–4076. [CrossRef]
69. Outten FW, Djaman O, Storz G. 2004. A suf operon requirement for Fe-S cluster assembly during iron starvation in Escherichia coli. Mol Microbiol 52:861–872. [PubMed][CrossRef]
70. Robbe-Saule V, Coynault C, Ibanez-Ruiz M, Hermant D, Norel F. 2001. Identification of a non-haem catalase in Salmonella and its regulation by RpoS (σ S). Mol Microbiol 39:1533–1545. [PubMed][CrossRef]
71. Hutchinson F. 1985. Chemical changes induced in DNA by ionizing radiation. Prog Nucleic Acid Res 32:116–154.
72. Messner KR, Imlay JA. 1999. The identification of primary sites of superoxide and hydrogen peroxide formation in the aerobic respiratory chain and sulfite reductase complex of Escherichia coli. J Biol Chem 274:10119–10128. [PubMed][CrossRef]
73. Tokumoto U, Takahashi Y. 2001. Genetic analysis of the isc operon in Escherichia coli involved in the biogenesis of cellular iron-sulfur proteins. J Biochem 130:63–71.[PubMed]
74. Outten FW, Huffman DL, Hale JA, O'Halloran TV. 2001. The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli. J Biol Chem 276:30670–30677. [PubMed][CrossRef]
75. Winter J, Ilbert M, Graf PC, Ozcelik D, Jakob U. 2008. Bleach activates a redox-regulated chaperone by oxidative protein unfolding. Cell 135:691–701. [PubMed][CrossRef]
76. Korshunov S, Imlay JA. 2006. Detection and quantification of superoxide formed within the periplasm of Escherichia coli. J Bacteriol. 188:6326–6334. [PubMed][CrossRef]
77. Grinblat L, Sreider CM, Stoppani AO. 1991. Superoxide anion production by lipoamide dehydrogenase redox-cycling: effect of enzyme modifiers. Biochem Int 23:83–92.[PubMed]
78. Ma D, Alberti M, Lynch C, Nikaido H, Hearst J. 1996. The local repressor AcrR plays a modulating role in the regulation of acrAB genes of Escherichia coli by global stress signals. Mol Microbiol 19:101–112. [PubMed][CrossRef]
79. Hidalgo E, Leautaud V, Demple B. 1998. The redox-regulated SoxR protein acts from a single DNA site as a repressor and an allosteric activator. EMBO J 17:2629–2636. [PubMed][CrossRef]
80. Berlett BS, Chock PB, Yim MB, Stadtman ER. 1990. Manganese(II) catalyzes the bicarbonate-dependent oxidation of amino acids by hydrogen peroxide and the amino acid-facilitated dismutation of hydrogen peroxide. Proc Natl Acad Sci USA 87:389–393. [PubMed][CrossRef]
81. Nunoshiba T, Hidalgo E, Li Z, Demple B. 1993. Negative autoregulation by the Escherichia coli SoxS protein: a dampening mechanism for the soxRS redox stress response. J Bacteriol 175:7492–7494.[PubMed]
82. Schlosser-Silverman E, Elgrably-Weiss M, Rosenshine I, Kohen R, Altuvia S. 2000. Characterization of Escherichia coli DNA lesions generated within J774 macrophages. J Bacteriol 182:5225–5230. [PubMed][CrossRef]
83. Lee C, Lee SM, Mukhopadhyay P, Kim SJ, Lee SC, Ahn WS, Yu MH, Storz G, Ryu SE. 2004. Redox regulation of OxyR requires specific disulfide bond formation involving a rapid kinetic reaction path. Nat Struct Mol Biol 11:1179–1185. [PubMed][CrossRef]
84. Takabe T, Asami S, Akazawa T. 1980. Glycolate formation catalyzed by spinach leaf transketolase utilizing the superoxide radical. Biochemistry 19:3985–3989. [PubMed][CrossRef]
85. Beswick PH, Hall GH, Hook AJ, Little K, McBrien DC, Lott KA. 1976. Copper toxicity: evidence for the conversion of cupric to cuprous copper in vivo under anaerobic conditions. Chem Biol Interact 14:347–356. [PubMed][CrossRef]
86. Michaels ML, Cruz C, Grollman AP, Miller JH. 1992. Evidence that MutY and MutM combine to prevent mutations by an oxidatively damaged form of guanine in DNA. Proc Natl Acad Sci USA 89:7022–7025. [PubMed][CrossRef]
87. Daly MJ, Gaidamakova EK, Matrosova VY, Valilenko A, Zhai M, Venkateswaran A, Hess M, Omelchenko MV, Kostandarithes HM, Makarova KS, Wackett LP, Fredrickson JK, Ghosal D. 2004. Accumulation of Mn(II) in Deinococcus radiodurans facilitates gamma-radiation resistance. Science 306:1025–1028. [PubMed][CrossRef]
88. Dizdaroglu M. 2005. Base-excision repair of oxidative DNA damage by DNA glycosylases. Mutat Res 591:45–59.[PubMed]
89. Lange R, Hengge-Aronis R. 1991. Identification of a central regulator of stationary-phase gene expression in Escherichia coli. Mol Microbiol 5:49–59. [PubMed][CrossRef]
90. Lee JH, Yeo WS, Roe JH. 2004. Induction of the sufA operon encoding Fe-S assembly proteins by superoxide generators and hydrogen peroxide: involvement of OxyR, IHF and an unidentified oxidant-responsive factor. Mol Microbiol 51:1745–1755. [PubMed][CrossRef]
91. Storz G, Tartaglia LA, Ames BN. 1990. Transcriptional regulator of oxidative stress-inducible genes: direct activation by oxidation. Science 248:189. [PubMed][CrossRef]
92. Archibald FS, Fridovich I. 1981. Manganese and defenses against oxygen toxicity in Lactobacillus plantarum. J Bacteriol 145:442–451.[PubMed]
93. Partridge JD, Poole RK, Green J. 2007. The Escherichia coli yhjA gene, encoding a predicted cytochrome c peroxidase, is regulated by FNR and OxyR. Microbiology 153:1499–1507. [PubMed][CrossRef]
94. Hillar A, Peters B, Pauls R, Loboda A, Zhang H, Mauk AG, Loewen PC. 2000. Modulation of the activities of catalase-peroxidase HPI of Escherichia coli by site-directed mutagenesis. Biochemistry 59:5868–5875. [CrossRef]
95. Keyer K, Imlay JA. 1997. Inactivation of dehydratase [4Fe-4S] clusters and disruption of iron homeostasis upon cell exposure to peroxynitrite. J Biol Chem 272:27652–27659. [PubMed][CrossRef]
96. Shah IM, Wolf RE Jr. 2004. Novel protein-protein interaction between Escherichia coli SoxS and the DNA binding determinant of the RNA polymerase α subunit: SoxS functions as a co-sigma factor and redeploys RNA polymerase from UP-element-containing promoters to SoxS-dependent promoters during oxidative stress. J Mol Biol 343:513–532. [PubMed][CrossRef]
97. Woodmansee AN, Imlay JA. 2002. Reduced flavins promote oxidative DNA damage in non-respiring Escherichia coli by delivering electrons to intracellular free iron. J Biol. Chem. 277:34055–34066. [PubMed][CrossRef]
98. Rabani J, Nielsen SO. 1969. Absorption spectrum and decay kinetics of O 2 and HO 2 in aqueous solutions by pulse radiolysis. J Phys Chem 73:3736–3744. [CrossRef]
99. Hogg M, Wallace SS, Doublie S. 2005. Bumps in the road: how replicative DNA polymerases see DNA damage. Curr Opin Struct Biol 15:86–93. [PubMed][CrossRef]
100. Ivanova A, Miller C, Glinsky G, Eisenstark A. 1994. Role of ropS (katF) in oxyR-independent regulation of hydroperoxidase I in Escherichia coli. Mol Microbiol 12:571–578. [PubMed][CrossRef]
101. Wallace SS. 2002. Biological consequences of free radical-damaged DNA bases. Free Rad Biol Med 33:1–14. [PubMed][CrossRef]
102. Bielski BHJ, Richter HW. 1977. A study of the superoxide radical chemistry by stopped-flow radiolysis and radiation induced oxygen consumption. J Am Chem Soc 99:3019. [CrossRef]
103. Gifford CM, Blaisdell JO, Wallace SS. 2000. Multiprobe RNase protection assay analysis of mRNA levels for the Escherichia coli oxidative DNA glycosylase genes under conditions of oxidative stress. J Bacteriol 182:5416–5424. [PubMed][CrossRef]
104. Seaver LC, Imlay JA. 2004. Are respiratory enzymes the primary sources of intracellular hydrogen peroxide? J Biol Chem 279:48742–48750. [PubMed][CrossRef]
