1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 3:

Metabolism

Knowns and Unknowns of Vitamin B Metabolism in

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • Authors: Angela Tramonti1,2, Caterina Nardella3, Martino L. di Salvo4, Anna Barile5,6, Federico D’Alessio7, Valérie de Crécy-Lagard8, and Roberto Contestabile9
  • Editor: Tyrrell Conway10
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Roma, Italy; 2: Istituto Pasteur Italia-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Università di Roma, Italy; 3: Istituto Pasteur Italia-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Università di Roma, Italy; 4: Istituto Pasteur Italia-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Università di Roma, Italy; 5: Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Roma, Italy; 6: Istituto Pasteur Italia-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Università di Roma, Italy; 7: Istituto Pasteur Italia-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Università di Roma, Italy; 8: Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, USA; Genetics Institute, University of Florida, Gainesville, FL 32611; 9: Istituto Pasteur Italia-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Università di Roma, Italy; 10: Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK
  • Received 11 January 2021 Accepted 16 February 2021 Published 01 April 2021
  • Address correspondence to Angela Tramonti, [email protected]; Roberto Contestabile, [email protected]
image of Knowns and Unknowns of Vitamin B<span class="jp-sub">6</span> Metabolism in <span class="jp-italic">Escherichia coli</span>
    Preview this reference work article:
    Zoom in
    Zoomout

    Knowns and Unknowns of Vitamin B Metabolism in , Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/9/2/ESP-0004-2021-1.gif /docserver/preview/fulltext/ecosalplus/9/2/ESP-0004-2021-2.gif
  • Abstract:

    Vitamin B is an ensemble of six interconvertible vitamers: pyridoxine (PN), pyridoxamine (PM), pyridoxal (PL), and their 5′-phosphate derivatives, PNP, PMP, and PLP. Pyridoxal 5′-phosphate is a coenzyme in a variety of enzyme reactions concerning transformations of amino and amino acid compounds. This review summarizes all known and putative PLP-binding proteins found in the MG1655 proteome. PLP can have toxic effects since it contains a very reactive aldehyde group at its 4′ position that easily forms aldimines with primary and secondary amines and reacts with thiols. Most PLP is bound either to the enzymes that use it as a cofactor or to PLP carrier proteins, protected from the cellular environment but at the same time readily transferable to PLP-dependent apoenzymes. and its relatives synthesize PLP through the seven-step deoxyxylulose-5-phosphate (DXP)-dependent pathway. Other bacteria synthesize PLP in a single step, through a so-called DXP-independent pathway. Although the DXP-dependent pathway was the first to be revealed, the discovery of the widespread DXP-independent pathway determined a decline of interest in vitamin B metabolism. In , as in most organisms, PLP can also be obtained from PL, PN, and PM, imported from the environment or recycled from protein turnover, via a salvage pathway. Our review deals with all aspects of vitamin B metabolism in , from transcriptional to posttranslational regulation. A critical interpretation of results is presented, in particular, concerning the most obscure aspects of PLP homeostasis and delivery to PLP-dependent enzymes.

  • Citation: Tramonti A, Nardella C, di Salvo M, Barile A, D’Alessio F, de Crécy-Lagard V, Contestabile R. 2021. Knowns and Unknowns of Vitamin B Metabolism in , EcoSal Plus 2021; doi:10.1128/ecosalplus.ESP-0004-2021