105. Parsonage D, Youngblood DS, Sarma GN, Wood ZA, Karplus PA, Poole LB. 2005. Analysis of the link between enzymatic activity and oligomeric state in AhpC, a bacterial peroxiredoxin. Biochemistry 44:10583–10592. [PubMed][CrossRef]
106. Gruer MJ, Guest JR. 1994. Two genetically-distinct and differentially-regulated aconitases (AcnA and AcnB) in Escherichia coli. Microbiology 140:2531–2541. [PubMed][CrossRef]
107. Grass G, Franke S, Taudte N, Nies DH, Kucharski LM, Maguire ME, Rensing C. 2005. The metal permease ZupT from Escherichia coli is a transporter with a broad substrate spectrum. J Bacteriol 187:1604–1611. [PubMed][CrossRef]
108. Toledano MB, Kullik I, Trinh F, Baird PT, Schneider TD, Storz G. 1994. Redox-dependent shift of OxyR-DNA contacts along an extended DNA-binding site: a mechanism for differential promoter selection. Cell 78:897–909. [PubMed][CrossRef]
109. Demple B, Johnson A, Fung D. 1986. Exonuclease III and endonuclease IV remove 3′ blocks from DNA synthesis primers in H 2O 2-damaged Escherichia coli. Proc Natl Acad Sci USA 83:7731–7735. [PubMed][CrossRef]
110. Gardner PR, Fridovich I. 1991. Superoxide sensitivity of the Escherichia coli aconitase. J Biol Chem 266:19328–19333.[PubMed]
111. Hawkins CL, Pattison DI, Davies MJ. 2003. Hypochlorite-induced oxidation of amino acids, peptides and proteins. Amino Acids 25:259–274. [PubMed][CrossRef]
112. Perez JM, Arena FA, Pradenas GA, Sandoval JM, Vasquez CC. 2008. Escherichia coli YzhD exhibits aldehyde reductase activity and protects from the harmful effect of lipid peroxidation-derived aldehydes. J Biol Chem 283:7346–7353. [PubMed][CrossRef]
113. Macomber L, Rensing C, Imlay JA. 2007. Intracellular copper does not catalyze the formation of oxidative DNA damage in Escherichia coli. J Bacteriol 189:1616–1626. [PubMed][CrossRef]
114. Liochev SI, Fridovich I. 1993. Modulation of the fumarases of Escherichia coli in response to oxidative stress. Arch Biochem Biophys 301:379–384. [PubMed][CrossRef]
115. Link AJ, Robison K, Church GM. 1997. Comparing the predicted and observed properties of proteins encoded in the genome of Escherichia coli K-12. Electrophoresis 18:1259–1313. [PubMed][CrossRef]
116. Demple B, Halbrook J, Linn S. 1983. Escherichia coli xth mutants are hypersensitive to hydrogen peroxide. J Bacteriol 153:1079–1082.[PubMed]
117. Natvig DO, Imlay K, Touati D, Hallewell RA. 1987. Human copper-zinc superoxide dismutase complements superoxide dismutase-deficient Escherichia coli mutants. J Biol Chem 262:14697–14701.[PubMed]
118. Kobayashi K, Tagawa S. 2004. Activation of SoxR-dependent transcription in Pseudomonas aeruginosa. J Biochem (Tokyo) 136:607–615.[PubMed]
119. Djaman O, Outten FW, Imlay JA. 2004. Repair of oxidized iron-sulfur clusters in Escherichia coli. J Biol Chem 279:44590–44599. [PubMed][CrossRef]
120. Keyer K, Imlay JA. 1996. Superoxide accelerates DNA damage by elevating free-iron levels. Proc Natl Acad Sci USA 93:13635–13640. [PubMed][CrossRef]
121. Osborne MJ, Siddiqui N, Landraf D, Pomposiello PJ, Gehring K. 2005. The solution structure of the oxidative stress-related protein YggX from Escherichia coli. Protein Sci 14:1673–1678. [PubMed][CrossRef]
122. Palma M, Zurita J, Ferreras JA, Worgall S, Larone DH, Shi L, Campagne F, Quadri LE. 2005. Pseudomonas aeruginosa SoxR does not conform to the archetypal paradigm for SoxR-dependent regulation of the bacterial oxidative stress adaptive response. Infect Immun 73:2958–2966. [PubMed][CrossRef]
123. Gray B, Carmichael AJ. 1992. Kinetics of superoxide scavenging by dismutase enzymes and manganese mimics determined by electron spin resonance. Biochem J 281:795–802.[PubMed]
124. Seki M, Iida K, Saito M, Nakayama H, Yoshida S. 2004. Hydrogen peroxide production in Streptococcus pyogenes: involvement of lactase oxidase and coupling with aerobic utilization of lactate. J Bacteriol 186:2046–2051. [PubMed][CrossRef]
125. Semchyshyn H, Bagnyukova T, Storey K, Lushhak V. 2005. Hydrogen peroxide increases the activities of soxRS regulon enzymes and the levels of oxidized proteins and lipids in Escherichia coli. Cell Biol Int 29:898–902. [PubMed][CrossRef]
126. Henle ES, Han Z, Tang N, Rai P, Luo Y, Linn S. 1999. Sequence-specific DNA cleavage by Fe 2+-mediated Fenton reactions has possible biological implications. J Biol Chem 274:962–971. [PubMed][CrossRef]
127. Neilands JB. 1993. Siderophores. Arch Biochem Biophys 302:1–3. [PubMed][CrossRef]
128. Ma M, Eaton JW. 1992. Multicellular oxidant defense in unicellular organisms. Proc Natl Acad Sci USA 89:7924–7928. [PubMed][CrossRef]
129. Segal AW. 2005. How neutrophils kill microbes. Annu Rev Immunol 23:197–223. [PubMed][CrossRef]
130. Bjelland S, Seeberg E. 2003. Mutagenicity, toxicity and repair of DNA base damage induced by oxidation. Mutat Res 531:37–80.[PubMed]
131. Patten CL, Kirchhof MG, Schertzberg MR, Morton RA, Schellhorn HE. 2004. Microarray analysis of RpoS-mediated gene expression in Escherichia coli K-12. Mol Gen Genet 272:580–591.
132. Chou JH, Greenberg JT, Demple B. 1993. Posttranscriptional repression of Escherichia coli OmpF protein in response to redox stress. Positive control of the micF antisense RNA by the soxRS locus. J Bacteriol 175:1026–1031.[PubMed]
133. Zhao G, Ceci P, Ilari A, Giangiacomo L, Laue TM, Chiancone E, Chasteen ND. 2002. Iron and hydrogen peroxide detoxification properties of DNA-binding protein from starved cells. A ferritin-like DNA-binding protein of Escherichia coli. J Biol Chem 277:27689–27696. [PubMed][CrossRef]
134. Justino MC, Almeida CC, Teixeira M, Saraiva LM. 2007. Escherichia coli di-iron YtfE protein is necessary for the repair of stress-damaged iron-sulfur clusters. J Biol Chem 282:10352–10359. [PubMed][CrossRef]
135. Chang EC, Kosman DJ. 1990. O 2-dependent methionine auxotrophy in Cu,Zn superoxide dismutase-deficient mutants of Saccharomyces cerevisiae. J Bacteriol 172:1840–1845.[PubMed]
136. Lauble H, Kennedy MC, Beinert H, Stout CD. 1992. Crystal structures of aconitase with isocitrate and nitroisocitrate bound. Biochemistry 31:2735–2748. [PubMed][CrossRef]
137. Zhang A, Altuvia S, Tiwari A, Argaman L, Hengge-Aronis R, Storz G. 1998. The OxyS regulatory RNA represses rpoS translation and binds the Hfq (HF-I) protein. EMBO J 17:6061–6068. [PubMed][CrossRef]
138. Zheng M, Storz F Åslund G. 1998. Activation of the OxyR transcription factor by reversible disulfide bond formation. Science 279:1718–1721. [PubMed][CrossRef]
139. Zheng M, Doan B, Schneider TD, Storz G. 1999. OxyR and SoxRS regulation of fur. J Bacteriol 181:4639–4643.[PubMed]
140. Zheng M, Wang X, Templeton LJ, Smulski DR, LaRossa RA, Storz G. 2001. DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide. J Bacteriol 183:4562–4570. [PubMed][CrossRef]
141. Taylor PD, Inchley CJ, Gallagher MP. 1998. The Salmonella typhimurium AhpC polypeptide is not essential for virulence in BALB/c mice but is recognized as an antigen during infection. Infect Immun 66:3208–3217.[PubMed]
142. Shah IM, Wolf RE Jr. 2006. Inhibition of Lon-dependent degradation of the Escherichia coli transcription activator SoxS by interaction with “soxbox” DNA or RNA polymerase. Mol Microbiol 60:199–208. [PubMed][CrossRef]