References

1. John RA. 1995. Pyridoxal phosphate-dependent enzymes. Biochim Biophys Acta 1248:81–96 http://dx.doi.org/10.1016/0167-4838(95)00025-P.
2. Percudani R, Peracchi A. 2003. A genomic overview of pyridoxal-phosphate-dependent enzymes. EMBO Rep 4:850–854 http://dx.doi.org/10.1038/sj.embor.embor914. [PubMed]
3. Ehrenshaft M, Bilski P, Li MY, Chignell CF, Daub ME. 1999. A highly conserved sequence is a novel gene involved in de novo vitamin B 6 biosynthesis. Proc Natl Acad Sci USA 96:9374–9378 http://dx.doi.org/10.1073/pnas.96.16.9374. [PubMed]
4. Matxain JM, Padro D, Ristilä M, Strid A, Eriksson LA. 2009. Evidence of high *OH radical quenching efficiency by vitamin B 6. J Phys Chem B 113:9629–9632 http://dx.doi.org/10.1021/jp903023c. [PubMed]
5. Tramonti A, Nardella C, di Salvo ML, Pascarella S, Contestabile R. 2018. The MocR-like transcription factors: pyridoxal 5′-phosphate-dependent regulators of bacterial metabolism. FEBS J 285:3925–3944 http://dx.doi.org/10.1111/febs.14599. [PubMed]
6. Bramucci E, Milano T, Pascarella S. 2011. Genomic distribution and heterogeneity of MocR-like transcriptional factors containing a domain belonging to the superfamily of the pyridoxal-5′-phosphate dependent enzymes of fold type I. Biochem Biophys Res Commun 415:88–93 http://dx.doi.org/10.1016/j.bbrc.2011.10.017. [PubMed]
7. Jochmann N, Götker S, Tauch A. 2011. Positive transcriptional control of the pyridoxal phosphate biosynthesis genes pdxST by the MocR-type regulator PdxR of Corynebacterium glutamicum ATCC 13032. Microbiol Read 157:77–88 http://dx.doi.org/10.1099/mic.0.044818-0.
8. El Qaidi S, Yang J, Zhang JR, Metzger DW, Bai G. 2013. The vitamin B 6 biosynthesis pathway in Streptococcus pneumoniae is controlled by pyridoxal 5′-phosphate and the transcription factor PdxR and has an impact on ear infection. J Bacteriol 195:2187–2196 http://dx.doi.org/10.1128/JB.00041-13. [PubMed]
9. Belitsky BR. 2014. Role of PdxR in the activation of vitamin B 6 biosynthesis in Listeria monocytogenes. Mol Microbiol 92:1113–1128 http://dx.doi.org/10.1111/mmi.12618. [PubMed]
10. Tramonti A, Fiascarelli A, Milano T, di Salvo ML, Nogués I, Pascarella S, Contestabile R. 2015. Molecular mechanism of PdxR: a transcriptional activator involved in the regulation of vitamin B 6 biosynthesis in the probiotic bacterium Bacillus clausii. FEBS J 282:2966–2984 http://dx.doi.org/10.1111/febs.13338. [PubMed]
11. Fitzpatrick TB, Amrhein N, Kappes B, Macheroux P, Tews I, Raschle T. 2007. Two independent routes of de novo vitamin B 6 biosynthesis: not that different after all. Biochem J 407:1–13 http://dx.doi.org/10.1042/BJ20070765. [PubMed]
12. Fu TF, di Salvo M, Schirch V. 2001. Distribution of B 6 vitamers in Escherichia coli as determined by enzymatic assay. Anal Biochem 298:314–321 http://dx.doi.org/10.1006/abio.2001.5401. [PubMed]
13. Ito T, Iimori J, Takayama S, Moriyama A, Yamauchi A, Hemmi H, Yoshimura T. 2013. Conserved pyridoxal protein that regulates Ile and Val metabolism. J Bacteriol 195:5439–5449 http://dx.doi.org/10.1128/JB.00593-13. [PubMed]
14. Prunetti L, El Yacoubi B, Schiavon CR, Kirkpatrick E, Huang L, Bailly M, El Badawi-Sidhu M, Harrison K, Gregory JF, Fiehn O, Hanson AD, de Crécy-Lagard V. 2016. Evidence that COG0325 proteins are involved in PLP homeostasis. Microbiol Read 162:694–706 http://dx.doi.org/10.1099/mic.0.000255. [PubMed]
15. Musayev FN, Di Salvo ML, Ko TP, Schirch V, Safo MK. 2003. Structure and properties of recombinant human pyridoxine 5′-phosphate oxidase. Protein Sci 12:1455–1463 http://dx.doi.org/10.1110/ps.0356203. [PubMed]
16. Barile A, Tramonti A, di Salvo ML, Nogués I, Nardella C, Malatesta F, Contestabile R. 2019. Allosteric feedback inhibition of pyridoxine 5′-phosphate oxidase from Escherichia coli. J Biol Chem 294:15593–15603 http://dx.doi.org/10.1074/jbc.RA119.009697. [PubMed]
17. Ghatge MS, Contestabile R, di Salvo ML, Desai JV, Gandhi AK, Camara CM, Florio R, González IN, Parroni A, Schirch V, Safo MK. 2012. Pyridoxal 5′-phosphate is a slow tight binding inhibitor of E. coli pyridoxal kinase. PLoS One 7:e41680 http://dx.doi.org/10.1371/journal.pone.0041680. [PubMed]
18. Ghatge MS, Karve SS, David TM, Ahmed MH, Musayev FN, Cunningham K, Schirch V, Safo MK. 2016. Inactive mutants of human pyridoxine 5′-phosphate oxidase: a possible role for a noncatalytic pyridoxal 5′-phosphate tight binding site. FEBS Open Bio 6:398–408 http://dx.doi.org/10.1002/2211-5463.12042. [PubMed]