143. Bedekovics T, Gajdos GB, Kispal G, Isaya G. 2007. Partial conservation of functions between eukaryotic frataxin and the Escherichia coli frataxin homolog CyaY. FEMS Yeast Res 7:1276–1284. [PubMed][CrossRef]
144. Pomposiello PJ, Bennik MH, Demple B. 2001. Genome-wide transcriptional profiling of the Escherichia coli responses to superoxide stress and sodium salicylate. J Bacteriol 183:3890–3902. [PubMed][CrossRef]
145. Buchmeier NA, Libby SJ, Xu Y, Loewen PC, Switala J, Guiney DG, Fang FC. 1995. DNA repair is more important than catalase for Salmonella virulence in mice. J Clin. Investig. 95:1047–1053. [PubMed][CrossRef]
146. Bull C, Fee JA. 1985. Steady-state kinetic studies of superoxide dismutases: properties of the iron-containing protein of Escherichia coli. J Am Chem Soc 107:3295–3304. [CrossRef]
147. Imlay JA, Linn S. 1987. Mutagenesis and stress responses induced in Escherichia coli by hydrogen peroxide. J Bacteriol 169:2967–2976.[PubMed]
148. Collins EB, Aramaki K. 1980. Production of hydrogen peroxide by Lactobacillus acidophilus. J Dairy Sci 63:353–357.[PubMed]
149. Martin RG, Gillette WK, Martin NI, Rosner JL. 2002. Complex formation between activator and RNA polymerase as the basis for transcriptional activation by MarA and SoxS in Escherichia coli. Mol Microbiol 43:355–370. [PubMed][CrossRef]
150. Hassan HM, Fridovich I. 1977. Regulation of the synthesis of superoxide dismutase in Escherichia coli. Induction by methyl viologen. J Biol Chem 252:7667–7672.[PubMed]
151. Jordan PA, Tang Y, Bradbury AJ, Thomson AJ, Guest JR. 1999. Biochemical and spectroscopic characterization of Escherichia coli aconitases (AcnA and AcnB). Biochem J 344:739–746. [PubMed][CrossRef]
152. Tchou J, Kasai H, Chung MH, Laval J, Grollman AP, Nishimura S. 1991. 8-oxoguanine (8-hydroxyguanine) DNA glycosylase and its substrate specificity. Proc Natl Acad Sci USA 88:4690–4694. [PubMed][CrossRef]
153. Imlay JA, Chin SM, Linn S. 1988. Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science 240:640–642. [PubMed][CrossRef]
154. Cunningham L, Gruer MJ, Guest JR. 1997. Transcriptional regulation of the aconitase genes ( acnA and acnB) of Escherichia coli. Microbiology 143:3795–3805. [PubMed][CrossRef]
155. Korshunov SS, Imlay JA. 2002. A potential role for periplasmic superoxide dismutase in blocking the penetration of external superoxide into the cytosol of phagocytosed bacteria. Mol Microbiol 43:95–106. [PubMed][CrossRef]
156. Craig M, Slauch JM. 2009. Phagocytic superoxide specifically damages an extracytoplasmic target to inhibit or kill Salmonella. PLoS ONE 4:e4975. [PubMed][CrossRef]
157. Lynch RE, Fridovich I. 1978. Permeation of the erythrocyte stroma by superoxide radical. J Biol Chem 253:4697–4699.[PubMed]
158. Sanchez RJ, Srinivasan C, Munroe WH, Wallace MA, Martins J, Kao TY, Le K, Gralla EB, Valentine JS. 2005. Exogenous manganous ion at millimolar levels rescues all known dioxygen-sensitive phenotypes of yeast lacking CuZnSOD. J Biol Inorg Chem 10:912–923. [CrossRef]
159. Inaoka T, Matsumura Y, Tsuchido T. 1999. SodA and manganese are essential for resistance to oxidative stress in growing and sporulating cells of Bacillus subtilis. J Bacteriol 181:1939–1943.[PubMed]
160. Park S, Imlay JA. 2003. High levels of intracellular cysteine promote oxidative DNA damage by driving the Fenton reaction. J Bacteriol 185:1942–1950. [PubMed][CrossRef]
161. Peskin AV, Low FM, Paton LN, Maghzal GJ, Hampton MB, Winterbourn CC. 2007. The high reactivity of peroxiredoxin 2 with H 2O 2 is not reflected in its reaction with other oxidants and thiol reagents. J Biol Chem 282:11885–11892. [PubMed][CrossRef]
162. Cha M-K, Kim H-K, Kim I-H. 1996. Mutation and mutagenesis of thiol peroxidase of Escherichia coli and a new type of thiol peroxidase family. J Bacteriol 178:5610–5614.[PubMed]
163. Lee JW, Helmann JD. 2006. The PerR transcription factor senses H 2O 2 by metal-catalyzed histidine oxidation. Nature 440:363–367. [PubMed][CrossRef]
164. Hidalgo E, Ding H, Demple B. 1997. Redox signal transduction: Mutations shifting [2Fe-2S] clusters of the SoxR sensor-regulator to the oxidized form. Cell 88:121–129. [PubMed][CrossRef]
165. Imlay KRC, Imlay J. 1996. Cloning and analysis of sodC, encoding the copper-zinc superoxide dismutase of Escherichia coli. J Bacteriol 178:2564–2571.[PubMed]
166. Park S, You X, Imlay JA. 2005. Substantial DNA damage from submicromolar intracellular hydrogen peroxide detected in Hpx mutants of Escherichia coli. Proc Natl Acad Sci USA 102:9317–9322. [PubMed][CrossRef]
167. Ceci P, Cellai S, Falvo E, Rivette C, Rossi GL, Chiancone E. 2004. DNA condensation and self-aggregation of Escherichia coli Dps are coupled phenomena related to the properties of the N-terminus. Nucleic Acids Res 32:5935–5944. [PubMed][CrossRef]
168. Janakiraman A, Slauch JM. 2000. The putative iron transport system SitABCD encoded on SPI1 is required for full virulence of Salmonella typhimurium. Mol Microbiol 35:1146–1155. [PubMed][CrossRef]
169. Rai P, Cole TD, Wemmer DE, Linn S. 2001. Localization of Fe(2+) at an RTGR sequence within a DNA duplex explains preferential cleavage by Fe(2+) and H 2O 2. J Mol Biol 312:1089–1101. [PubMed][CrossRef]
170. Choi H, Kim S, Mukhopadhyay P, Cho S, Woo J, Storz G, Ryu S. 2001. Structural basis of the redox switch in the OxyR transcription factor. Cell 105:103–113. [PubMed][CrossRef]
171. Lu J, Yang J, Tan G, Ding H. 2008. Complementary roles of SufA and IscA in the biogenesis of iron-sulfur clusters in Escherichia coli. Biochem J 409:535–543. [PubMed][CrossRef]
172. Wagner AF, Frey M, Neugebauer FA, Schafer W, Knappe J. 1992. The free radical in pyruvate formate-lyase is located on glycine-734. Proc Natl Acad Sci USA 89:996–1000. [PubMed][CrossRef]
173. Frenkiel-Krispin D, Ben-Avraham I, Englander J, Shimoni E, Wolf SG, Minsky A. 2004. Nucleoid restructuring in stationary-state bacteria. Mol Microbiol 51:395–405. [PubMed][CrossRef]
174. Hiniker A, Collet JF, Bardwell JC. 2005. Copper stress causes an in vivo requirement for the Escherichia coli disulfide isomerase DsbC. J Biol Chem 280:33785–33791. [PubMed][CrossRef]
175. Leichert LI, Jakob U. 2004. Protein thiol modifications visualized in vivo. PLoS Biol 2:1723–1737. [CrossRef]
176. Dizdaroglu M, Rao G, Halliwell B, Gajewski E. 1991. Damage to the DNA bases in mammalian chromatin by hydrogen peroxide in the presence of ferric and cupric ions. Arch Biochem Biophys 285:317–324. [PubMed][CrossRef]
177. Kessler D, Herth W, Knappe J. 1992. Ultrastructure and pyruvate formate-lyase radical quenching property of the multienzymic AdhE protein of Escherichia coli. J Biol Chem 267:18073–18079.[PubMed]
178. Johnson JR, Clabots C, Rosen H. 2006. Effect of inactivation of the global oxidative stress regulator OxyR on the colonization ability of Escherichia coli O1:K1:H7 in a mouse model of ascending urinary tract infection. Infect Immun 74:461–468. [PubMed][CrossRef]
179. Angelini S, Gerez C, Ollagnier-de-Choudens S, Sanakis Y, Fontecave M, Barras F, Py B. 2008. NfuA, a new factor required for maturing Fe/S proteins in Escherichia coli under oxidative stress and iron starvation conditions. J Biol Chem 283:14084–14091. [PubMed][CrossRef]
180. Gort AS, Ferber DM, Imlay JA. 1999. The regulation and role of the periplasmic copper,zinc superoxide dismutase of Escherichia coli. Mol Microbiol 32:179–191. [PubMed][CrossRef]
181. Compan I, Touati D. 1993. Interaction of six global transcription regulators in expression of manganese superoxide dismutase in Escherichia coli K-12. J Bacteriol 175:1687–1696.[PubMed]
182. Nunoshiba T, Derojaswalker T, Wishnok JS, Tannenbaum SR, Demple B. 1993. Activation by nitric oxide of an oxidative stress response that defends Escherichia coli against activated macrophages. Proc Natl Acad Sci USA 90:9993–9997. [PubMed][CrossRef]
183. Bader MW, Sanowar S, Daley ME, Schneider AR, Cho U, Xu W, Klevit RE, Le Moual H, Miller SI. 2005. Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell 122:461–472. [PubMed][CrossRef]
184. Jiang D, Hatahet Z, Blaisdell JO, Melamede RJ, Wallace SS. 1997. Escherichia coli endonuclease VIII: cloning, sequencing, and overexpression of the nei structural gene and characterization of nei and nei nth mutants. J Bacteriol 179:3773–3782.[PubMed]
185. Liochev SI, Fridovich I. 1994. The role of O 2 in the production of HO .: in vitro and in vivo. Free Rad Biol Med 16:29–33. [PubMed][CrossRef]
186. Sawyer DT, Valentine JS. 1981. How super is superoxide? Acc. Chem Res 14:393–400. [CrossRef]
187. Tang Y, Guest JR. 1999. Direct evidence for mRNA binding and post-transcriptional regulation by Escherichia coli aconitases. Microbiology 145:3069–3079.[PubMed]
188. Schellhorn HE, Hassan HM. 1988. Response of hydroperoxidase and superoxide dismutase deficient mutants of Escherichia coli K-12 to oxidative stress. Can J Microbiol 34:1171–1176.[PubMed]
189. Spellerberg B, Cundell DR, Sandros J, Pearce BJ, Idanpaan-Heikkila I, Rosenow C, Masure HR. 1996. Pyruvate oxidase, as a determinant of virulence in Streptococcus pneumoniae. Mol Microbiol 19:803–813. [PubMed][CrossRef]
190. Okado-Matsumoto A, Fridovich I. 2000. The role of α,β-dicarbonyl compounds in the toxicity of short chain sugars. J Biol Chem 275:34853–34857. [PubMed][CrossRef]
191. Winterbourn CC, Hampton MB, Livesey JH, Kettle AJ. 2006. Modeling the reactions of superoxide and myeloperoxidase in the neutrophil phagosome. Implications for microbial killing. J Biol Chem 281:39860–39869. [PubMed][CrossRef]
192. Le Moan N, Clement G, Maout SL, Tacnet F, Toledano MB. 2006. The Saccharomyces cerevisiae proteome of oxidize protein thiols. Contrasted functions for the thioredoxin and glutathione pathways. J Biol Chem 281:10420–10430. [PubMed][CrossRef]
193. Morimyo M. 1982. Anaerobic incubation enhances the colony formation of a polA recB strain of Escherichia coli K-12. J Bacteriol 152:208–214.[PubMed]
194. Grimaud R, Ezraty B, Mitchell JK, Lafitte D, Briand C, Derrick PJ, Barras F. 2001. Repair of oxidized proteins. Identification of a new methionine sulfoxide reductase. J Biol Chem 276:48915–48920. [PubMed][CrossRef]
195. Johnson D, Dean DR, Smith AD, Johnson MK. 2005. Structure, function, and formation of biological iron-sulfur clusters. Annu. Rev. Biochem. 74:247–281. [PubMed][CrossRef]
196. Tseng HJ, Srikhanta Y, McEwan AG, Jennings MP. 2001. Accumulation of manganese in Neisseria gonorrhoeae correlates with resistance to oxidative killing by superoxide anion and is independent of superoxide dismutase activity. Mol Microbiol 40:1175–1186. [PubMed][CrossRef]
197. Flint DH, Emptage MH. 1990. Dihydroxyacid dehydratase: isolation, characterization as Fe-S proteins, and sensitivity to inactivation by oxygen radicals, p 285–314. In Barak Z, Chipman D, and Schloss JV (ed), Biosynthesis of Branched Chain Amino Acids. VCH Publishers, New York, NY.
198. Takahashi Y, Tokumoto U. 2002. A third bacterial system for the assembly of iron-sulfur clusters with homologs in archaea and plastids. J Biol Chem 277:28380–28383. [PubMed][CrossRef]
199. Naqui A, Chance B. 1986. Reactive oxygen intermediates in biochemistry. Annu Rev Biochem 55:137–166. [PubMed][CrossRef]
200. Zhang A, Wassarman KM, Rosenow C, Tiaden BC, Storz G, Gottesman S. 2003. Global analysis of small RNA and mRNA targets of Hfq. Mol. Microbiol. 50:1111–1124. [PubMed][CrossRef]
201. Tsaneva IR, Weiss B. 1990. soxR, a locus governing a superoxide response regulon in Escherichia coli K-12. J Bacteriol 172:4197–4205.[PubMed]
202. Barras F, Loiseau L, Py B. 2005. How Escherichia coli and Saccharomyces cerevisiae build Fe/S proteins. Adv Microb Physiol 50:41–101. [PubMed][CrossRef]
203. Dietrich LEP, Price-Whelan A, Petersen A, Whiteley M, Newman DK. 2006. The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa. Mol Microbiol 61:1308–1321. [PubMed][CrossRef]
204. Gotz F, Sedewitz B, Elstner EF. 1980. Oxygen utilization by Lactobacillus plantarum. I Oxygen consuming reactions. Arch Microbiol 125:209–214. [PubMed][CrossRef]
205. Liochev SI, Benov L, Touati D, Fridovich I. 1999. Induction of the soxRS regulon of Escherichia coli by superoxide. J Biol Chem 274:9479–9481. [PubMed][CrossRef]
206. Varghese SM, Tang Y, Imlay JA. 2003. Contrasting sensitivities of Escherichia coli aconitases A and B to oxidation and iron depletion. J Bacteriol 185:221–230. [PubMed][CrossRef]
207. Varghese S, Wu A, Park S, Imlay KRC, Imlay JA. 2007. Submicromolar hydrogen peroxide disrupts the ability of Fur protein to control free-iron levels in Escherichia coli. Mol Microbiol 64:822–830. [PubMed][CrossRef]
208. Gralnick J, Downs D. 2001. Protection from superoxide damage associated with an increased level of the YggX protein in Salmonella enterica. Proc Natl Acad Sci USA 98:8030–8035. [PubMed][CrossRef]
209. Horsburgh MJ, Wharton SJ, Karavolos M, Foster SJ. 2002. Manganese: elemental defence for a life with oxygen? Trends Microbiol. 10:496–501. [PubMed][CrossRef]
210. Altuvia S, Almiron M, Huisman G, Kolter R, Storz G. 1994. The dps promoter is activated by OxyR during growth and by IHF and sigma S in stationary phase. Mol Microbiol 13:265–272. [PubMed][CrossRef]
211. Zaharik ML, Culen VL, Fung AM, Libby SJ, Choy SLK, Coburn B, Kehres DG, Maguire ME, Fang FC, Finlay BB. 2004. The Salmonella enterica Serovar Typhimurium divalent cation transport systems MntH and SitABCD are essential for virulence in an Nramp1 G169 murine typhoid model. Infect Immun 72:5522–5525. [PubMed][CrossRef]
212. Macomber L, Imlay JA. 2009. The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc Natl Acad Sci USA 106:8344–8349. [PubMed][CrossRef]
213. Almiron M, Link AJ, Furlong D, Kolter R. 1992. A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli. Genes Dev 6:2646–2654. [PubMed][CrossRef]
214. Fowler RG, Schaaper RM. 1997. The role of the mutT gene of Escherichia coli in maintaining replication fidelity. FEMS Microbiol Rev 21:43–54. [PubMed][CrossRef]
215. Carlioz A, Touati D. 1986. Isolation of superoxide dismutase mutants in Escherichia coli: is superoxide dismutase necessary for aerobic life? EMBO J 5:623–630.[PubMed]
216. Hassett DJ, Charniga L, Bean K, Ohman DE, Cohen MS. 1992. Response of Pseudomonas aeruginosa to pyocyanin: mechanisms of resistance, antioxidant defenses, and demonstration of a manganese-cofactored superoxide dismutase. Infect Immun 60:328–336.[PubMed]