19. Sugimoto R, Saito N, Shimada T, Tanaka K. 2018. Identification of YbhA as the pyridoxal 5′-phosphate (PLP) phosphatase in Escherichia coli: importance of PLP homeostasis on the bacterial growth. J Gen Appl Microbiol 63:362–368 http://dx.doi.org/10.2323/jgam.2017.02.008. [PubMed]
20. di Salvo ML, Hunt S, Schirch V. 2004. Expression, purification, and kinetic constants for human and Escherichia coli pyridoxal kinases. Protein Expr Purif 36:300–306 http://dx.doi.org/10.1016/j.pep.2004.04.021. [PubMed]
21. Yang Y, Tsui HC, Man TK, Winkler ME. 1998. Identification and function of the pdxY gene, which encodes a novel pyridoxal kinase involved in the salvage pathway of pyridoxal 5′-phosphate biosynthesis in Escherichia coli K-12. J Bacteriol 180:1814–1821 http://dx.doi.org/10.1128/JB.180.7.1814-1821.1998. [PubMed]
22. Ito T, Downs DM. 2020. Pyridoxal reductase, PdxI, is critical for salvage of pyridoxal in Escherichia coli. J Bacteriol 202:e00056–e20 http://dx.doi.org/10.1128/JB.00056-20. [PubMed]
23. Wang T, de Jesus AJ, Shi Y, Yin H. 2015. Pyridoxamine is a substrate of the energy-coupling factor transporter HmpT. Cell Discov 1:15014 http://dx.doi.org/10.1038/celldisc.2015.14. [PubMed]
24. Dempsey WB, Pachler PF. 1966. Isolation and characterization of pyridoxine auxotrophs of Escherichia coli. J Bacteriol 91:642–645 http://dx.doi.org/10.1128/JB.91.2.642-645.1966. [PubMed]
25. Mulligan JH, Snell EE. 1976. Transport and metabolism of vitamin B 6 in S almonella typhimurium LT2. J Biol Chem 251:1052–1056 http://dx.doi.org/10.1016/S0021-9258(17)33800-0.
26. Mulligan JH, Snell EE. 1977. Transport and metabolism of vitamin B 6 in lactic acid bacteria. J Biol Chem 252:835–839 http://dx.doi.org/10.1016/S0021-9258(19)75173-4.
27. Lerma-Ortiz C, Jeffryes JG, Cooper AJ, Niehaus TD, Thamm AM, Frelin O, Aunins T, Fiehn O, de Crécy-Lagard V, Henry CS, Hanson AD. 2016. ‘Nothing of chemistry disappears in biology’: the top 30 damage-prone endogenous metabolites. Biochem Soc Trans 44:961–971 http://dx.doi.org/10.1042/BST20160073. [PubMed]
28. Mukherjee T, Hanes J, Tews I, Ealick SE, Begley TP. 2011. Pyridoxal phosphate: biosynthesis and catabolism. Biochim Biophys Acta 1814:1585–1596 http://dx.doi.org/10.1016/j.bbapap.2011.06.018. [PubMed]
29. Stanulović M, Jeremić V, Leskovac V, Chaykin S. 1976. New pathway of conversion of pyridoxal to 4-pyridoxic acid. Enzyme 21:357–369 http://dx.doi.org/10.1159/000458879. [PubMed]
30. Ho KK, Weiner H. 2005. Isolation and characterization of an aldehyde dehydrogenase encoded by the aldB gene of Escherichia coli. J Bacteriol 187:1067–1073 http://dx.doi.org/10.1128/JB.187.3.1067-1073.2005. [PubMed]
31. Lam HM, Winkler ME. 1992. Characterization of the complex pdxH-tyrS operon of Escherichia coli K-12 and pleiotropic phenotypes caused by pdxH insertion mutations. J Bacteriol 174:6033–6045 http://dx.doi.org/10.1128/JB.174.19.6033-6045.1992. [PubMed]
32. Zhao G, Pease AJ, Bharani N, Winkler ME. 1995. Biochemical characterization of gapB-encoded erythrose 4-phosphate dehydrogenase of Escherichia coli K-12 and its possible role in pyridoxal 5′-phosphate biosynthesis. J Bacteriol 177:2804–2812 http://dx.doi.org/10.1128/JB.177.10.2804-2812.1995. [PubMed]
33. Boschi-Muller S, Azza S, Pollastro D, Corbier C, Branlant G. 1997. Comparative enzymatic properties of GapB-encoded erythrose-4-phosphate dehydrogenase of Escherichia coli and phosphorylating glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem 272:15106–15112 http://dx.doi.org/10.1074/jbc.272.24.15106. [PubMed]
34. Yang Y, Zhao G, Man TK, Winkler ME. 1998. Involvement of the gapA- and epd ( gapB)-encoded dehydrogenases in pyridoxal 5′-phosphate coenzyme biosynthesis in Escherichia coli K-12. J Bacteriol 180:4294–4299 http://dx.doi.org/10.1128/JB.180.16.4294-4299.1998. [PubMed]
35. Bardey V, Vallet C, Robas N, Charpentier B, Thouvenot B, Mougin A, Hajnsdorf E, Régnier P, Springer M, Branlant C. 2005. Characterization of the molecular mechanisms involved in the differential production of erythrose-4-phosphate dehydrogenase, 3-phosphoglycerate kinase and class II fructose-1,6-bisphosphate aldolase in Escherichia coli. Mol Microbiol 57:1265–1287 http://dx.doi.org/10.1111/j.1365-2958.2005.04762.x. [PubMed]