217. Bielski BHJ, Arudi RL, Sutherland MW. 1983. A study of the reactivity of HO 2/O 2 with unsaturated fatty acids. J Biol Chem 258:4759–4761.[PubMed]
218. Ding H, Yang J, Coleman LC, Yeung S. 2007. Distinct iron binding property of two putative iron donors for the iron-sulfur cluster assembly: IscA and the bacterial frataxin ortholog CyaY under physiological and oxidative stress conditions. J Biol Chem 282:7997–8004. [PubMed][CrossRef]
219. Velayudhan J, Castor M, Richardson A, Main-Hester KL, Fang FC. 2007. The role of ferritins in the physiology of Salmonella enterica sv. Typhimurium: a unique role for ferritin B in iron-sulphur cluster repair and virulence. Mol Microbiol 63:1495–1507. [PubMed][CrossRef]
220. Jang S, Imlay JA. 2007. Micromolar intracellular hydrogen peroxide disrupts metabolism by damaging iron-sulfur enzymes. J Biol Chem 282:929–937. [PubMed][CrossRef]
221. Roos D, van Bruggen R, Meischl C. 2003. Oxidative killing of microbes by neutrophils. Microbes Infect 5:1307–1315. [PubMed][CrossRef]
222. Hofmann B, Hecht H-J, Flohe L. 2002. Peroxiredoxins. Biol Chem 383:347–364. [PubMed][CrossRef]
223. Tamarit J, Cabiscol E, Ros J. 1998. Identification of the major oxidatively damaged proteins in Escherichia coli cells exposed to oxidative stress. J Biol Chem 273:3027–3032. [PubMed][CrossRef]
224. Mastroeni P, Vazquez-Torres A, Fang FC, Xu Y, Khan S, Hormaeche CE, Dougan G. 2000. Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. II Effects on microbial proliferation and host survival in vivo. J Exp Med 192:237–248. [PubMed][CrossRef]
225. Flint DH, Tuminello JF, Emptage MH. 1993. The inactivation of Fe-S cluster containing hydro-lyases by superoxide. J Biol Chem 268:22369–22376.[PubMed]
226. Delihas N, Forst S. 2001. MicF: an antisense RNA gene involved in response of Escherichia coli to global stress factors. J Mol Biol 313:1–12. [PubMed][CrossRef]
227. DeGroote MA, Ochsner UA, Shiloh MU, Nathan C, McCord JM, Dinauer MC, Libby SJ, Vazquez-Torres A, Xu Y, Fang FC. 1997. Periplasmic superoxide dismutase protects Salmonella from products of phagocyte NADPH-oxidase and nitric oxide synthase. Proc Natl Acad Sci USA 94:13997–14001. [PubMed][CrossRef]
228. Culotta VC, Yang M, O'Halloran TV. 2006. Activation of superoxide dismutases: putting the metal to the pedal. Biochim Biophys Acta 1763:747–758. [PubMed][CrossRef]
229. Ilari A, Ceci P, Ferrari D, Rossi G, Chiancone E. 2002. Iron incorporation into Escherichia coli Dps gives rise to a ferritin-like microcrystalline core. J Biol Chem 277:37619–37623. [PubMed][CrossRef]
230. Moskovitz J, Rahman MA, Strassman J, Yancey SO, Kushner SR, Brot N, Weissbach H. 1995. Escherichia coli peptide methionine sulfoxide reductase gene: regulation of expression and role in protecting against oxidative damage. J Bacteriol 177:502–507.[PubMed]
231. Altuvia S, Weinstein-Fischer D, Zhang A, Postow L, Storz G. 1997. A small, stable RNA induced by oxidative stress: role as a pleiotropic regulator and antimutator. Cell 90:43–53. [PubMed][CrossRef]
232. Golubeva YA, Slauch JM. 2006. Salmonella enterica serovar Typhimurium periplasmic superoxide dismutase SodC1 is a member of the PhoPQ regulon and is induced in macrophages. J Bacteriol 188:7853–7861. [PubMed][CrossRef]
233. Runyen-Janecky L, Dazenski E, Hawkins S, Warner L. 2006. Role and regulation of the Shigella flexneri Sit and MntH systems. Infect Immun 74:4666–4672. [PubMed][CrossRef]
234. Gaudu P, Moon N, Weiss B. 1997. Regulation of the soxRS oxidative stress regulon. Reversible oxidation of the Fe-S center of SoxR in vivo. J Biol Chem 272:5082–5086. [PubMed][CrossRef]
235. Cha MK, Kim W, Lim CJ, Kim K, Kim IH. 2004. Escherichia coli periplasmic thiol peroxidase acts as lipid hydroperoxide peroxidase and the principal antioxidative function during anaerobic growth. J Biol Chem 279:8769–8778. [PubMed][CrossRef]
236. Dukan S, Nystrom T. 1999. Oxidative stress defense and deterioration of growth-arrested Escherichia coli cells. J Biol Chem 274:26027–26032. [PubMed][CrossRef]
237. Kuo CF, Mashino T, Fridovich I. 1987. α,β-dihydroxyisovalerate dehydratase: a superoxide-sensitive enzyme. J Biol Chem 262:4724–4727.[PubMed]
238. Flint DH, Allen RM. 1996. Iron-sulfur proteins with nonredox functions. Chem Rev 96:2315–2334. [PubMed][CrossRef]
239. Greenberg JT, Monach P, Chou JH, Josephy PD, Demple B. 1990. Positive control of a global antioxidant defense regulon activated by superoxide-generating agents in Escherichia coli. Proc Natl Acad Sci USA 87:6181–6185. [PubMed][CrossRef]
240. Messner KR, Imlay JA. 2002. Mechanism of superoxide and hydrogen peroxide formation by fumarate reductase, succinate dehydrogenase, and aspartate oxidase. J Biol Chem 277:42563–42571. [PubMed][CrossRef]
241. Eriksson S, Lucchini S, Thompson A, Rhen M, Hinton JCD. 2003. Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. Mol Microbiol 47:103–118. [PubMed][CrossRef]
242. Al-Maghrebi M, Fridovich I, Benov L. 2002. Manganese supplementation relieves the phenotypic deficits seen in superoxide-dismutase-null Escherichia coli. Arch Biochem Biophys 402:104–109. [PubMed][CrossRef]
243. Anjem A, Varghese S, Imlay JA. 2009. Manganese import is a key element of the OxyR response to hydrogen peroxide in Escherichia coli. Mol Microbiol 72:844–858. [PubMed][CrossRef]
244. Chan E, Weiss B. 1987. Endonuclease IV of Escherichia coli is induced by paraquat. Proc. Natl. Acad. Sci. USA 84:3189–3193. [PubMed][CrossRef]
245. Cunningham RP, Saporito SM, Spitzer SG, Weiss B. 1986. Endonuclease IV ( nfo) mutant of Escherichia coli. J Bacteriol 168:1120–1127.[PubMed]
246. Hoiseth SK, Stocker BAD. 1981. Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature 291:238–239. [PubMed][CrossRef]
247. Imlay JA, Fridovich I. 1991. Assay of metabolic superoxide production in Escherichia coli. J Biol Chem 266:6957–6965.[PubMed]
248. Pomposiello PJ, Demple B. 2000. Identification of SoxS-regulated genes in Salmonella enterica serovar typhimurium. J Bacteriol 182:23–29. [PubMed][CrossRef]
249. Ritz D, Beckwith J. 2001. Roles of thiol-redox pathways in bacteria. Annu Rev Biochem 55:21–48.
250. Rush JD, Maskos Z, Koppenol WH. 1990. Reactions of Fe(II) nucleotide complexes with H 2O 2. FEBS Lett 261:121–123. [CrossRef]
251. Touati D. 1988. Transcriptional and post-transcriptional regulation of MnSOD biosynthesis in Escherichia coli: a study using operon and protein fusions. J Bacteriol 170:2511–2520.[PubMed]
252. Benov LT, Fridovich I. 1994. Escherichia coli expresses a copper- and zinc-containing superoxide dismutase. J Biol Chem 269:25310–25314.[PubMed]
253. Grant RA, Filman DJ, Finkel SE, Kolter R, Hogle JM. 1998. The crystal structure of Dps, a ferritin homolog that binds and protects DNA. Nat Struct Biol 5:294–303. [PubMed][CrossRef]
254. Hondorp ER, Matthews RG. 2004. Oxidative stress inactivates cobalamin-independent methionine synthase (MetE) in Escherichia coli. PLoS Biol 2:e336. [PubMed][CrossRef]
255. Cui Q, Thorgersen MP, Westler WM, Markley JL, Downs DM. 2006. Solution structure of YggX: a prokaryotic protein involved in Fe(II) trafficking. Proteins 62:578–586. [PubMed][CrossRef]
256. Park W, Pena-Llopis S, Lee Y, Demple B. 2006. Regulation of superoxide stress in Pseudomonas putida KT2440 is different from the SoxR paradigm in Escherichia coli. Biochem Biophys Res Commun 341:51–56. [PubMed][CrossRef]
257. Vivas E, Skovran E, Downs DM. 2006. Salmonella enterica strains lacking the frataxin homolog CyaY show defects in Fe-S cluster metabolism in vivo. J Bacteriol 188:1175–1179. [PubMed][CrossRef]
258. Yeo WS, Lee JH, Lee KC, Roe JH. 2006. IscR acts as an activator in response to oxidative stress for the suf operon encoding Fe-S assembly proteins. Mol. Microbiol. 61:206–218. [PubMed][CrossRef]
259. Hassan HM, Sun H-CH. 1992. Regulatory roles of Fnr, Fur, and Arc in expression of manganese-containing superoxide dismutase in Escherichia coli. Proc Natl Acad Sci USA 89:3217–3221. [PubMed][CrossRef]
260. Richter HE, Loewen PC. 1981. Induction of catalase in Escherichia coli by ascorbic acid involves hydrogen peroxide. Biochem Biophys Res Commun 100:1039–1046. [PubMed][CrossRef]
261. Jeong W, Cha M-K, Kim I-H. 2000. Thioredoxin-dependent hydroperoxide peroxidase activity of bacterioferritin comigratory protein (BCP) as a new member of the thiol-specific antioxidant protein (TSA)/alkyl hydroperoxide peroxidase C (AhpC) family. J Biol Chem 275:2924–2930. [PubMed][CrossRef]
262. White DG, Goldman JD, Demple B, Levy SB. 1997. Role of the acrAB locus in organic solvent tolerance mediated by expression of marA, soxS, or robA in Escherichia coli. J Bacteriol 179:6122–6126.[PubMed]
263. Uzzau S, Bossi L, Figueroa-Bossi N. 2002. Differential accumulation of Salmonella [Cu, Zn] superoxide dismutases SodCI and SodCII in intracellular bacteria: correlation with their relative contribution to pathogenicity. Mol Microbiol 46:147–156. [PubMed][CrossRef]
264. Gonzalez-Flecha B, Demple B. 1997. Homeostatic regulation of intracellular hydrogen peroxide concentration in aerobically growing Escherichia coli. J Bacteriol 179:382–388.[PubMed]
265. Massè, E, Gottesman S. 2002. A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc Natl Acad Sci USA 99:4620–4625. [PubMed][CrossRef]
266. Gunther MR, Hanna PM, Mason RP, Cohen MS. 1995. Hydroxyl radical formation from cuprous ion and hydrogen peroxide: a spin-trapping study. Arch Biochem Biophys 316:515–522. [PubMed][CrossRef]
267. Brown OR. 1990. Mechanisms of hyperbaric-oxygen inhibition of growth and net biosynthesis of RNA, DNA, protein and lipids in Escherichia coli. Microbios 64:135–151.[PubMed]
268. Candeias LP, Steenken S. 1993. Electron transfer in di(deoxy)nucleoside phosphates in aqueous solution. Rapid migration of oxidative damage (via adenine) to guanine. J Am. Chem. Soc. 115:2437–2440. [CrossRef]
269. Takanishi CL, Ma L-H, Wood MJ. 2007. A genetically encoded probe for cysteine sulfenic acid protein modification in vivo. Biochemistry 46:14725–14732. [PubMed][CrossRef]
270. Fredriksson A, Ballesteros M, Kukan S, Nystrom T. 2005. Defense against protein carbonylation by DnaK/DnaJ and proteases of the heat shock regulon. J Bacteriol 187:4207–4213. [PubMed][CrossRef]
271. Buchmeier NA, Lipps CJ, So MY, Heffron F. 1993. Recombination-deficient mutants of Salmonella typhimurium are avirulent and sensitive to the oxidative burst of macrophages. Mol Microbiol 7:933–936. [PubMed][CrossRef]
272. Eiamphungporn W, Charoenlap N, Vattanaviboon P, Mongkolsuk S. 2006. Agrobacterium tumefaciens soxR is involved in superoxide stress protection and also directly regulates superoxide-inducible expression of itself and a target gene. J Bacteriol 188:8669–8673. [PubMed][CrossRef]
273. Hofmeister AE, Albracht SP, Buckel W. 1994. Iron-sulfur cluster-containing L-serine dehydratase from Peptostreptococcus asaccharolyticus: correlation of the cluster type with enzymatic activity. FEBS Lett 351:416–418. [PubMed][CrossRef]
274. Jiang Q, Griffin DA, Barofsky DF, Hurst JK. 1997. Intraphagosomal chlorination dynamics and yields determined using unique fluorescent bacterial mimics. Chem Res Toxicol 10:1080–1089. [PubMed][CrossRef]
275. Boehme DE, Vincent K, Brown OR. 1976. Oxygen and toxicity: inhibition of amino acid biosynthesis. Nature 262:418–420. [PubMed][CrossRef]
276. Jacobson FS, Morgan RW, Christman MF, Ames BN. 1989. An alkyl hydroperoxide reductase from Salmonella typhimurium involved in the defense of DNA against oxidative damage. Purification and properties. J Biol Chem 264:1488–1496.[PubMed]
277. Yandovskaya V, Horsefield R, Tomroth S, Luna-Chavez C, Miyoshi H, Leger C, Byrne B, Cecchini G, Iwata S. 2003. Architecture of succinate dehydrogenase and reactive oxygen species generation. Science 299:700–704. [PubMed][CrossRef]
278. Gralnick JA, Downs DM. 2003. The YggX protein of Salmonella enterica is involved in Fe(II) trafficking and minimizes the DNA damage caused by hydroxyl radicals: residue CYS-7 is essential for YggX function. J Biol Chem 278:20708–20715. [PubMed][CrossRef]
279. Eswaran J, Koronakis E, Higgins MK, Hughes C, Koronakis V. 2004. Three's company: component structures bring a closer view of tripartite drug efflux pumps. Curr Opin Struct Biol 14:741–747. [PubMed][CrossRef]
280. Farrant JL, Sansone A, Canvin JR, Pallen MJ, Langford PR, Wallis TS, Dougan G, Kroll JS. 1997. Bacterial copper- and zinc-cofactored superoxide dismutase contributes to the pathogenesis of systemic salmonellosis. Mol Microbiol 25:785–796. [PubMed][CrossRef]
281. Geary LE, Meister A. 1977. On the mechanism of glutamine-dependent reductive amination of α-ketoglutarate catalyzed by glutamate synthase. J Biol Chem 252:3501–3508.[PubMed]
282. Touati D, Jacques M, Tardat B, Bouchard L, Despied S. 1995. Lethal oxidative damage and mutagenesis are generated by iron in Δ fur mutants of Escherichia coli: protective role of superoxide dismutase. J Bacteriol 177:2305–2314.[PubMed]
283. Åslund F, Zheng M, Beckwith J, Storz G. 1999. Regulation of the OxyR transcriptional factor by hydrogen peroxide and the cellular thiol-disulfide status. Proc Natl Acad Sci USA 96:6161–6165. [PubMed][CrossRef]
284. Ammendola S, Pasquali P, Paello F, Rotilio G, Castor M, Libby SJ, Figueroa-Bossi N, Bossi L, Fang FC, Battistoni A. 2008. Regulatory and structural differences in the Cu,Zn-superoxide dismutases of Salmonella enterica and their significance for virulence. J Biol Chem 283:13688–13699. [PubMed][CrossRef]
285. Davies MJ. 2005. The oxidative environment and protein damage. Biochim Biophys Acta 1703:93–109.[PubMed]
286. Fang FC, DeGroote MA, Foster JW, Baumler AJ, Ochsner U, Testerman T, Bearson S, Giard JC, Xu Y, Campbell G, Laessig T. 1999. Virulent Salmonella typhimurium has two periplasmic Cu, Zn- superoxide dismutases. Proc Natl Acad Sci USA 96:7502–7507. [PubMed][CrossRef]
287. Kredich NM. 1992. The molecular basis for positive regulation of cys promoters in Salmonella typhimurium and Escherichia coli. Mol Microbiol 6:2747–2753. [PubMed][CrossRef]
288. Seaver LC, Imlay JA. 2001. Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli. J Bacteriol 183:7173–7181. [PubMed][CrossRef]
289. Sawers G, Watson G. 1998. A glycyl radical solution: oxygen-dependent interconversion of pyruvate formate-lyase. Mol Microbiol 29:945–954. [PubMed][CrossRef]