36. Schoenlein PV, Roa BB, Winkler ME. 1989. Divergent transcription of pdxB and homology between the pdxB and serA gene products in Escherichia coli K-12. J Bacteriol 171:6084–6092 http://dx.doi.org/10.1128/JB.171.11.6084-6092.1989. [PubMed]
37. Henikoff S, Wallace JC. 1988. Detection of protein similarities using nucleotide sequence databases. Nucleic Acids Res 16:6191–6204 http://dx.doi.org/10.1093/nar/16.13.6191. [PubMed]
38. Urbonavicius J, Qian Q, Durand JM, Hagervall TG, Björk GR. 2001. Improvement of reading frame maintenance is a common function for several tRNA modifications. EMBO J 20:4863–4873 http://dx.doi.org/10.1093/emboj/20.17.4863. [PubMed]
39. Arps PJ, Winkler ME. 1987. An unusual genetic link between vitamin B 6 biosynthesis and tRNA pseudouridine modification in Escherichia coli K-12. J Bacteriol 169:1071–1079 http://dx.doi.org/10.1128/JB.169.3.1071-1079.1987. [PubMed]
40. Arps PJ, Winkler ME. 1987. Structural analysis of the Escherichia coli K-12 hisT operon by using a kanamycin resistance cassette. J Bacteriol 169:1061–1070 http://dx.doi.org/10.1128/JB.169.3.1061-1070.1987. [PubMed]
41. Pease AJ, Roa BR, Luo W, Winkler ME. 2002. Positive growth rate-dependent regulation of the pdxA, ksgA, and pdxB genes of Escherichia coli K-12. J Bacteriol 184:1359–1369 http://dx.doi.org/10.1128/JB.184.5.1359-1369.2002. [PubMed]
42. Lam HM, Winkler ME. 1990. Metabolic relationships between pyridoxine (vitamin B 6) and serine biosynthesis in Escherichia coli K-12. J Bacteriol 172:6518–6528 http://dx.doi.org/10.1128/JB.172.11.6518-6528.1990. [PubMed]
43. Drewke C, Klein M, Clade D, Arenz A, Müller R, Leistner E. 1996. 4- O-phosphoryl- l-threonine, a substrate of the pdxC( serC) gene product involved in vitamin B 6 biosynthesis. FEBS Lett 390:179–182 http://dx.doi.org/10.1016/0014-5793(96)00652-7.
44. Duncan K, Coggins JR. 1986. The serC-aro A operon of Escherichia coli. A mixed function operon encoding enzymes from two different amino acid biosynthetic pathways. Biochem J 234:49–57 http://dx.doi.org/10.1042/bj2340049. [PubMed]
45. Man TK, Pease AJ, Winkler ME. 1997. Maximization of transcription of the serC ( pdxF)- aroA multifunctional operon by antagonistic effects of the cyclic AMP (cAMP) receptor protein-cAMP complex and Lrp global regulators of Escherichia coli K-12. J Bacteriol 179:3458–3469 http://dx.doi.org/10.1128/JB.179.11.3458-3469.1997. [PubMed]
46. Banks J, Cane DE. 2004. Biosynthesis of vitamin B 6: direct identification of the product of the PdxA-catalyzed oxidation of 4-hydroxy- l-threonine-4-phosphate using electrospray ionization mass spectrometry. Bioorg Med Chem Lett 14:1633–1636 http://dx.doi.org/10.1016/j.bmcl.2004.01.065. [PubMed]
47. Roa BB, Connolly DM, Winkler ME. 1989. Overlap between pdxA and ksgA in the complex pdxA-ksgA-apaG-apaH operon of Escherichia coli K-12. J Bacteriol 171:4767–4777 http://dx.doi.org/10.1128/JB.171.9.4767-4777.1989. [PubMed]
48. Wu T, McCandlish AC, Gronenberg LS, Chng SS, Silhavy TJ, Kahne D. 2006. Identification of a protein complex that assembles lipopolysaccharide in the outer membrane of Escherichia coli. Proc Natl Acad Sci USA 103:11754–11759 http://dx.doi.org/10.1073/pnas.0604744103.
49. Abe S, Okutsu T, Nakajima H, Kakuda N, Ohtsu I, Aono R. 2003. n-Hexane sensitivity of Escherichia coli due to low expression of imp/ ostA encoding an 87 kDa minor protein associated with the outer membrane. Microbiol Read 149:1265–1273 http://dx.doi.org/10.1099/mic.0.25927-0. [PubMed]
50. Braun M, Silhavy TJ. 2002. Imp/OstA is required for cell envelope biogenesis in Escherichia coli. Mol Microbiol 45:1289–1302 http://dx.doi.org/10.1046/j.1365-2958.2002.03091.x. [PubMed]
51. Lazar SW, Almirón M, Tormo A, Kolter R. 1998. Role of the Escherichia coli SurA protein in stationary-phase survival. J Bacteriol 180:5704–5711 http://dx.doi.org/10.1128/JB.180.21.5704-5711.1998. [PubMed]
52. van Gemen B, Twisk J, van Knippenberg PH. 1989. Autogenous regulation of the Escherichia coli ksgA gene at the level of translation. J Bacteriol 171:4002–4008 http://dx.doi.org/10.1128/JB.171.7.4002-4008.1989. [PubMed]