Article metrics loading...



The ancestors of and ultimately evolved to thrive in air-saturated liquids, in which oxygen levels reach 210 μM at 37°C. However, in 1976 Brown and colleagues reported that some sensitivity persists: growth defects still become apparent when hyperoxia is imposed on cultures of . This residual vulnerability was important in that it raised the prospect that normal levels of oxygen might also injure bacteria, albeit at reduced rates that are not overtly toxic. The intent of this article is both to describe the threat that molecular oxygen poses for bacteria and to detail what we currently understand about the strategies by which and defend themselves against it. mutants that lack either superoxide dismutases or catalases and peroxidases exhibit a variety of growth defects. These phenotypes constitute the best evidence that aerobic cells continually generate intracellular superoxide and hydrogen peroxide at potentially lethal doses. Superoxide has reduction potentials that allow it to serve in vitro as either a weak univalent reductant or a stronger univalent oxidant. The addition of micromolar hydrogen peroxide to lab media will immediately block the growth of most cells, and protracted exposure will result in the loss of viability. The need for inducible antioxidant systems seems especially obvious for enteric bacteria, which move quickly from the anaerobic gut to fully aerobic surface waters or even to ROS-perfused phagolysosomes. and have provided two paradigmatic models of oxidative-stress responses: the SoxRS and OxyR systems.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Comment has been disabled for this content
Submit comment
Comment moderation successfully completed


Image of Figure 1
Figure 1

Left to right: molecular oxygen, superoxide, hydrogen peroxide, the hydroxyl radical, and water. Reduction potentials are shown; the reduction potential for molecular oxygen considers the standard state to be 1 M. At the bottom, the relative cytoplasmic concentrations of molecular oxygen, superoxide, and hydrogen peroxide in unstressed aerobic are shown.

Citation: Imlay J. 2009. Oxidative Stress, EcoSal Plus 2009; doi:10.1128/ecosalplus.5.4.4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Citation: Imlay J. 2009. Oxidative Stress, EcoSal Plus 2009; doi:10.1128/ecosalplus.5.4.4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Citation: Imlay J. 2009. Oxidative Stress, EcoSal Plus 2009; doi:10.1128/ecosalplus.5.4.4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Based on Kona and Brinck ( 95 ).

Citation: Imlay J. 2009. Oxidative Stress, EcoSal Plus 2009; doi:10.1128/ecosalplus.5.4.4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

The identity of the initiating oxidant in reaction 1 is unknown. Propagation reaction 3 is possible only because of the stabilizing effect of resonance upon the radical product. Unlike the lipids in the figure, bacterial lipids are not polyunsaturated and therefore resist peroxidation.

Citation: Imlay J. 2009. Oxidative Stress, EcoSal Plus 2009; doi:10.1128/ecosalplus.5.4.4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Neither the identity of the oxidant nor that of the reductant is certain.

Citation: Imlay J. 2009. Oxidative Stress, EcoSal Plus 2009; doi:10.1128/ecosalplus.5.4.4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

HO inactivates the Isc cluster assembly system, degrades exposed iron-sulfur clusters, damages DNA, inactivates the Fur repressor, and oxidizes polypeptides of ferroproteins. Induced defenses (bracketed, dashed lines) include HO decomposition by Ahp and catalase, cluster assembly by the Suf system, iron sequestration by Dps, superinduction of Fur, and import of manganese by MntH. Disulfide bond formation, and re-reduction by glutaredoxin and/or thioredoxin, have been proposed but not yet demonstrated to occur at physiological doses of HO.

Citation: Imlay J. 2009. Oxidative Stress, EcoSal Plus 2009; doi:10.1128/ecosalplus.5.4.4
Permissions and Reprints Request Permissions
Download as Powerpoint


Generic image for table
Table 1

Selected members of the SoxRS regulon ( 112 , 113 )

Citation: Imlay J. 2009. Oxidative Stress, EcoSal Plus 2009; doi:10.1128/ecosalplus.5.4.4
Generic image for table
Table 2

Selected members of the OxyR regulon ( 133 , 134 )

Citation: Imlay J. 2009. Oxidative Stress, EcoSal Plus 2009; doi:10.1128/ecosalplus.5.4.4

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error