53. Al Mamun AA, Lombardo MJ, Shee C, Lisewski AM, Gonzalez C, Lin D, Nehring RB, Saint-Ruf C, Gibson JL, Frisch RL, Lichtarge O, Hastings PJ, Rosenberg SM. 2012. Identity and function of a large gene network underlying mutagenic repair of DNA breaks. Science 338:1344–1348 http://dx.doi.org/10.1126/science.1226683. [PubMed]
54. Luciano DJ, Levenson-Palmer R, Belasco JG. 2019. Stresses that raise Np 4A levels induce protective nucleoside tetraphosphate capping of bacterial RNA. Mol Cell 75:957–966.e8 http://dx.doi.org/10.1016/j.molcel.2019.05.031. [PubMed]
55. Ohtsu I, Kakuda N, Tsukagoshi N, Dokyu N, Takagi H, Wachi M, Aono R. 2004. Transcriptional analysis of the ostA/ imp gene involved in organic solvent sensitivity in Escherichia coli. Biosci Biotechnol Biochem 68:458–461 http://dx.doi.org/10.1271/bbb.68.458. [PubMed]
56. Dartigalongue C, Missiakas D, Raina S. 2001. Characterization of the Escherichia coli sigma E regulon. J Biol Chem 276:20866–20875 http://dx.doi.org/10.1074/jbc.M100464200. [PubMed]
57. Blanchin-Roland S, Blanquet S, Schmitter JM, Fayat G. 1986. The gene for Escherichia coli diadenosine tetraphosphatase is located immediately clockwise to folA and forms an operon with ksgA. Mol Gen Genet 205:515–522 http://dx.doi.org/10.1007/BF00338091. [PubMed]
58. Lois LM, Campos N, Putra SR, Danielsen K, Rohmer M, Boronat A. 1998. Cloning and characterization of a gene from Escherichia coli encoding a transketolase-like enzyme that catalyzes the synthesis of d-1-deoxyxylulose 5-phosphate, a common precursor for isoprenoid, thiamin, and pyridoxol biosynthesis. Proc Natl Acad Sci USA 95:2105–2110 http://dx.doi.org/10.1073/pnas.95.5.2105. [PubMed]
59. Sprenger GA, Schörken U, Wiegert T, Grolle S, de Graaf AA, Taylor SV, Begley TP, Bringer-Meyer S, Sahm H. 1997. Identification of a thiamin-dependent synthase in Escherichia coli required for the formation of the 1-deoxy- d-xylulose 5-phosphate precursor to isoprenoids, thiamin, and pyridoxol. Proc Natl Acad Sci USA 94:12857–12862 http://dx.doi.org/10.1073/pnas.94.24.12857. [PubMed]
60. Fujisaki S, Nishino T, Katsuki H. 1986. Isoprenoid synthesis in Escherichia coli. Separation and partial purification of four enzymes involved in the synthesis. J Biochem 99:1327–1337 http://dx.doi.org/10.1093/oxfordjournals.jbchem.a135600. [PubMed]
61. Kirby J, Nishimoto M, Chow RW, Baidoo EE, Wang G, Martin J, Schackwitz W, Chan R, Fortman JL, Keasling JD. 2015. Enhancing terpene yield from sugars via novel routes to 1-deoxy- d-xylulose 5-phosphate. Appl Environ Microbiol 81:130–138 http://dx.doi.org/10.1128/AEM.02920-14. [PubMed]
62. Laber B, Maurer W, Scharf S, Stepusin K, Schmidt FS. 1999. Vitamin B 6 biosynthesis: formation of pyridoxine 5′-phosphate from 4-(phosphohydroxy)- l-threonine and 1-deoxy- d-xylulose-5-phosphate by PdxA and PdxJ protein. FEBS Lett 449:45–48 http://dx.doi.org/10.1016/S0014-5793(99)00393-2.
63. Yeh JI, Du S, Pohl E, Cane DE. 2002. Multistate binding in pyridoxine 5′-phosphate synthase: 1.96 A crystal structure in complex with 1-deoxy- d-xylulose phosphate. Biochemistry 41:11649–11657 http://dx.doi.org/10.1021/bi026292t. [PubMed]
64. Lam HM, Tancula E, Dempsey WB, Winkler ME. 1992. Suppression of insertions in the complex pdxJ operon of Escherichia coli K-12 by lon and other mutations. J Bacteriol 174:1554–1567 http://dx.doi.org/10.1128/JB.174.5.1554-1567.1992. [PubMed]
65. Court DL, Gan J, Liang YH, Shaw GX, Tropea JE, Costantino N, Waugh DS, Ji X. 2013. RNase III: genetics and function; structure and mechanism. Annu Rev Genet 47:405–431 http://dx.doi.org/10.1146/annurev-genet-110711-155618. [PubMed]
66. Deutscher MP. 2009. Maturation and degradation of ribosomal RNA in bacteria. Prog Mol Biol Transl Sci 85:369–391 http://dx.doi.org/10.1016/S0079-6603(08)00809-X.
67. Matsunaga J, Dyer M, Simons EL, Simons RW. 1996. Expression and regulation of the rnc and pdxJ operons of Escherichia coli. Mol Microbiol 22:977–989 http://dx.doi.org/10.1046/j.1365-2958.1996.01529.x. [PubMed]
68. Flugel RS, Hwangbo Y, Lambalot RH, Cronan JE Jr, Walsh CT. 2000. Holo-(acyl carrier protein) synthase and phosphopantetheinyl transfer in Escherichia coli. J Biol Chem 275:959–968 http://dx.doi.org/10.1074/jbc.275.2.959. [PubMed]
69. Zaslaver A, Bren A, Ronen M, Itzkovitz S, Kikoin I, Shavit S, Liebermeister W, Surette MG, Alon U. 2006. A comprehensive library of fluorescent transcriptional reporters for Escherichia coli. Nat Methods 3:623–628 http://dx.doi.org/10.1038/nmeth895. [PubMed]
70. Mittenhuber G. 2001. Phylogenetic analyses and comparative genomics of vitamin B 6 (pyridoxine) and pyridoxal phosphate biosynthesis pathways. J Mol Microbiol Biotechnol 3:1–20.
71. Kim J, Kershner JP, Novikov Y, Shoemaker RK, Copley SD. 2010. Three serendipitous pathways in E. coli can bypass a block in pyridoxal-5′-phosphate synthesis. Mol Syst Biol 6:436 http://dx.doi.org/10.1038/msb.2010.88. [PubMed]
72. Kim J, Flood JJ, Kristofich MR, Gidfar C, Morgenthaler AB, Fuhrer T, Sauer U, Snyder D, Cooper VS, Ebmeier CC, Old WM, Copley SD. 2019. Hidden resources in the Escherichia coli genome restore PLP synthesis and robust growth after deletion of the essential gene pdxB. Proc Natl Acad Sci USA 116:24164–24173 http://dx.doi.org/10.1073/pnas.1915569116. [PubMed]
73. Yang Y, Zhao G, Winkler ME. 1996. Identification of the pdxK gene that encodes pyridoxine (vitamin B 6) kinase in Escherichia coli K-12. FEMS Microbiol Lett 141:89–95 http://dx.doi.org/10.1111/j.1574-6968.1996.tb08368.x. [PubMed]
74. Safo MK, Musayev FN, Hunt S, di Salvo ML, Scarsdale N, Schirch V. 2004. Crystal structure of the PdxY protein from Escherichia coli. J Bacteriol 186:8074–8082 http://dx.doi.org/10.1128/JB.186.23.8074-8082.2004. [PubMed]
75. Mendoza-Vargas A, Olvera L, Olvera M, Grande R, Vega-Alvarado L, Taboada B, Jimenez-Jacinto V, Salgado H, Juárez K, Contreras-Moreira B, Huerta AM, Collado-Vides J, Morett E. 2009. Genome-wide identification of transcription start sites, promoters and transcription factor binding sites in E. coli. PLoS One 4:e7526 http://dx.doi.org/10.1371/journal.pone.0007526. [PubMed]
76. Kuznetsova E, Proudfoot M, Gonzalez CF, Brown G, Omelchenko MV, Borozan I, Carmel L, Wolf YI, Mori H, Savchenko AV, Arrowsmith CH, Koonin EV, Edwards AM, Yakunin AF. 2006. Genome-wide analysis of substrate specificities of the Escherichia coli haloacid dehalogenase-like phosphatase family. J Biol Chem 281:36149–36161 http://dx.doi.org/10.1074/jbc.M605449200. [PubMed]
77. Sévin DC, Fuhrer T, Zamboni N, Sauer U. 2017. Nontargeted in vitro metabolomics for high-throughput identification of novel enzymes in Escherichia coli. Nat Methods 14:187–194 http://dx.doi.org/10.1038/nmeth.4103. [PubMed]
78. Filenko N, Spiro S, Browning DF, Squire D, Overton TW, Cole J, Constantinidou C. 2007. The NsrR regulon of Escherichia coli K-12 includes genes encoding the hybrid cluster protein and the periplasmic, respiratory nitrite reductase. J Bacteriol 189:4410–4417 http://dx.doi.org/10.1128/JB.00080-07. [PubMed]
79. Partridge JD, Bodenmiller DM, Humphrys MS, Spiro S. 2009. NsrR targets in the Escherichia coli genome: new insights into DNA sequence requirements for binding and a role for NsrR in the regulation of motility. Mol Microbiol 73:680–694 http://dx.doi.org/10.1111/j.1365-2958.2009.06799.x. [PubMed]
80. Ito T, Yamamoto K, Hori R, Yamauchi A, Downs DM, Hemmi H, Yoshimura T. 2019. Conserved pyridoxal 5′-phosphate-binding protein YggS impacts amino acid metabolism through pyridoxine 5′-phosphate in Escherichia coli. Appl Environ Microbiol 85:85 http://dx.doi.org/10.1128/AEM.00430-19. [PubMed]
81. Ito T, Uozumi N, Nakamura T, Takayama S, Matsuda N, Aiba H, Hemmi H, Yoshimura T. 2009. The implication of YggT of Escherichia coli in osmotic regulation. Biosci Biotechnol Biochem 73:2698–2704 http://dx.doi.org/10.1271/bbb.90558. [PubMed]
82. Bradshaw JS, Kuzminov A. 2003. RdgB acts to avoid chromosome fragmentation in Escherichia coli. Mol Microbiol 48:1711–1725 http://dx.doi.org/10.1046/j.1365-2958.2003.03540.x. [PubMed]
83. Nonaka G, Blankschien M, Herman C, Gross CA, Rhodius VA. 2006. Regulon and promoter analysis of the E. coli heat-shock factor, sigma32, reveals a multifaceted cellular response to heat stress. Genes Dev 20:1776–1789 http://dx.doi.org/10.1101/gad.1428206. [PubMed]
84. Haskamp V, Karrie S, Mingers T, Barthels S, Alberge F, Magalon A, Müller K, Bill E, Lubitz W, Kleeberg K, Schweyen P, Bröring M, Jahn M, Jahn D. 2018. The radical SAM protein HemW is a heme chaperone. J Biol Chem 293:2558–2572 http://dx.doi.org/10.1074/jbc.RA117.000229. [PubMed]
85. Suvorova IA, Rodionov DA. 2016. Comparative genomics of pyridoxal 5′-phosphate-dependent transcription factor regulons in Bacteria. Microb Genom 2:e000047 http://dx.doi.org/10.1099/mgen.0.000047.
86. Kurihara S, Tsuboi Y, Oda S, Kim HG, Kumagai H, Suzuki H. 2009. The putrescine importer PuuP of Escherichia coli K-12. J Bacteriol 191:2776–2782 http://dx.doi.org/10.1128/JB.01314-08. [PubMed]
87. Schneider BL, Hernandez VJ, Reitzer L. 2013. Putrescine catabolism is a metabolic response to several stresses in Escherichia coli. Mol Microbiol 88:537–550 http://dx.doi.org/10.1111/mmi.12207. [PubMed]
88. Ramseier TM. 1996. Cra and the control of carbon flux via metabolic pathways. Res Microbiol 147:489–493 http://dx.doi.org/10.1016/0923-2508(96)84003-4.
89. Zheng D, Constantinidou C, Hobman JL, Minchin SD. 2004. Identification of the CRP regulon using in vitro and in vivo transcriptional profiling. Nucleic Acids Res 32:5874–5893 http://dx.doi.org/10.1093/nar/gkh908. [PubMed]
90. Thouvenot B, Charpentier B, Branlant C. 2004. The strong efficiency of the Escherichia coli gapA P1 promoter depends on a complex combination of functional determinants. Biochem J 383:371–382 http://dx.doi.org/10.1042/BJ20040792. [PubMed]
91. Calvo JM, Matthews RG. 1994. The leucine-responsive regulatory protein, a global regulator of metabolism in Escherichia coli. Microbiol Rev 58:466–490 http://dx.doi.org/10.1128/MR.58.3.466-490.1994. [PubMed]
92. Cho BK, Knight EM, Barrett CL, Palsson BØ. 2008. Genome-wide analysis of Fis binding in Escherichia coli indicates a causative role for A-/AT-tracts. Genome Res 18:900–910 http://dx.doi.org/10.1101/gr.070276.107. [PubMed]
93. Tramonti A, Milano T, Nardella C, di Salvo ML, Pascarella S, Contestabile R. 2017. Salmonella Typhimurium PtsJ is a novel MocR-like transcriptional repressor involved in regulating the vitamin B 6 salvage pathway. FEBS J 284:466–484 http://dx.doi.org/10.1111/febs.13994. [PubMed]
94. Lu P, Vogel C, Wang R, Yao X, Marcotte EM. 2007. Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat Biotechnol 25:117–124 http://dx.doi.org/10.1038/nbt1270. [PubMed]
95. Picard F, Milhem H, Loubière P, Laurent B, Cocaign-Bousquet M, Girbal L. 2012. Bacterial translational regulations: high diversity between all mRNAs and major role in gene expression. BMC Genomics 13:528 http://dx.doi.org/10.1186/1471-2164-13-528. [PubMed]
96. Ishihama Y, Schmidt T, Rappsilber J, Mann M, Hartl FU, Kerner MJ, Frishman D. 2008. Protein abundance profiling of the Escherichia coli cytosol. BMC Genomics 9:102 http://dx.doi.org/10.1186/1471-2164-9-102. [PubMed]
97. Wiśniewski JR, Rakus D. 2014. Multi-enzyme digestion FASP and the ‘Total Protein Approach’-based absolute quantification of the Escherichia coli proteome. J Proteomics 109:322–331 http://dx.doi.org/10.1016/j.jprot.2014.07.012. [PubMed]
98. Maheux AF, Boudreau DK, Bergeron MG, Rodriguez MJ. 2014. Characterization of Escherichia fergusonii and Escherichia albertii isolated from water. J Appl Microbiol 117:597–609 http://dx.doi.org/10.1111/jam.12551. [PubMed]
99. Yang ES, Schirch V. 2000. Tight binding of pyridoxal 5′-phosphate to recombinant Escherichia coli pyridoxine 5′-phosphate oxidase. Arch Biochem Biophys 377:109–114 http://dx.doi.org/10.1006/abbi.2000.1737. [PubMed]
100. di Salvo ML, Nogués I, Parroni A, Tramonti A, Milano T, Pascarella S, Contestabile R. 2015. On the mechanism of Escherichia coli pyridoxal kinase inhibition by pyridoxal and pyridoxal 5′-phosphate. Biochim Biophys Acta 1854:1160–1166 http://dx.doi.org/10.1016/j.bbapap.2015.01.013. [PubMed]
101. Fitzpatrick TB, Moccand C, Roux C. 2010. Vitamin B 6 biosynthesis: charting the mechanistic landscape. ChemBioChem 11:1185–1193 http://dx.doi.org/10.1002/cbic.201000084. [PubMed]
102. Barile A, Nogués I, di Salvo ML, Bunik V, Contestabile R, Tramonti A. 2020. Molecular characterization of pyridoxine 5′-phosphate oxidase and its pathogenic forms associated with neonatal epileptic encephalopathy. Sci Rep 10:13621 http://dx.doi.org/10.1038/s41598-020-70598-7. [PubMed]
103. Darin N, Reid E, Prunetti L, Samuelsson L, Husain RA, Wilson M, El Yacoubi B, Footitt E, Chong WK, Wilson LC, Prunty H, Pope S, Heales S, Lascelles K, Champion M, Wassmer E, Veggiotti P, de Crécy-Lagard V, Mills PB, Clayton PT. 2016. Mutations in PROSC disrupt cellular pyridoxal phosphate homeostasis and cause vitamin-B 6-dependent epilepsy. Am J Hum Genet 99:1325–1337 http://dx.doi.org/10.1016/j.ajhg.2016.10.011. [PubMed]
Loading

Article metrics loading...

/content/journal/ecosalplus/10.1128/ecosalplus.ESP-0004-2021
2021-04-01
2021-04-19

Abstract:

Vitamin B is an ensemble of six interconvertible vitamers: pyridoxine (PN), pyridoxamine (PM), pyridoxal (PL), and their 5′-phosphate derivatives, PNP, PMP, and PLP. Pyridoxal 5′-phosphate is a coenzyme in a variety of enzyme reactions concerning transformations of amino and amino acid compounds. This review summarizes all known and putative PLP-binding proteins found in the MG1655 proteome. PLP can have toxic effects since it contains a very reactive aldehyde group at its 4′ position that easily forms aldimines with primary and secondary amines and reacts with thiols. Most PLP is bound either to the enzymes that use it as a cofactor or to PLP carrier proteins, protected from the cellular environment but at the same time readily transferable to PLP-dependent apoenzymes. and its relatives synthesize PLP through the seven-step deoxyxylulose-5-phosphate (DXP)-dependent pathway. Other bacteria synthesize PLP in a single step, through a so-called DXP-independent pathway. Although the DXP-dependent pathway was the first to be revealed, the discovery of the widespread DXP-independent pathway determined a decline of interest in vitamin B metabolism. In , as in most organisms, PLP can also be obtained from PL, PN, and PM, imported from the environment or recycled from protein turnover, via a salvage pathway. Our review deals with all aspects of vitamin B metabolism in , from transcriptional to posttranslational regulation. A critical interpretation of results is presented, in particular, concerning the most obscure aspects of PLP homeostasis and delivery to PLP-dependent enzymes.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed

Figures

Image of Figure 1
Figure 1

This figure summarizes all the different factors contributing to PLP homeostasis in the cells. The pool of free PLP is in equilibrium with other B vitamers, and PLP bound to specific PLP-binding protein. PLP supply processes are in blue, whereas consuming processes are in red.

Citation: Tramonti A, Nardella C, di Salvo M, Barile A, D’Alessio F, de Crécy-Lagard V, Contestabile R. 2021. Knowns and Unknowns of Vitamin B Metabolism in , EcoSal Plus 2021; doi:10.1128/ecosalplus.ESP-0004-2021
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Primary metabolites, erythrose-4-phosphate, glyceraldehyde-3-phoshpate, and pyruvate, used as starting substrates, are in green, whereas intermediate metabolites are in black. Enzymes are in blue.

Citation: Tramonti A, Nardella C, di Salvo M, Barile A, D’Alessio F, de Crécy-Lagard V, Contestabile R. 2021. Knowns and Unknowns of Vitamin B Metabolism in , EcoSal Plus 2021; doi:10.1128/ecosalplus.ESP-0004-2021
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Numbers indicate the genome positions in kb. The blue arrows represent mRNAs. The position of promoters is indicated. ()

Citation: Tramonti A, Nardella C, di Salvo M, Barile A, D’Alessio F, de Crécy-Lagard V, Contestabile R. 2021. Knowns and Unknowns of Vitamin B Metabolism in , EcoSal Plus 2021; doi:10.1128/ecosalplus.ESP-0004-2021
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

The promoter regions were analyzed using the MEME suite webserver to identify a common motif. The orientations (+ or –) of the promoter region and the score are reported. The logo of the sequence highlights conservation of the identified motif.

Citation: Tramonti A, Nardella C, di Salvo M, Barile A, D’Alessio F, de Crécy-Lagard V, Contestabile R. 2021. Knowns and Unknowns of Vitamin B Metabolism in , EcoSal Plus 2021; doi:10.1128/ecosalplus.ESP-0004-2021
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

PLP-binding proteins in

Citation: Tramonti A, Nardella C, di Salvo M, Barile A, D’Alessio F, de Crécy-Lagard V, Contestabile R. 2021. Knowns and Unknowns of Vitamin B Metabolism in , EcoSal Plus 2021; doi:10.1128/ecosalplus.ESP-0004-2021
Generic image for table
TABLE 2

Genes associated with vitamin B metabolism and biological processes in which they are involved

Citation: Tramonti A, Nardella C, di Salvo M, Barile A, D’Alessio F, de Crécy-Lagard V, Contestabile R. 2021. Knowns and Unknowns of Vitamin B Metabolism in , EcoSal Plus 2021; doi:10.1128/ecosalplus.ESP-0004-2021

Supplemental Material

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error